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ON EQUIDISSECTION OF BALANCED POLYGONS

ABSTRACT. In this paper. we show that a lattice balanced polygon
of odd area cannot be cut into an odd number of triangles of equal
areas. The first result of this type was obtained by Paul Monsky in
1970. He proved that a square cannot be cut into an odd number
of triangles of equal areas. In 2000, Sherman Stein conjectured that
the same holds for any balanced polygon.

We also show connections between the equidissection problem
and tropical geometry.

§1. THE EQUIDISSECTION PROBLEM

Theorem (P. Monsky, 1970). A square cannot be cut' into an odd number
of triangles® of equal areas.

The only known proof of this theorem was published by Monsky [3]
in 1970. The proof is based on two key ideas: Sperner’s lemma and the
coloring of the plane in three colors based on a 2-adic valuation.

After that, several generalizations of Monsky’s results appeared. The
first generalization was conjectured by Stein and proved by Monsky [4] in
1990. It claims that a centrally symmetric polygon cannot be cut into an
odd number of triangles of equal areas. Though its proof is based on the
same idea of 3-coloring, it is technically more challenging than the proof
in the case of the square and uses a nontrivial homological technique.

In 1994, Bekker and Netsvetaev [1] proved a similar result in higher
dimensions.

To state another generalization, we need a definition. Let us call a finite
union of squares of area 1 with integer coordinates of vertices a polyomino.
First, Stein [8] proved in 1999 that a polyomino of odd area cannot be
cut into an odd number of triangles of equal areas, and in 2002 Praton [5]

Key words and phrases: equidissections, balanced polygons, Monsky theorem.

!By the phrase “a polygon B is cut into triangles” we mean that B can be presented
as the union of a finite number of triangles so that the interiors of the triangles have an
empty intersection with each other. Figure 1 illustrates this.

2Throughout this article, “triangle” is taken to include the degenerate case.
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Fig. 1. A square is cut into triangles.

proved the same for an even-area polyomino. In 2000, Stein [6] suggested
a conjectural generalization of Theorem 1, see also [7].

Let B be a plane polygon with clockwise oriented boundary. It is called
balanced if its edges can be divided into pairs so that the edges in each pair
are parallel, equal in length, and have opposite orientations (the edges are
oriented, their orientation comes from the orientation of the boundary).

Now we are ready to formulate Stein’s conjecture.

Conjecture 1 (S. Stein, 2000). A balanced polygon cannot be cut into an
odd number of triangles of equal areas.

In this note, we present a proof of a special case of Conjecture 1. Namely,
we prove the following theorem.

Theorem (Nonequidissectibility of a balanced lattice polygon). Consider
a balanced polygon B of integer odd area and assume that the coordinates
of all vertices are integers. Then B cannot be cut into an odd number of
triangles of equal areas.
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For an example of a balanced lattice polygon of area 15, see Fig. 2.

/

Fig. 2. A balanced lattice polygon of area 15.

The proof of the nonexistence of an equidissection of a balanced lattice
polygon consists of several steps.

In Sec. 2, we review the coloring of the plane in three colors introduced
by Monsky.

In Sec. 3, we introduce the notion of the degree of a broken line. It is an
integer that depends both on a coloring and a broken line. We prove that
if a polygon can be cut into triangles with nonnegative 2-adic valuations
of areas, then its degree is 0.

In Sec. 4, the previous results are applied to the case of a lattice polygon.

The proof of the nonexistence of an equidissection of a balanced lattice
polygon is completed in Sec. 5.

In the appendix, we show connections between tropical geometry and
3-colorings of the projective plane.
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§2. TROPICAL COLORINGS

The main tool for us will be a special type of colorings of the plane in
three colors. To begin with, let us recall the notion of a discrete valuation
and sketch its basic properties. A function v5 : R — R U {co} is a 2-adic
valuation on the field of real numbers if for any two numbers a,b € R the
following five properties hold.

Property 1:  vy(ab) = va(a) + v2(b), v2(§) = va(a) — v (D).
Property 2:  v2(a + b) > min{ws(a),v2(b)}.

Property 3: if v2(a) < v2(b) then va(a + b) = va(b).

Property 4:  1v2(0) = oo.

Property 5: it extends the standard 2-adic valuation on the ra-
tionals: for every ¢ € @ \ {0},

2k +1

=5 < qg=2°
va(q) = s q A1

for some k,l,s € Z.

The existence of such a function follows from the theorem on the exten-
sion of valuations, see [2]. This function is not unique, and its construction
is based on the axiom of choice.

Our goal now is to construct a family of 3-colorings of the plane (we
will call these colorings “tropical”) with two properties:

(P1) On any line, points of only two colors occur.

(P2) For any triangle with vertices having all three different colors, its
area has a negative 2-adic valuation.

