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POSITIVITY OF TOEPLITZ DETERMINANTS
FORMED BY RISING FACTORIAL SERIES AND
PROPERTIES OF RELATED POLYNOMIALS

ABSTRACT. In this note, we prove positivity of Maclaurin coeffi-
cients of polynomials written in terms of rising factorials and arbi-
trary log-concave sequences. These polynomials arise naturally when
studying log-concavity of rising factorial series. We propose several
conjectures concerning zeros and coefficients of a generalized form of
those polynomials. We also consider polynomials whose generating
functions are higher order Toeplitz determinants formed by rising
factorial series. We make three conjectures about these polynomials.
All proposed conjectures are supported by numerical evidence.

§1. INTRODUCTION

The confluent hypergeometric function is defined by the series

n

1Fi(a;c;2) =) (a)nz_7 (1)

(¢)n n!

n=0
where (a)o =1, (a), =ala+1)---(a+n—1) =T(a+n)/T(a) is rising
factorial or the Pochhammer symbol. It was proved by Barnard, Gordy,
and Richards in [3] that the function

1Fi1(a;¢;2) 1Fi(a+1;5¢2)
1Fi(a—T1;62) 1Fi(a;c2)

z —

has positive Maclaurin coefficients if a > 0, ¢ > —1 (¢ # 0). This has been
extended by Karp and Sitnik in [9] to the determinant (a, 5 > 0)

L ‘f(x-l—a;z) flz+a+B;2)
f(z;2) flz+B;2)

’
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where - .
=Y Sy (2)
n=0 ’

and {fr}72, is any nonnegative log-concave sequence without internal ze-
ros, i.e., f2 = fi—1fe+1, K =1,2,... and fy = 0 for some N > 0 implies
either fp =0forall k> N or fy_; =0fori=1,...,N. Since

SICEE

‘fw+a ; 2) f(:v+a+6,
flx+B;2)

where
029 kafn k( ) [(e+a)i (@ + Bni—(e+atB)k(@)nr], (3)

Theorem 1 from [9] can be restated as follows:

Theorem A. Suppose { fi.}}._, is a nonnegative log-concave sequence with-
out internal zeros, o, 3 >0, n > 2. Then Q%% (x) > 0 for all x > 0. The
inequality is strict unless fr = ¢*, k=0,1,...,n, for some ¢ > 0.

Note that this theorem does not cover the above result from [3] com-
pletely since Theorem A requires x to be non-negative while the result in
[3] is valid for x = a — 1 > —1. On several occasions (see, for instance,
[11, 10]) the author proposed the following two conjectures:

Conjecture 1. If f2 > fi_1fet1, k=1,2,...,n—1,n > 3, then Q%" ()
has positive coefficients at 7, j =0,1,...,n — 2

Recall that a polynomial is called Hurwitz stable if all its zeros have
negative real part. See details and extensions in [16].

Conjecture 2. If f2 > fe_1fer1, k=1,2,...,n—1,n >3, then Q¥ ()
is Hurwitz stable.

For polynomials with real coefficients stability implies positivity of co-
efficients (this result is usually attributed to A. Stodola (1893)) so that
Conjecture 1 is true if Conjecture 2 holds.

Conjecture 3 requires the notion of Poélya frequency sequence defined
formally in Sec. 4 below. Briefly, { i }1_, is PFw if all minors of the infinite
matrix (11) are nonnegative.

Conjecture 3. If {fi}}?_, is PFx, n > 3, then all zeros of QL' (x — 1)
are real and negative.
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Notice that Conjecture 3 fails for Q2% (x) with arbitrary «, 3 > 0 and
so does it for QL' (z — 1) when {fr}7_, is only log-concave (PF,, is much
stronger requirement than log-concavity, see details in Sec. 4). The author
has explicit (but a bit cumbersome) counterexamples that demonstrate
these claims. All three conjectures are supported by massive numerical
evidence.

