А. А. Владимиров

О СРАВНЕНИИ ИНТЕГРАЛОВ ДАРБУ И РИМАНА В КОНСТРУКТИВНОМ МАТЕМАТИЧЕСКОМ АНАЛИЗЕ

§1. Введение

1. В рамках "классической" теоретико-множественной математики известно два основных способа определения одномерного интеграла Римана: в качестве предела интегральных сумм при исчезновении измельчённости дробления (подход Римана), и в качестве промежуточного значения множеств интегралов "элементарно интегрируемых" функций, оценивающих рассматриваемую (подход Дарбу). С точки эрения "классической" математики указанные два подхода приводят к равнообъёмным понятиям. Основная цель настоящей статьи заключается в построении примера всюду на отрезке [0, 1] заданной функции, интегрируемой по Риману, но не интегрируемой по Дарбу, с точки эрения конструктивного математического анализа.

В дальнейшем мы всегда, не оговаривая этого особо, будем исходить из конструктивного понимания математических суждений, как оно даётся ступенчатой семантической системой А. А. Маркова [1, 2].

2. Конструктивный вариант определения Римана рассматривался неоднократно и в настоящее время может считаться стандартным [3, Гл. 7, §1]. Конструктивную интегрируемость по Дарбу мы вводим следующим образом:

Ключевые слова: конструктивная функция, интеграл Римана, интеграл Дарбу, сингулярное покрытие.

2.1. Функция $f:[0,1]\to\mathbb{R}$ называется интегрируемой по Дарбу, если для любого вещественного числа $\varepsilon>0$ осуществимы две полигональные функции $f^{\downarrow}_{\varepsilon}$ и $f^{\uparrow}_{\varepsilon}$, удовлетворяющие соотношениям

$$(\forall x \in [0,1]) \qquad f_{\varepsilon}^{\downarrow}(x) \leqslant f(x) \leqslant f_{\varepsilon}^{\uparrow}(x),$$
$$\int_{0}^{1} (f_{\varepsilon}^{\uparrow} - f_{\varepsilon}^{\downarrow}) < \varepsilon.$$

Здесь и далее функцию $f:[0,1]\to\mathbb{R}$ мы называем полигональной (ср. $[3,\ \Gamma\pi.\ 5,\ \S1,\ Oпределение\ 7],\ [4,\ \S1]),$ если осуществимы список $\{q_k\}_{k=0}^m$ рациональных чисел и упорядоченный по возрастанию список $\{p_k\}_{k=0}^m$ попарно различных рациональных точек отрезка [0,1], удовлетворяющие соотношениям $p_0=0,\ p_m=1$ и

$$(\forall k \in \mathbb{N} : 1 \leqslant k \leqslant m) \ (\forall x \in [p_{k-1}, p_k])$$
$$f(x) = \frac{q_k \cdot (x - p_{k-1}) + q_{k-1} \cdot (p_k - x)}{p_k - p_{k-1}}.$$

Под *полигональным интегралом* такой функции, как обычно [3, Гл. 8, §2, Определение 6], [4, §1], понимается величина

$$\int_{0}^{1} f \rightleftharpoons \sum_{k=1}^{m} \frac{(q_k + q_{k-1}) \cdot (p_k - p_{k-1})}{2},$$

численно совпадающая с интегралом Римана.

§2. Вспомогательные утверждения

- 1. Очевидным образом имеет место следующий факт:
- **1.1.** Пусть функция $f:[0,1] \to \mathbb{R}$ интегрируема по Дарбу. Тогда для любого рационального числа $\varepsilon>0$ осуществимы рациональное число $\delta>0$ и неотрицательная полигональная функция g, удовлетворяющие соотношениям

$$\int\limits_0^1g<1/2,$$

$$(\forall x,y\in[0,1]:\sup(g(x),\,g(y))<1,\,|x-y|<\delta)\qquad|f(x)-f(y)|<\varepsilon.$$

