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THE VUORINEN PROBLEM ON THE MAXIMUM OF
THE CONFORMAL MODULE

ABSTRACT. A problem on the maximum of the conformal module
over a family of doubly connected domains in the unit disk, being a
hyperbolic analog of the Teichmiiller problem, is solved. The cases
when the desired maximum is expressed in elliptic functions are
showed.

Problems on extremal values of conformal invariants and its analogs
play the important role in the geometric function theory. The classical
problem in this direction was the Teichmiiller problem on the maximum
of the conformal module in the family of all doubly connected domains on
the z-sphere, separating given pairs of points of this sphere. Investigations
of M. Schiffer, Z. Nehary, L. Ahlfors, H. Wittich and other analysts were
devoted to this problem. In completed form the solution of the Teichmiiller
problem was obtained in [1]. An explicit expression for the desired max-
imum and some properties of this function were obtained in [1]. Later in
the work of A. Yu. Solynin and M. Vuorinen [2] the dependence of the
indicated maximum from parameters of the problem was investigated in
more detail. In connection with the questions of the quasi-conformal map-
ping theory, recently Matti Vuorinen raised the following problem. Find
the maximum of the conformal module in the family of all doubly con-
nected domains in the disk |z| < 1, separating the points z1, z9 of the disk
|z| < 1 from the third point z3 of this disk and the circle |z| = 1. The
present work is devoted to solution of this problem.

The Vuorinen problem is connected in naturally way with the Teichmiil-
ler problem and some results in the Teichmiiller problem are used in in-
vestigating of the Vuorinen problem.

§1 of the present work is devoted to a brief account of some results
relating to the Teichmiiller problem.

Key words and phrases: conformal module, hyperbolic plane, extremal metric prob-
lem, quadratic differential, symmetrization. condenser capacity.
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§1. PRELIMINARY RESULTS: THE TEICMULLER PROBLEM AND
RELATED RESULTS

1.1. Considering the Teichmuller problem it is sufficient to assume that
distinguished pairs of points are —1,1 and a, 0o, where a € C,a # —1,1.
The family of all doubly connected domains separating indicated pairs of
points is denoted by D(a), the maximum of the conformal module in this
family of domains is denoted by M (a).

Theorem 1.1 [1]. Leta € C, a # —1,1. We have the equality

log M(a) = rIm1(k?), k*= a—2k1’ (1)
where
2y _ iK'(k)
T(k*) = Kb -

Here the elliptic integrals K(k) and K'(k) are understood to be the func-
tions that are positive for k* € (0,1), defined for Imk* # 0 by analytic
continuation along any part not intersecting the real axis of the k*-plane,
and defined for Imk? = 0 and k* ¢ [0,1] by analytic continuation along
any part in the half-plane Imk? < 0. In the case a ¢ (—1,1) this mawi-
mum is realized only by the domain D(a), obtained from the z-sphere by
making cuts along the closures of the critical trajectories of the quadratic
differential
‘ e#8() 52 oo

Q(z,a)dz* = —m; Bla) = —arg kK (k), (2)
in the case a € (—1,1) it is realized by the domain D(a) and the domain
symmetric to it with respect to the real axis of the z-plane, and only by
these domains.

The closures of the critical trajectories of the differential (1) connecting
the points —1,1 and a, oo, will be denoted respectively by v and ~,.

Let I={a:a € C,Rea > 0,Ima > 0}. By virtue of symmetric reasons
it is sufficient to assume that a € I, a # 1.