In a relatively recent work [6] Ismail and Laforgia and, more recently,
Baricz and Ismail [2] proved absolute or complete monotonicity of numer-
ous Hankel determinants formed by special functions which possess the
integral representation

B

fu= / [6()] " dp(2),

(o3

where both the function ¢ and the measure y may depend on parameters.
When the size of the determinant is equal to 2 their results reduce to
the positivity of integral representations for f,, fnra — f> 11- The positivity
of this expression is discrete log-convexity of (or a reverse Turdn type
inequality for) f,,. Unfortunately, the technique used in these papers does
not extend to log-concavity (discrete or not) as far as we can see, although
some discrete log-concavity results are proved in [2] employing a different
method.

The purpose of this note is twofold. First, we prove the positivity of
the coefficients of QL1 (z — 1) settling a particular case of Conjecture 1.
This furnishes a far-reaching extension of the result of [3] and partially
of [9]. Second, we consider a higher order Toeplitz determinant whose
entries are functions defined in (2). We give power series expansion of
such determinant in powers of z with coeflicients being polynomials in x.
We make several conjectures about these polynomials serving as natural
generalizations of Conjectures 1-3 for QL (z — 1).

§2. PRELIMINARIES

We shall start with several lemmas. We assume that the sequence { fi }
is not a zero sequence.

Lemma 1. Suppose {fi}}_, has no internal zeros and f% > fr—1fi+1,
k = 1,2,...,n — 1. If the real sequence My, My, ..., M, 2 satisfying
[n/2]
M2 > 0 and 3> My, > 0 has one change of sign, then
k=0
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S fifaorMy > 0. (4)
0<k<n/2
[n/2]
Equality is attained only if fr = o*, a >0, and > My = 0.
k=0

Proof. Suppose fr > 0, k = s,...,p, s = 0, p < n. Log-concavity of
{fk}Z:() clearly implies that {fk/fk,l}zzs+1 is decreasing, so that for
s+1<k<n-k+1<p+1

fk > fn—k+1
fee1 ” fack

Since k < n —k +1is true for all k = 1,2,...,[n/2], the weights fj, fn—r
assigned to negative Mys in (4) are smaller than those assigned to positive
Mys leading to (4). The equality statement is obvious. O

& frifnk 2 fo—1fn—kt1

We will use the formula
q

[[@+a)=> eqilar, ... a0z, (5)
k=0

k=1
where e, (ay,...,a,) denotes the mth elementary symmetric polynomial,
ex(ay,...,aq) = Z Gy Qjy ** A«

1< <Jjz2<Je<gq

The key fact about elementary symmetric polynomials that we will need
requires the notion of majorization [13, Definition A.2, formula (12)]. It is
said that B = (by,...,b,) is weakly supermajorized by A = (ai,...,a,)
(symbolized by B <" A) if

0<ar <ax<--<ag 0<b <b << by,
k ' k ' (6)

Lemma 2. Suppose B <V A. Then

ex(a1,...,aq) o er(b1,...,bq)

< , k=1,2,... q.
€k,1(a1,...,aq) €k,1(b1,...,bq)
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Proof. According to [13, 3.A.8] B <" A implies that ¢(A4) < #(B) if and
only if ¢(x) is Schur-concave and increasing in each variable. Hence, we
should choose
er(T1,...,xq)

ek_l(:vl, Sy J,'q)
Schur-concavity of these functions has been proved by Schur himself (1923)
(see [13, 3.F.3]). It is left to show that ¢y is increasing in each variable.
Due to symmetry we can take z; to be variable thinking of z»,...,z, as
being fixed. Using the definition of elementary symmetric polynomials we
see that for k > 2

Ok (T1,...,2q) = , k=1,2,...,q.

Tr1€g—1(T2,...,T4) +ex(T2,...,T
¢k($17---7$q): ( q) ( 11) .

zrep—2(T2,...,2q) + ep—1(z2,...,24)
So taking derivative with respect to z1 we obtain (e, = e (2, ..., z,) for
brevity):

0 (1,...,q) _ er—1(T1ep—2 +ep—1) —ex—2(T1€8—1 + €1)
0z, [T1er—2 + ex—1]?
2
€r—1 — €k€r—2
= = 0.