- 2. Следующее утверждение представляет собой удобный для наших дальнейших целей аналог известной [3, Гл. 8, §1, Теорема 2], [4, Теорема 2.1] теоремы о сингулярных покрытиях. Оно может также быть рассмотрено в качестве варианта конструктивного опровержения [5, Замечание 2] теоремы Лебега о мажорируемой сходимости.
- **2.1.** Осуществима неубывающая последовательность $\{h_n\}_{n=0}^\infty$ неотрицательных полигональных функций, удовлетворяющая соотношениям

$$(\forall x \in [0,1]) \qquad \lim_{n \to \infty} h_n(x) = 2,\tag{1}$$

$$(\forall n \in \mathbb{N}) \qquad \int\limits_{0}^{1} h_n < 1/2. \tag{2}$$

Доказательство. Зафиксируем [3, Гл. 8, §1, Теорема 2] накрывающую отрезок [0,1] последовательность $\{(a_n,b_n)\}_{n=0}^{\infty}$ непустых интервалов с рациональными концами, удовлетворяющую соотношению

$$(\forall n \in \mathbb{N})$$
 $\sum_{k=0}^{n} (b_k - a_k) < 1/6.$ (3)

Введём в рассмотрение последовательность $\{\varphi_n\}_{n=0}^\infty$ полигональных функций вида

$$(\forall n \in \mathbb{N}) \ (\forall x \in [0,1]) \quad \varphi_n(x) = \inf\left(1, \sup\left(0, 2 - \frac{|2x - b_n - a_n|}{b_n - a_n}\right)\right),\tag{4}$$

а также неубывающую последовательность $\{h_n\}_{n=0}^\infty$ неотрицательных полигональных функций, рекуррентно заданную соотношениями

$$(\forall x \in [0,1]) \qquad h_0(x) = 0, \tag{5}$$

$$(\forall x \in [0, 1]) h_0(x) = 0, (5)$$

$$(\forall n \in \mathbb{N}) (\forall x \in [0, 1]) h_{n+1}(x) = \sup(h_n(x), 2\varphi_n(x)). (6)$$

Тогда при любом выборе индекса $n \in \mathbb{N}$ выполняются неравенства

$$\int_{0}^{1} h_{n+1} \leqslant \sum_{k=0}^{n} \int_{0}^{1} 2\varphi_{k}$$
 [(5), (6)]

$$\leqslant \sum_{k=0}^{n} 3 \cdot (b_k - a_k) \tag{4}$$

$$<1/2.$$
 [(3)]

Кроме того, выполняется соотношение

$$(\forall n \in \mathbb{N}) \ (\forall x \in [0,1]) \qquad h_n(x) \le 2,$$
 [(5), (6), (4)]

а также обусловленное вложением $[0,1]\subseteq\bigcup_{n=0}^\infty (a_n,b_n)$ соотношение

$$(\forall x \in [0,1]) (\exists n \in \mathbb{N}) \qquad h_{n+1}(x) \geqslant 2.$$
 [(6), (4)]

Тем самым, функциональная последовательность $\{h_n\}_{n=0}^{\infty}$ удовлетворяет всем предъявленным в формулировке доказываемого утверждения требованиям.

3. Произвольно фиксированным полигональной функции f и вещественному числу $\varepsilon>0$ можно сопоставить $[6,\,\S11.2.2]$ функцию $\omega(f,\varepsilon):[0,1]\to\mathbb{R}$ вида

$$(\forall x \in [0,1]) \qquad [\omega(f,\varepsilon)](x) = \sup_{t,s \in [x-\varepsilon,x+\varepsilon] \cap [0,1]} |f(t)-f(s)|.$$

Очевидным образом имеют место следующие два факта:

- **3.1.** Пусть даны полигональная функция f и вещественное число $\varepsilon > 0$. Тогда функция $\omega(f,\varepsilon):[0,1]\to\mathbb{R}$ является равномерно непрерывной.
- **3.2.** Пусть даны полигональная функция, вещественное число $\varepsilon > 0$, а также имеющее не превосходящую ε измельчённость интегральное дробление τ отрезка [0,1]. Тогда отвечающее дроблению τ значение $I(f,\tau)$ интегральной суммы функции f удовлетворяет соотношению

$$\left|I(f,\tau)-\int\limits_{0}^{1}f\right|\leqslant\int\limits_{0}^{1}\omega(f,\varepsilon).$$

Также имеют место следующие два факта:

3.3. Пусть $\{f_n\}_{n=0}^{\infty}$ — последовательность полигональных функций, поточечно сходящаяся к некоторой функции $f:[0,1] \to \mathbb{R}$. Пусть также для любого вещественного числа $\varepsilon > 0$ осуществимо вещественное число $\delta > 0$, удовлетворяющее соотношению

$$(\forall n \in \mathbb{N})$$

$$\int_{0}^{1} \omega(f_n, \delta) < \varepsilon.$$

Тогда функция f интегрируема по Риману.