Corollary 1.1. Let a > 1. Then

logM(a) =7
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The extremal domain D(a) for this problem is the z-sphere with cuts along
the segment [—1,1] and along the half-line z > a. The domain D(a) is the
ring domain for the quadratic differential

‘ dz?
W(z,a)de? = s
Corollary 1.2. Leta=1l, 1>0. Then
™ K' (1)
log M(a) = = , b = sinw, where w = arc ctgl.
2 K(p)

The extremal domain D(a) is the z-sphere with cuts along the arc of the
circle |z — a| = VI?2 + 1 connecting the points —1,1 and lying in the half-
plane Imz < 0 and along the half-line z = it,t > 1. In the case | > 0
the domain D(a) is the unique extremal domain of the problem, in the
case | = 0 the extremal domains are D(0) and D’(0), where D'(0) is the
domain symmetric to D(0) with respect to the real axes of the z-plane, and
only these domains. For | > 0 the domain D(a) is the ring domain for the
quadratic differential

idz?
(22 =1)(z —a)’
the domain D’(0) is the ring domain for the differential —Q® (z,0)dz>.

Q) (z,a)dz? = —

1.2. The present results of the theory of modules of families of curves and
the method of symmetrization reduce to a more simple proof of series of
facts related to the Teichmiiller problem and are used in investigating of
the Vuorinen problem. Note two such results.

The first result is the gradient theorem in the module theory (see, for
instance, [3]).

Theorem 1.2. Let M be the module of a extremal metric problem, Q(z)dz?
be the associated quadratic differential of this module problem and a be a
simple pole of this differential. We have the equality

arg grad M(a) = — arg Q(2)]:=a,
where Q(z) = (z — a)Q(2).

Theorem 1.2 has the following geometrical meaning: the gradient of the
module M, considered as a function in a, is directed along the critical
trajectory of the associated quadratic differential outgoing from the point
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a. Thus, Theorem 1.2 indicates in which direction the trajectory outgoes
from the point a.

In application to the Teichmiiller problem we have
Corollary 1.3. Let Q(z,a)dz? be the differential (1), M(a) be the maxi-
mum of the conformal module in the Teichmiiller problem. Then
a® -1
Bla)
The second mentioned fact is the result of the symmetrization theory

relating to the capacity of condensers [4, 5]. Reduce the necessary defini-
tions.

arggrad M (a) = arg (3)

Let a be an arbitrary oriented curve or a circle on C and let C; and
C! be the closures of the domains on which the curve a divides C (the set
C,, lies to the left of «). Let z* be the point symmetric to the point z € C
with respect to the curve a. Let A be a set on C,

A*={z:2"€ A}, A~ =ANnC,, AT =AnC!.
Set
Py =(AUA") " UANAYT, PfA=(AuAn)tuAnA")™.
Theorem 1.3. Let C = (Ey, E;) be a condenser on C,
P,C = (P, Ey, Pl E,).
The inequality
capC > capP,C. (4)

is valid. If C' is a condenser with a connected field, then the equality in
(4) takes place in the case when the condenser C' either coincides with the
condenser P,C, or symmetric to it with respect to the curve a, and only
in these cases.

1.3. It is of interest to investigate the change of M (a) if the point a moves
subject to some condition. Here the following lemma turn out to be useful.
Its proof follows from the definition of (a) given by Theorem 1.1 and
some properties of elliptic integrals.

Lemma 1.1. Let a € IntI or a € (0,1). Then

arg(a + Va2 — 1< fB(a) < argva® — 1.
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Lemma 1.1 reduces to the proof of monotonicity of change of the value
M (a) under moving of the point a along the arcs of circles with the center
at the point 1 and the segments of rays outgoing from this point ([1],
Corollary 5.4).

Note the following result.

Corollary 1.4. Let £ be an ellipse with the focuses at the points —1,1,
and let H be a confocal hyperbola. If the point a moves along an arc of an
ellipse £ belonging to Int 1 or along an arc of a hyperbola H belonging to
the same set so that Ima increases then the value M (a) in Theorem 1.1
strictly increases.

This result was obtained in the work of A. Yu. Solynin [3]. Since this
work is difficulty accessible then we give here the proof of this result.
We have the equalities

Var =1
arggrad M (a) = arg iﬁi@u) +argva® — 1.
e

By virtue of the condition 3(a) < arg+v/a? — 1, established by Lemma 1.1,
and the obvious inequality arg(e=*(®y/a2 — 1) < 7/2 we find

argva? — 1 < arggrad M(a) < 7/2 4+ arg vV a? — 1.