[wrer—2+er1]? ~

Nonnegativity holds by Newton’s inequalities. O

Next lemma, is a part of Theorem A.
Lemma 3. Suppose fr =1 for all k =0,1,...,n. Then Q%®(z) = 0.

Proof. If f = 1forallk =0,1,...,n, then Q%7 (x)/n! is the nth Maclau-
rin coefficient of the function

2= (1=2)"%1-2)" P -(1-2)"1-2)*>F=0 O
§3. MAIN RESULTS

Introduce the notation
Pn(x) = le (:L' - ]-) = Z fkfn—k <Z> [(x)k(x)n—k_(x'i']-)k(x_]-)n—k] . (7)
k=0

According to Lemma 3 P,(z) = 0if f, = 1 for all £ = 0,1,...,n. Our
main theorem is as follows.

Theorem 1. If f? > fo—1fis1 for k = 1,2,...,n — 1, then P,(x) has
degree n — 2 and positive coefficients.
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Proof. Denote
O (z) =2(0)p(@)p—r—(z—1D)g(z+1)p—r—(—1)p_g(z+1); for k <n—k
and
Op(z) = @k (@)n—k — (@ —Dp(x+1ny for k=n—k
(which only happens for even values of n). Then
n

Straightforward computation yields

®o(z) = —n(n — 1)(z + 1)n—2, (8)
Py (x) = (2)p—1 (2 + Dn-p—2lk(z), 1<k <n/2, (9)

where
lk(ﬂ?) = —AkiL“ + Bk, (]_0)

Ap=nn—-1)—4k(n—k), Br=nn-1)—-2k(n—k), 1<k<n/2,
and

Apjr=-n/2, By, =n(n—2)/4.
These formulas show that ®;(x) has degree n — 2 for all 0 < k¥ < n/2 and
the free term is only present in ®g(x), where it equal —n!, and in @4 (z),
where it equal (n — 1)!. Hence, the free term in P, (z) is equal to

—fofn (g)n' + fifn1 <711> (n—D!'=n!(fifu1— fofn) >0,

and it remains to prove the theorem for the coefficients of z/ for j =
1,2,...,n — 2. Since for n = 2 we have only the free term we can assume
that n > 3.

Now if ay ; is the coefficient at =7, j = 1,2,...,n — 2, in ®x(z), k =
0,1,...,[n/2], then setting My ; = (})ak,; we have according to Lemma 3:

> Mp;=0, j=12,...,n-2
0<k<n/2

Formula (8) shows that ag,; <0 forall j =1,2,...,n — 2. Hence, in order
to apply Lemma 1 we need only to demonstrate that the sequence ay, j, k =
0,1,...,[n/2], has precisely one change of sign for each j =1,2,...,n—2.
We have

S (z)=(n—1)(-(n—Dzx+n—2)(x+1),_3.
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If n = 3 then this reduces to 2(x + 1) and we are done, since the coefficient
of z is positive and [n/2] = 1, so that ®;(z) is the last term. If n = 4 then
®;(z) =6(x + 1) and ®3(z) = 4z(x + 1) which again proves the claim for
n = 4. Hence, we may assume that n > 5.

Formula (5) and the definition of the Pochhammer symbol

(@) = a(a+1)- (@ +m—1)
lead to representation

Pp(7) = (@)p—1 (T + Vn—r—2lk(2)
=a(-Apz +Bp)(e+1)--- (e +Ek-2)(z+1)---(x+n—Fk—2)

q
= a(— Az + Br) Y eq i (xi)a?
7j=0
q+1 )
= Bre,(xi)x + > _(Breg—j+1(Xk) — Areq—jrz(xi))a? — Apztt?
j=2

p
= Brep—1(xk) $+Z (Brep—j(xk) — Arep—ji1(xe))z? — Apa? T,
=2

where 2< k<n/2,g=n—-4,p=n—-3,x2=1{1,2,3,...,n —4} and
k=1{1,1,2,2, . k-2 k-2 k—1,kk+1,....n—k—2), k=34,....

Note that each set xx, kK = 2,3,..., has exactly ¢ = n — 4 elements. If
k =1 the formula is slightly different,

p
@ (z) = Biep(x1) + 3 _(Biep—j(x1) — Arep_jp1(x1))a? — Azt
j=1
with x; ={1,2,3,...,n—3}.