Доказательство. Зафиксируем произвольное вещественное число $\varepsilon>0,$ а также вещественное число $\delta>0,$ удовлетворяющее соотнощению

$$(\forall n \in \mathbb{N}) \qquad \int_{0}^{1} \omega(f_n, \delta) < \varepsilon/3. \tag{1}$$

Тогда для любых двух интегральных дроблений τ и σ отрезка [0,1], имеющих не превосходящую δ измельчённость, будут выполняться соотношения

$$|I(f,\tau) - I(f,\sigma)| = \lim_{n \to \infty} |I(f_n,\tau) - I(f_n,\sigma)|$$

$$\leq 2\varepsilon/3$$

$$\leq \varepsilon.$$
[3.2, (1)]

Интегрируемость функции f по Риману вытекает теперь из произвольности выбора вещественного числа $\varepsilon>0$ и критерия Коши. \square

3.4. Пусть $\alpha > 0$, $\beta > 0$ и $\zeta \in (0,1)$ — рациональные числа, и пусть полигональная функция f имеет вид

$$(\forall x \in [0,1])$$
 $f(x) = \alpha \cdot \sup \left(0, 1 - \frac{|x-\zeta|}{\beta}\right).$

Tогда при любом выборе рационального числа $\varepsilon>0$ выполняется соотношение

$$\int_{0}^{1} \omega(f, \varepsilon) \leqslant 8\alpha\varepsilon. \tag{2}$$

Доказательство. Заметим, что всегда выполняется одно из неравенств $\varepsilon < \beta$ или $\varepsilon \geqslant \beta$.

В первом случае функция f является липшицевой с коэффициентом α/β , а потому функция $\omega(f,\varepsilon)$ мажорируется постоянной $2\alpha\varepsilon/\beta$. Кроме того, указанная функция обращается в нуль вне отрезка $[\zeta-2\beta,\zeta+2\beta]$. Тем самым, неравенство (2) выполняется.

Во втором случае функция $\omega(f,\varepsilon)$ мажорируется постоянной α и обращается в нуль вне отрезка $[\zeta-2\varepsilon,\zeta+2\varepsilon]$. Тем самым, неравенство (2) также выполняется.

§3. Построение примера

- 1. На протяжении настоящего параграфа мы будем считать, что натуральные и рациональные числа представляют собой слова в трёхбуквенном алфавите $\{|,-,/\}$ [7, §1.6], а списки рациональных чисел являются *-системами [7, §24]. Поскольку любое конструктивное отображение множества натуральных чисел в множество *-систем рациональных чисел может быть задано посредством нормального алгорифма в шестибуквенном алфавите $\{|,-,/,*,a,b\}$ [7, §41.7.1], то в дальнейшем мы будем ограничиваться рассмотрением именно таких алгорифмов.
- **2.** Зафиксируем некоторую нумерацию $\{\mathfrak{A}_n\}_{n=0}^{\infty}$ нормальных алгорифмов указанного в предыдущем пункте вида. Рассмотрим связанное с этой нумерацией множество индексов N, для которых процесс применения алгорифма \mathfrak{A}_N к слову N останавливается с результатом вида

$$*\delta * p_0 * q_0 * \dots * p_m * q_m *, \tag{1}$$

где δ — положительное рациональное число, а списки рациональных чисел $\{p_k\}_{k=0}^m$ и $\{q_k\}_{k=0}^m$ определяют [§1.2] некоторую неотрицательную полигональную функцию g со свойством

$$\int_{0}^{1} g < 1/2. \tag{2}$$

Указанное множество индексов с очевидностью является бесконечным и полуразрешимым, а потому допускает перечисление без повторений некоторым полным арифметическим алгорифмом $\mu: \mathbb{N} \to \mathbb{N}$.