Let H and £ be the hyperbola and the ellipse passing through the point
a. The obtained inequalities show that the arc 7, outgoes from the point
a in interior of the angle formed by the directed tangents to H and & at
the point a, that proves Corollary 1.4.

Let L(1,a) and L(—1,a) be the lines passing through indicated pairs
of points. These lines divide the z-plane on the angles with the common
vertex at the point a. Denote by AT (a) and A~(a) the closures of these
from indicated angles which are placed in the half-planes Im z > Ima and
Imz < Ima respectively. In the case Ima = 0 we have AT(a) = {z :
Imz >0}, A~ (a) ={z:Imz < 0}.

From Theorem 1.3 it follows
Corollary 1.5. Let a € IntI or a € [0,1). We have the conditions
% € AT(a), veA(a).
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Corollary 1.5 reduces to the definition of the homotopic class of curves
separating the pairs of points (—1,1) and (a,o0), corresponding to the
extremal configuration of the Teichmiiller problem. Notice that in the proof
of the Theorem 1.1 in [1] the indicated homotopic class is determined on
the basis of the properties of the elliptic modular function.

Theorems 1.1, 1.2, and 1.3 are used in §2 of the present work.

§1. THE VUORINEN PROBLEM

2.1. Let us take as a model for the hyperbolic plane the disc Ug = {z :
|z| < R}, R > 1, with the metric defined by the line element ds =
|dz|/+/1— R72|z|%.

We denote Ir ={z:2€ Ug,Rez > 0,Imz >0}, Cgr={z:]|z2| = R}.

Considering beforehand, if it is need, the the linear fractional transfor-
mation of the disc Ug into itself we will assume that the distinguished
points 21, 22, z3 in the disc Ug are —1,1, a, where a € Ig. In this case the
Vuorinen problem is formulated in the following way.

Let 1 < R < o0, a € Ig, a # 1. Let Dg(a) be the family of all doubly
connected domains in the disc Ug, separating the points —1,1 from the
point @ and the circle Cr. Find the maximum Mpg(a) of the conformal
module in the family Dg(a) and the domains, realizing this maximum,
and investigate the properties of Mg(a) as a function of a.

Use following notation. The geodesic in the disc Ug, passing through the
points z; and 22, denote by Lg(z1,22). By (21, 22)r denote the open arc of
the geodesics Lg(z1,22) connecting the indicated points and by [z1, 22]r
denote its closure.

The geodesics Lgr(—1,a) and Lg(1,a) separate the disc Ug into angle
domains with the common vertex at the point a. Denote by Af(a) and
Ap(a) the closures of the domains for which Imz > Ima and Imz <
Im a respectively. The set Ay (a) contains the segment [—1,1]. In the case
a € [-1,1] we have AfL(a) = {z: 2 € Ug,Imz > 0},Ax(a) = {z: 2 €
Ug,Im z < 0}.

We have the following theorem.

Theorem 2.1. Leta € Ig, a # 1. The mazimum Mg(a) of the confor-
mal module in the family Dg(a) is realized by the ring domain Dg(a) of
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the quadratic differential

2 (z — b)(1 — br?z)dz> _
Onr(z0)de" = ~ i) —wa —ars)y S Or TR
(5)

belonging to the disc Ur. The structure of trajectories of the differential
(5) is symmetric respect to the circle Cr, being the closure of a critical
trajectory of this differential. The points —1,1,a are poles of first order of
the differential (5) in the disc Ug, the point b is a zero of second order of
this differential, b € Cr,Imb > 0. The points —1,1 and a, b are the limiting
end points of critical trajectories of the differential (5). The closures of
these trajectories denote by I' and I', respectively. The curve I' and the
set 'y U Cr are the bound continua of the domain Dg(a). If a € IntIp
or a € [0,1), then the curve I' belongs to the set Ap(a), the curve T'y
belongs to the set A} (a). If a € (1,R), then I = [-1,1],T, = [a, R]. If
a=1h,0 < h <R, then T, = [a,iR)].