The formula for ®;(x) shows that the coefficient of x is positive for all
k > 2 since By, > 0 for 0 < k < n/2 by its definition. On the other hand,
we know from (8) that the coefficient of z is negative for k¥ = 0. Hence,
irrespectively of the sign of the coefficient of z in ®;(z) our claim holds
for j = 1. Thus we may restrict our attention to the coefficients of z’
for j = 2,3,...,n — 2. Further, the coefficients of "2 are —n(n — 1),
—Al, —AQ, Ceey _A[n/z] We have Ak = A(k) for

A(z) =n(n—1) —4z(n — ).
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Since A(0) > 0, A(n/2) <0 and A’(z) =8z —4n =0 at z = n/2, A(z) is
decreasing on [0,n/2] and changes sign exactly once. So our claim is true
for the coefficients of ™ 2.

Finally, we need to handle the general case of the coefficients of 27 for
j=2,3,...,n— 3. It is seen that yr_1 <" x for k = 3,4,...,[n/2] so
that by Lemma 1

ep—j+1(Xn) _ ep—jt1(Xr-1)
ep—j(Xk) ep—j(Xr—1)
for j =2,3,...,n—3and k = 3,4,...,[n/2]. Further, if A; < 0 then it is
clear that the coefficient of z/ is positive and there are no sign changes for
such values of k. Hence, we take those k for which Ay > 0. For such k the
sequence By /Ay is increasing, since

B(z)\ _ 2n(n —1)(n — 2x) e
<A(w)) N A(z)? >0, B(x)=n(n-1)-2x(n-2).

Now, if we assume that for some value of k € {3,4, ..., [n/2]} the coefficient
of 7 in ®(x) is negative, i.e.,

By ep—j+1(xk)
Bre,_; — Ape,_; <0<:>—<L.
k€p J(Xk) k€p J+1(Xk) A, €p7j(ch)

Then for £k = 1 we will have
Bioy _ Bi _ ep—jri(Xe) _ ep—j+1(Xe-1)
Aer  Ar e i) ep—j(Xk-1)
& Br_1epj(xk—1) — Ar—1€p—j11(xx-1) <0,

i.e., the coefficient of 27 is again negative in ®;_ (). This proves that there
is no more than one change of sign in the sequence {as j,as j, ..., a[n/%j}
for each j = 2,3,...,n — 3. It remains to consider k¥ = 2. Introduce

x5 =1{¢,1,2,...,n —4}.

Clearly, x1 <" x5 for each 0 < & < 1 and e,,(x5) — em(x2) as e — 0 for
m =0,1,.... We have

By ep_jri(x2) By ep_jr1(x5)
Boe,_i(x2)—Aoe,_; L)< ()& =2 ¢ 2mJT A2/ 2 2Pyt \A2)
2ep-3(x2) ~daep-ir1 (x2) Ay e j(xe) Ay oepi(X5)
for sufficiently small € > 0 and

Bi _ By _epjr106) _ ep-jr1lx1) 0

2
A Ay ep—i(X5) ep—ji(X1) '
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§4. CONJECTURES FOR HIGHER ORDER DETERMINANTS

For f(z;z) defined in (2) let us consider the Toeplitz determinant

F(z,z)
f(z;2) flz+1;2) flz+2;2) fl@+r—1z)
flz—1;2) f(z;2) flz+1;2) fl@+r—22)
f(x—r'—f—l;z) f(x—r'+2;z) f(x—r'+3;z) f(x';z)
Compute
F.(z,z) =
Z fkl( )kl kl Z fk1($+1) i fk1(x+r_1)k1k
J=0 k1=0 k=0
Z sz(x 1) Z sz( )kz k2 Z sz(x"f'r_z)kzz
k2=0 k=0 ky=0
Z fin (2~ 7"+'1) 2 k;gfkr(x 7“+2) 2 Z fkr( )k, i
> P
- kl,h;m:ofklszmfh AT
(w)/ﬂ (x + 1)k1 (x +r— 1)k1
(m - 1)k2 (m)kz (x +r— Z)kz
X . . .
(z — 7".+ g, (z— 7".+ 2)k, (wjk,,
I S ) L s
n=0 ' k1+katthn=n
(T)ks (x+ 1Dk, (z+r—1)
(x — D, (T)k, (x+r-2)
x . . .
(0 —r+1i (@—r+2) (@),