Последовательность рациональных чисел δ из представления (1) результатов применения алгорифмов $\mathfrak{A}_{\mu(n)}$ к словам $\mu(n)$ мы на протяжении настоящего параграфа будем обозначать в виде $\{\delta_n\}_{n=0}^{\infty}$. Последовательность соответствующих полигональных функций мы будем обозначать в виде $\{g_n\}_{n=0}^{\infty}$. Кроме того, мы будем предполагать зафиксированной неубывающую последовательность $\{h_n\}_{n=0}^{\infty}$ неотрицательных полигональных функций из утверждения §2.2.1.

- 3. Имеют место следующие три факта:
- **3.1.** Осуществимы возрастающая последовательность $\nu: \mathbb{N} \to \mathbb{N}$, а также последовательность $\{\zeta_n\}_{n=0}^{\infty}$ рациональных точек интервала (0,1) и последовательность $\{\beta_n\}_{n=0}^{\infty}$ положительных рациональных чисел, удовлетворяющие соотношениям

$$(\forall n \in \mathbb{N}) \quad \beta_n < \inf(\delta_n, \ \zeta_n, \ 1 - \zeta_n), \tag{1}$$

$$(\forall n \in \mathbb{N}) (\forall x \in [\zeta_n - \beta_n, \zeta_n + \beta_n]) \quad [g_n + h_{\nu(n)}](x) < 1 < h_{\nu(n+1)}(x). \tag{2}$$

Доказательство. Положим $\nu(0) \rightleftharpoons 0$. Построение значений ζ_n , β_n и $\nu(n+1)$ на основе известного значения $\nu(n)$ может теперь быть произведено следующим образом. В качестве ζ_n выберем произвольную рациональную точку интервала (0,1), удовлетворяющую неравенству $[g_n + h_{\nu(n)}](\zeta_n) < 1$. Осуществимость такой точки гарантирована соотношениями

$$\int_{0}^{1} (g_n + h_{\nu(n)}) < 1/2 + 1/2$$
 [2 (2), §2.2 (2)]

В качестве $\nu(n+1)$ выберем произвольное натуральное число, удовлетворяющее неравенству $h_{\nu(n+1)}(\zeta_n) > 1$. Осуществимость такого числа гарантирована соотношением §2.2 (1). В качестве β_n теперь остаётся выбрать произвольное положительное рациональное число, чья малость будет достаточна для выполнения соотношений (1) и (2).

3.2. Пусть $\{f_n\}_{n=0}^{\infty}$ — последовательность полигональных функций вида

$$(\forall n \in \mathbb{N}) \ (\forall x \in [0, 1]) \qquad f_n(x) = 2^{-\mu(n)} \cdot \sup\left(0, 1 - \frac{|x - \zeta_n|}{\beta_n}\right), \quad (3)$$

где $\{\zeta_n\}_{n=0}^{\infty}$ и $\{\beta_n\}_{n=0}^{\infty}$ – числовые последовательности из утверждения 3.1. Тогда осуществима и интегрируема по Риману функция $f:[0,1]\to\mathbb{R}$, удовлетворяющая соотношению

$$(\forall x \in [0,1])$$
 $f(x) = \sum_{k=0}^{\infty} f_k(x).$

Доказательство. Зафиксируем произвольную точку $x \in [0,1]$, а также номер $n \in \mathbb{N}$, удовлетворяющий неравенству $h_{\nu(n)}(x) > 1$ [§2.2 (1)]. Тогда выполняется соотношение

$$(\forall k \in \mathbb{N} : k \geqslant n) \qquad f_k(x) = 0, \tag{3}, (2)$$

означающее сходимость ряда

$$\sum_{k=0}^{\infty} f_k(x).$$

Кроме того, для любых вещественного числа $\varepsilon>0$ и номера $n\in\mathbb{N}$ выполняются оценки

$$\int_{0}^{1} \omega \left(\sum_{k=0}^{n} f_{k}, \, \varepsilon / 16 \right) \leqslant \sum_{k=0}^{n} \int_{0}^{1} \omega \left(f_{k}, \, \varepsilon / 16 \right)$$

$$< \sum_{k=0}^{n} 2^{-\mu(k)-1} \cdot \varepsilon$$

$$< \varepsilon.$$
[(3), §2.3.4]

означающие интегрируемость функции f по Риману [$\S 2.3.3$].