In the case a ¢ [0,1) the domain Dg(a) is the unique extremal domain of
the given problem, in the case a € [0,1) the extremal ones are the domains
Dg(a) and D';(a), where D'y(a) is symmetric to Dg(a) with respect to the
real axis of the z-plane, and only these domains.

The zero b= b(a) of the differential (5) is determined by the condition:

/Q1/2zadz—/Q1/2zadz+2/Ql/2 (6)

For the mazimum Mg(a) we have the equality

-1
log Mg(a —Im/Ql/zzadz[ /Ql/2 } . (7)

[a,1]

Here, positive values of the integrals in (6) and Im [ Ql/2 (z,a)dz are
[a,1]
considered.

Proof. The considered problem is a module problem for a family of classes
of curves. From the general theory of the method of extremal metric and
the symmetry in the condition of the problem it follows that the associated
quadratic differential of the problem is a differential of the form (5), the
structure of trajectories of this differential possess properties mentioned
in the theorem. The differential (5) has simple poles at the points —1,1,a



THE VUORINEN PROBLEM 127

and the points symmetric to these points with respect to the circle Cg,
and a doubly zero at the point b on the circle Cg.

There is denumerable quantity of homotopic classes of curves, separat-
ing the points —1,1 from the point @ and the circle Cr. From Theorem
1.3 the conditions

I, e AL, TeAy (8)

follow immediately, that determines the homotopic class of curves, corre-
sponding to the extremal configuration of the problem. Considering the
integrals of a suitable branch of Q}{Z(z, a) along the boundary arcs of the
domain Dg(a) and along an arc of orthogonal trajectory of the differential
(5) and using the Cauchy theorem, we obtain the condition (6) for finding
the point b and the equality (7) for the desired maximum. From unique-
ness results of the method of extremal metric it follows that in the case
a ¢ [0,1) the extremal domain of the Vuorinen problem is unique, and in
the case a € [0, 1) there are two and only two extremal domains and these
domains are symmetric with respect to the real axis of the z-plane. (I

Remark 2.1. For the maxima M (a) and Mpg(a) of the conformal module
in the Teichmiiller and Vuorinen problem it is true the limit equality:

Jlim_ Mp(a) = M(a). (9)

Proof. Let as above I' and v be the bound continua of the extremal
domains of Theorems 2.1 and 1.1, containing the points —1, 1. Evidently,
on the curve I" a point of tangency with trajectories of the differential (1)
exists, and on the curve v a point of tangency with the trajectories of the
differential (5)exists. Let zp be one of such points of tangency. From the
expressions (1) and (5) we obtain the condition (set b = Re?#7(@))
(ZO — b)(]. - EZO/RZ)
ef(@) (1 — 22 /R*)(1 — @zo/R?)
ReiBR(a)(l _ Zoe—iﬂR(a)/R)2 0
= — -~ > U.
eifrla)(1 — 22 /R*)(1 — @zo/ R?)

This condition shows, that for R — oo

ei,BR(a) _ ei,B(a)

and for z € Uy
R7'Qr(z,a) — Q(z,a).
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From which and the form of metrical conditions, determining Mpg(a) and
M (a), the equality (9) follows. O

2.3. Theorem 2.1 permits to find the values Mg(a) in the cases a € (1, R)
and a € [0,iR) in the terms of the elliptic modular function and also to
establish a connection of the Vuorinen problem with the problem on the
maximum of the conformal module on the z-sphere.

Let
rz

fa(z) = A= e Bra2’ r=1/R.