Hence,

=3P
n=0
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where

P;(w) = Z (kl kzn kr>fk1fk2"'.fkr

k1+ko+--+kr=n

('T)kl ($+1)k1 ('T+T—]‘)k1
(w_l)k2 (w)k2 ($+T—2)k2
* : : :
(=D @—r+2k o (@

Of course, P?(x) = P,(z) = QL'(x — 1). To conjecture a reasonable
generalization of Theorem 1 we need to recall the notion of the Pdlya
frequency sequences, first introduced by Fekete in 1912. They were studied
in detail by Karlin in [8]. The class of all Pélya frequency sequences of order
1 < r < oo is denoted by PF, and consists of the sequences { fi}7°, such
that all minors of order < r (all minors if 7 = co0) of the infinite matrix

fo fr fo f3
0 fo i f2 -+
0 0 fo fr - (11)

0 0 0 fo

are nonnegative. Clearly, PF} D PFy, O --- D PF. The PF, sequences
are precisely the log-concave sequences without internal zeros. Our conjec-
tures are

Conjecture 4. Suppose {fi}}_, € PF,, r > 2. Then the polynomial
P’(x) has degree n — r(r — 1) and positive coefficients.

Conjecture 5. Suppose {fi}}_, € PF,.. Then the polynomial P} (z) is
Hurwitz stable.

Conjecture 6. Suppose {fi}}_, € PFx. Then all zeros of the polynomial
P’(x) are real and negative for each r > 2.

Again, Conjecture 4 follows from Conjecture 5 but both are independent
of Conjecture 6.

Conjectures 3 and 6 bear certain resemblance to the recent research
of Bréndén [4], Grabarek [5] and Yoshida [7]. Among other things, these
works consider nonlinear operators on polynomials that preserve the class
of polynomials with real negative zeros. According to the celebrated the-
orem of Aissen, Schoenberg and Whitney [1] the sequence { fo, f1,.-., fn}
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n
is a PF,, sequence if and only if > fyz* has only real negative zeros. In
k=0
particular, Brindén found necessary and sufficient conditions on the real
sequence a; to ensure that the operators

n

{fitico = D fm—jfme and
J=0 m=0
n—1
{fitico = > fmjfmirsg (12)
J=0 m=0

preserve PF,,. Here f; = 0if i ¢ {0,1,...,n}. Using Briandén’s criterion
Grabarek showed in [5] that the transformation (p > 0 is an integer)

n

Udimo— 4§ (7 )22 -1y (2 ) festnes (13)

m=0

preserves PF,,. Conjectures 3 and 6 also assert that certain non-linear
transformations preserve PF.,. For r = 2 this transformation is easy to
write explicitly. Denote by p,(m), m = 0,1,...,n — 2, the coefficient of
z™ of the polynomial P, (z). Then

pn(0) = nl(fifa1 — fofn) (14)

and

1 n\ dm
pn(m):m Z fkfnk(k)dx—mq)k(x)mm m:1727"'7n_2'

T 0<k<n/2

For k = 0, we have

[@0(2)] 7y = —n(n — D)[(z + 1),—](™

|z=0 |z=0

n—2 ) (m)
=-n(n—1) {Z S;l+1larj] =—n(n—1)m!S; 1,
j=0

|z=0



POSITIVITY OF TOEPLITZ DETERMINANTS 195

where S;’ is the unsigned Stirling number of the first kind that can be
p .

defined by (z), = > S72/. For k = 1, we obtain,
j=1

(@1 (2)](1y = (2 + Dn—sh ()]0 = Ba[(x + D57,
— Ay + Dns] ) = mi(BISEE — A18572),
and for 2 < k < n/2, compute

(@) = [@)k1 (@ + Dnpali ()]
(m—1)