3.3. Функция $f:[0,1] \to \mathbb{R}$ из утверждения 3.2 не является интегрируемой по Дарбу.

Доказательство. В случае интегрируемости рассматриваемой функции по Дарбу должен найтись [§2.1.1] алгорифм, перерабатывающий каждое натуральное число n в список вида 2 (1), отвечающие которому положительное рациональное число $\delta > 0$ и неотрицательная полигональная функция g удовлетворяют соотношению

$$(\forall x,y \in [0,1]: \sup(g(x),\,g(y)) < 1,\, |x-y| < \delta) \qquad |f(x)-f(y)| < 2^{-n-1}.$$

При этом, очевидно, найдётся также натуральное число m, для которого значение $\mu(m)$ будет являться номером рассматриваемого алгорифма при нумерации из пункта 2. Однако тогда должны выполняться соотношения

$$g_m(\zeta_m + \beta_m) < 1, \tag{(2)}$$

$$g_m(\zeta_m) < 1, \tag{2}$$

$$|(\zeta_m + \beta_m) - \zeta_m| = \beta_m$$

$$<\delta_m,$$
 [(1)]

$$|f(\zeta_m + \beta_m) - f(\zeta_m)| = |f_m(\zeta_m + \beta_m) - f_m(\zeta_m)|$$
 [(3), (2)]

$$= |0 - 2^{-\mu(m)}|$$

$$= 2^{-\mu(m)},$$
[(3)]

противоречащие сделанным предположениям о свойствах алгорифма $\mathfrak{A}_{\mu(m)}.$

4. Заметим, что применительно к многомерному случаю утверждение об осуществимости функций, интегрируемых по Риману, но не интегрируемых по Дарбу, может быть получено в качестве следствия из результатов [8] о неверности теоремы Фубини для конструктивного интеграла Римана. Однако такое доказательство требует привлечения ряда дополнительных представлений, поэтому на его деталях мы здесь не останавливаемся.

Литература

- 1. А. А. Марков, $\ O$ языке $\mathfrak{A}_{\omega|}.$ ДАН СССР, **215**, No 1 (1974), 57–60.
- 2. А. А. Владимиров, М. Н. Домбровский-Кабанченко, Ступенчатая семантическая система. М., Изд-во ВЦ РАН, 2009.
- 3. Б. А. Кушнер, Лекции по конструктивному математическому анализу. М., Наука, 1973.
- 4. И. Д. Заславский, Г. С. Цейтин, О сингулярных покрытиях и связанных с ними свойствах конструктивных функций. Труды Матем. ин-та им. В. А. Стеклова, 67 (1962), 458–502.
- 5. О. Демут, О конструктивном аналоге связи измеримости множеств и функций по Лебегу. Comment. Math. Univ. Carolinae, 14, No. 3 (1973), 377-396.
- 6. Н. А. Шанин, Конструктивные вещественные числа и конструктивные функциональные пространства. Труды Матем. ин-та им. В. А. Стеклова, 67 (1962), 15–294.
- 7. А. А. Марков, Н. М. Нагорный, Теория алгорифмов. Изд. 2, М., ФАЗИС 1996.
- 8. О. Демут, О теореме Фубини для интеграла Римана в конструктивной математике. Comment. Math. Univ. Carolinae 9, No. 4 (1968), 677-686.

Vladimirov A. A. On a comparison of Darboux and Riemann integrals in constructive analysis.

An example of constructive (in A. A. Markov's sense) real-valued function of one real variable which is integrable by Riemann, but is not integrable by Darboux, is constructed.

ВЦ им. А. А. Дородницына, ул. Вавилова, 40, Москва 119333, Россия *E-mail*: vladimi@mech.math.msu.su

Поступило 16 апреля 2012 г.