This function maps the disk Ug on the z-sphere with cut along the half-line
z=te® t > 1/4.
Set fz(1) = w1, fg(—1) = w2 and let

2 w1 + wa

Fa(z) = —= AT

5(2) T fs(2) —
1 (1 —e~28p2)2,

= . . 2e~
1+e 26872 | (14 e ¥Brz)2 e T
Fa(l) =1, Fy(-1)=-1,
Note two corollaries of Theorem 2.1.
Corollary 2.1. Let, in the conditions of Theorem 2.1, a € (1,R). Then
K'(k)

ROk k2 =2/(a™ + 1), (10)

log Mp(a) =7

where
1y _ a(l—1r%)% +2r(1 + ar)?
o (1+ar)?2(1+1r2)

a , r=1/R.

Proof. In the case under consideration the differential (5) has the form
(seta=p, r=1/R):

(z —1/r)(1 — rz)dz?
F DI 2 p)0 )

The domain Dg(a) is the disc Ur with the cuts along the segments
[-1,1] and [p, R]. By the mapping

@ (z,a)dz? = — (11)

1 (1—-7r%)z
w="F(2) =137 [1+TZ)2 +2r}’ r=1/R,
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the points —1,1,a, —R are mapped to the points —1,1,a(") = Fy(a), oo,
the domain Dg(a) is mapped into the domain D) (a(!)) which is bounded
by the segment [—1, 1] and the half-line [a"), c0]. As Corollary 1.1 shows,
this domain is the extremal one for the Teichmiiller problem for the pairs
of points —1,1 and a™), 0o, and we have the equality (10). O

Corollary 2.2. Let a = ih € [0,iR). Then

K'(si
log My (a) = 7w K'(sinw)

== = 2w = 2 12
2 K(sinw)’ ctg2w =1, 0<w<m/2, (12)

where

= (5

Proof. For considered values of a the differential (5) has the form (set
a=1ith,0<h<R=1/r):

(z —i/r)(1 +irz)dz>
(22 = 1)(1 — r422)(z — ih)(1 + ihr2z)’

The domain Dg(a) is the disc Ur with the cuts along the segment ', =
{z =it,h <t < R} and the closure ' of the trajectory of the differential
(13) with the ends at the points —1, 1. Under the mapping

1 (1+7r*)%2 .
=F ;= -2
WEtn2 =10 [(1 —irz)? "

the points —1,1,:1h, —¢ R are mapped to the points 1, —1, ¢/, 0o, the domain
Dp(a) is mapped into the domain D?)(il). This domain is bounded by
the half-line {w = it,l < ¢t} and the arc of the circle |w —il| = VIZ +1
connecting the points -1,1 and lying in the half-plane Im w < 0. The bound
continua of the domain D(?) (il) are the closures of the critical trajectories
of the quadratic differential

QY (z,a)dz* = —

(13)

idw?

(w2 — 1) (w—1il)’
By virtue of Corollary 1.2, in the case [ > 0 the domain D(?(il) realizes

the maximum M (il) in the Teihmuller problem. Using the expression (7)
for the maximum in this problem, taking into account the equality

14il
1—a ©

K2 =1-2/(1+il) =
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where ctg2w =1, 0 < w < 7/4, and considering the substitution

1+ K
= = cosw,

2K
we come to the assertion of Corollary 2.2 in the case [ > 0.

Let | < 0. Let D™ (il) is the “complement” domain for D3 (il): the
domain D® (i) is bounded by the half-line w = it, ¢ < I, and the arc
of the circle |w — il|] = V%2 + 1, connecting the points —1,1 and lying in
the half-plane Imw > 0. The boundary continua of the domain D® (al)
are the closures of the critical orthogonal trajectories of the differential
(13). By virtue of the known relation (see, for instance, [3]), we have the
equality

log mod D? (il) + log mod D® (i) = 0.
This shows that in the case I < 0 the equality (12) is true with 7/4 < w <
/2. O

Remark 2.2. Let a € IntIg or a € [0,1). Let Dr(a) be the extremal
domain of the Vuorinen problem, b = Re?2(%) he the zero of the differential
(5). Let D® be the image of Dg(a) by the mapping (9), a® = Fj(a),
where 3 = Br(a). The domain D®) belongs to the family D(a(®) of all
doubly connected domains on the w-sphere, separating the pairs of points
—1,1 and a(®, co. From easy geometrical properties of the domain Dg(a)
stated by Theorem 2.1 it follows that Mz(a) < M (a®), where M (a(®) is
the maximum for the Teichmiiller problem in the family D(a(®)).