= Bi[(2)s-1(z + Dnp2]12y — Am[(@)s1 (z + Vg1,

[(@)5—1 (@ + Daga]?y

m k—1 @ n—k—2 (m—2)
2[5 [0
=0

Jj=1 |z=0 J=0 |z=0

=m!Y Skterhol 2<k<n/2

m—i+1?
Hence,
m m—1
[@4(@)](1y = Bem!y_ SFLSHEL — Ayml Y- SEtan A
i=1 i=1

2< k< n/2

Finally, we get for m =1,2,...,n — 2,

pa(m) = —n(n = DSEZ, fofa + fi faan(BiSiE - 41557%)

+ > fifa- k( ) (BkZSk tgnkot AkZS’“ 1gnk- 1>

2<k<n/2

—n(n—0)Sp fofa+ Y fefak (Z)

1<k<n/2

o S (e L S NCE)
i=0



196 D. B. KARP

where
SP=0, ¢g>p, S§=0, p>1, Sy =1.
So Conjecture 3 can be restated as the assertion that the nonlinear operator

n—2

{fiYico =3 D fifaiPim ;

0<j<n/2 m=0

where the numbers P; ,, can be read off (14) and (15), preserves PFy.
Both Bréndén’s transformation (12) and our transformation above are
bilinear forms but of somewhat different character. One may ask then what
conditions on the numbers P} ,, would ensure the preservation of PF.

§5. SOME REMARKS ON NUMERICAL EXPERIMENTS

In order to run numerical experiments with Conjectures 1 to 6 one has
to be able to generate PF,. sequences. For r = 2 and r = oo, the methods
are quite clear. Setting

2
O = I

Jr—1fe+1

we obtain for {fr}32, € PF:
fo = fortopel=r ..o, (16)

where fy >0and 0<d; <1,j=1,2,...,n,0; =0, 7 > n. Hence, we can
parameterize all PF, sequences by sequences with elements from (0, 1].
Generating the latter randomly we get a random PF, sequence. Next, for
r = oo we can simply generate n random positive numbers ay,az,...,a,
n

and compute the coefficients of the polynomial [] (z + a;) producing by
the Aissen—Shoenberg—Whitney theorem a PFO; gequence. According to
the same theorem all finite PF,, sequences are obtained in this way.

The situation is less clear for 3 < r < co. The author is unaware of any
method to parameterize all PF,. sequences for these values of r. However,
some subclasses can be parameterized. One possible method is provided
by the following result of Katkova and Vishnyakova [12, Corollary of The-
orem 5]: if a nonnegative sequence { f,,}5°, satisfies

ffl > 4cos? <7“+L1) facifoy, n>=1,
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-1
then {f,}52, € PF,. This implies that if we choose 0 <J; < (4 cos? %)

then the sequence generated by (16) is a PF,. sequence. Another method
to produce a finite PF, sequence follows from Shoenberg’s theorem [15]
stating that the coefficients of a polynomial with zeros lying in the sector
|argz —m| < w/(r+1) form a PF, sequence. Hence, generating such zeros
randomly and doubling their number by adding the complex conjugate to
each we get a polynomial with PF). coefficients.

Finally, Ostrovskii and Zheltukhina [14] parameterized a large subclass
of PF; sequences. Namely, a PFj sequence {fy, f1, f2,...,} is Q3 if all
truncated sequences {f;}™ , are also PFj for each n =1,2,.... The main
Theorem of [14] states that a sequence {fo, f1, f2,-..,} is @3 iff fo > 0,
fi = foBf >0and

I R Y

fn = : ; BSWE ; y
a;/za:()’nfl)/zaz(lnfz)/z o ai/_zlan

where
ay = 1402, ag = 1+d3 /s, ag = 1+041/a3,..., 0 < (Sj <1,7=23,...

and the sequence {d;} has no internal zeros. This theorem provides a simple
method of generating random (3 sequences.

Acknowledgments. Thanks to Lukasz Grabarek, Sergei Kalmykov, Mi-
khail Tyaglov, and Dennis Stanton for numerous useful discussions con-
cerning conjectures 1 and 2.
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