Remark 2.3. In the cases a € IntIg or a € [0, 1) the value Mg(a) is deter-
mined by enough complicated condition. Theorem 2.1 can be reformulated
in the terms of elliptic functions. For instance, under the transformation

z=sn(u, k), k=12,

the disk Ug with the slits [-R, —1] and [1, R] pass into the quadrangle
with the vertexes +K(k) &+ iK’'(k)/2, and the differential (5) pass in the
differential
O(u, a)du® = — (sn(u, k) —b)(1 — EriS@(u, k))du2'
(sn(u, k) —a)(1 —ar?sn(u, k))
By this way we obtain for finding of the maximum Mg(a) of Theorem 2.1

rapidly convergent power series in u.
In the sequel, we continue to consider the configurations on the z-sphere.
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2.4. Investigate the character of change of the value Mg(a) under moving
of the point a along suitable hyperbolic ellipses and hyperbolic hyperbolas.
Give necessary definitions.

As usually, as the hyperbolic distance between the points zi, zo of the
disc Ug we understand the quantity
1+ R ph(z1,22)
1— R 1ph(z1,22)]

1
pr(z1,22) = iRlog

where
Z1 — Z9
1-— R72§1 y 22

Pr(21,22) = ‘

A hyperbolic ellipse (h.ellipse) g in the disc Ur with the focuses at
the points —1,1 is determined by the condition

Er=A{z:pr(2,1) + pr(z,-1)} = 20,
a confocal hyperbolic hyperbola (h.hyperbola) Hg is determined by the
condition

Hr =1{z:pr(z,1) — pr(z,—1)} =2l
(I1,1s are some positive constants).

Indicated h.ellipses and h.hyperbolas are trajectories and orthogonal
trajectories respectively of the quadratic differential
dz*
(22 —1)(1 — R—*22)’

Every h.ellipse £ is characterized by the following property: the argument

of the outer normal to Eg at a point zg € Eg is equal to 1/2arg{ (22 —1)(1—
R~%z2)}. Every h.hyperbola has an analogous property.

We need the following two lemmas which supplement a information
about the geometric properties of the extremal domain Dg(a) of Theo-
rem 2.1.

Lemma 2.1. Let a = pe't, where 0 < t < m/2. We have the inequalities
t < frla) <m/2.

Proof. 1) Assume that Sr(a) < t. As fr(a) > t for R = oo, then it exists
some R < oo, for which Sr(a) =t.
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The condition of the tangency of a trajectory of the differential (5) with
a hyperbolic hyperbola at the point z € Uy is the equality

(z —b)(1 —bR™22)
(z —a)(1 —aR~2z)

From (14) we obtain
—(b+ra)R 222+ 22+ z(1+ p*R™ )] — (b+ za) = 0.

In our case

=—z, z>0. (14)

b+za = (R+ zp)e’
and, setting z; = Rz, we come to the equation
> 2+z(1+p’R7?)
21 — X1
R+zxp

Re' + e* = 0.

The roots of this equation are z;" and z; , where

arg zf =argz, =t.
This shows, that the trajectory of the differential (5), connecting the points
a and b, is a segment. Since 0 < t < /2, then latter is impossible. Conse-
quently, Sr(a) > t for all R.

2) Show that Sr(a) < /2. Assume that Sr(a) > 7/2. Since fr(a) <
/2 for R = oo, then it exists the value R < oo, for which fr(a) = 7/2.
In this case the condition of tangency of a trajectory of the differential (5)
with the imaginary axis of z-plane at the point zy is the inequality

(Z() — ZR)(]. + iZoRil)
(20 — pet)(1 — pe~*R~22)
Setting zo = ih, rewrite (15) in the form
i(h— R)(1 — hR™Y)
(ih — pe~)(1 — phR~2e~%)

< 0. (15)

< 0. (16)

We have
(ih—pe™)(1—iphR™2e™ ") = i[h(1+p’ R~ > —psint(1-h?’R™?)]—pcost(1-h*R™?).

This contradicts the inequality (16). Consequently, the inequality (16)is
impossible and therefore fg(a) < 7/2 for t < 7/2. O

Remark 2.4. The inequality (13) is unimprovable in the following sense.
For R — 1 the differential (5) tends to a quadratic differential having
double poles at the points —1,1 and argb = Sr(a) — t = arga.
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Lemma 2.2. Let a = pe®,0 < t < ©/2, be determined in Theorem 2.1.
The set of the points of tangency of trajectories of the differential (5) with
hyperbolic hyperbolas in the disc Ug is the arc (a,b)r of the geodesic in
Ug, having its ends at the points a and b. For z € (a,b)r we have the
inequality

arga < argz < argb.

Proof. Let z be a point of tangency of a trajectory of differential (5)
with a hyperbolic hyperbola in the disc Ug. Then we have the condition
(15), where x is a positive number. From the form of the condition (15)
it follows, that the points z, satisfying this condition, fill the arc of the
geodesic (a, b) . Setting z; = R™'z, we obtain from (15) the equality

2+ z(1 + p?*/R?) N b+ za

22— 2R — —
b+ za b+ za

=0.

The roots of the last equation are the values z;(1) € U; and z§2) =

1/351) , where

arg z%l) = arg z%z) = arg(b + za).

Evidently, arg(b + xa) decreases from argb to arga if x increases from
0 to co. Considering the values 2 = Rz\") and 2 = Rz\* = R2/z(1),
we come to the assertion of Lemma 2.3. (]

From lemmas 2.1 and 2.2 it follows

Theorem 2.2. The mazimum Mpg(a) of Theorem 2.1 strictly increases
if the point a moves along an arc of a hyperbolic ellipse Eg belonging to
Ir and if the point a moves along an arc of a hyperbolic hyperbola Hpg
belonging to the same set, so that I'ma increases.

Proof. Let a = pe't, 0 < t < w/2. Let Hg(a) be the h.hyperbola in
the disc Ug, passing across the point a. Evidently, Hg(a) is directed at
the point a along the normal to the h.ellipse Er(a) , passing across the
point a. As before, let ', be the closure of the trajectory of the differential
(5) connecting the points @ and b. The curve I', can not coincide with
a arc of Hr(a). Assume, that the curve I';, outgoes from the point a to
the right of the h.hyperbola Hg(a). Since ', has its end at the point b
and argb > arga, then the curve I', has the point of intersection with
‘Hp(a) and therefore on the curve Hp(a) it exists at least one point of
tangency with some trajectory of the differential (5), lying to the left of
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Hr(a). Since, by Lemma 2.2, all points of tangency of trajectories of the
differential (5) with h.hyperbolas Hpg lie on the arc of geodesic (a,b)g,
disposed to the left of the curve Hr(a), then we come to a contradiction.
This shows, that the curve T';, outgoes from the point a to the left of the
h.hyperbola Hg(a). Further, the first condition (8)shows that the curve
I, outgoes from the point a to the above of the h.ellipse Eg(a). Now, both
assertions of Theorem 2.2 follow from Gradient Theorem 1.2. O

Remark 2.5. Estimates for Sg(a) reduced above can be corrected. With
the help of such estimates the more complete description of properties of
the function Mg(a) can be obtained.
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