Let us color points of the plane in three colors A, B, C' according to the
following rule: a point Z with coordinates (z,y) is colored

in color A if va(x) > 0, v2(y) > 0;
in color B if v5(y) <0, va(x) > va(y);

in color C' if va(x) <0, v2(y) = va(x).
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Color B Color A

Color C

Fig. 3. The tropical coloring of the plane and the image
of a line.

This rule defines a map from the plane to a three-element set:
m:R* — {A,B,C}.
In Fig. 3, the method of coloring is presented in the coordinates vz (z), v2 (y).

For any area-preserving affine transformation A € R? x SLy(R), we can
define another coloring 7 by the rule

7(Z) = 7(A(Z)) for every point Z.
This defines a family of 3-colorings, which we will call tropical.

Lemma 1. For the 3-coloring m*, properties P1 and P2 hold.

Proof. P2 = P1. If there were three points of different colors on the
same line, they would form a triangle of area 0. Since v5(0) = oo, this is
impossible.
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P2. For the coloring 7 we need to prove that for any triangle A whose
image under A has vertices of all three different colors, the following holds
true:

vo(Area(A)) < 0.

Since A is area-preserving, it suffices to prove that the area of A(A) has
a negative valuation. Suppose that the triangle A(A) has a vertex (z1,y1)
of color A, a vertex (z2,y2) of color B, and a vertex (z3,ys) of color C.
Then its area is equal to

1 Ty U1 1 1
Area(A) = 5 T2 Y2 1| = 5((»”62—3?1)(1/3—y1)—(y2—y1)($3—$1))-
r3 ysz 1

Applying the properties of a valuation and the definition of the coloring
leads to

2 (%(yz —y1)(zs — 331)) = —1+wa(y2 —y1) + 1oz — 1)

= —1+m(y2) +v2(rs3) < —1 4 min{rs(22),0} + min{wz(ys), 0}

< —14wa(we —21) +12(ys —y1) = V2(%($2 —x1)(ys — y1))-

Therefore,
1
va(A(L)) = va 5 (42 = 1)(ea = 21))
=—14+wv(y2) +va(a3) <—-1+0+0=—1. O

§3. THE DEGREE OF A BROKEN LINE

Given a tropical coloring 7, one can construct a degree map associated
with it. It assigns an integer to any oriented broken line.

Let K, be the complete graph with n vertices regarded as a one-dimen-
sional simplicial complex. Suppose that we are given a one-dimensional
simplicial complex K and a map Col sending vertices of K to vertices of
K,,. Then this map can be extended to a continuous map from the complex
K to K, according to the following rules:

e A vertex X is sent to the point Col(X).
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e An edge XY is sent to the edge Col(X) Col(Y) by the linear map
determined by its endpoints.

This map is, obviously, a continuous simplicial map from one simplicial
complex to the other. We will use the same letter for both the original
map (coloring) and the extended one.

For the following, let us fix a tropical coloring 7.

Fig. 4. The degree of a polygon is —1.

Definition 1. Any closed broken line L = L1 Ly ... L, has a natural struc-
ture of a simplicial complex. This complex is homeomorphic to a circle. Its
vertices are 3-colored by 7. The extension of T gives a continuous map
from the topological circle L to the topological circle K3. We denote by
Deg(L, ") its topological degree. See Fig. 4.

For a polygon M, we denote its boundary by dM.

Lemma 2. If a polygon M can be cut into triangles whose areas have
nonnegative 2-adic valuations, then for every tropical coloring ©,

Deg(OM, ) = 0.

Proof. Suppose that a polygon M has a triangulation 7 with each trian-
gle having a nonnegative valuation of the area. This triangulation carries
a natural structure of a one-dimensional simplicial complex, induced from
the plane, with vertices colored by 7#. The boundary M is a subcom-
plex of 7 homeomorphic to a circle, so there is a class [0M] € H,(T,Z)
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corresponding to M. The degree Deg(0M, ) is equal to the image of
the class [0M] under the map

A
H,\(T,Z) == H,(K3,7) = 7.

One can orient all triangles in the cut in a coherent way. Then the
triangles sharing an edge will induce the opposite orientations on this edge.
Adding up the classes of the boundaries of all triangles, we obtain the class
of OM:

[oM] =) [04];

AET
applying 74 yields
rA([oM]) = Y 7 ([04)).
AET

Since any triangle A € 7 has a nonnegative valuation of the area, at least
two of its vertices are of the same color, according to Lemma 1. Thus
m4([0A]) = 0 for any triangle in 7, and hence

74 ([0M]) = Deg(dM, 7 ") = 0.

§4. LATTICE POLYGONS

The points with integer coordinates in the plane form a two-dimensional
lattice in R?; we will denote it by £. We say that a polygon M or a closed
broken line L is a lattice if all its vertices have integer coordinates.

Let us denote by K, the simplicial complex with four vertices labeled
by the elements of the group Z» x Z-, and edges connecting any two of its
vertices. We can map £ to K4 by the map

¥ (x1,22) — (x1,22) = (r1 mod 2,x9 mod 2).

For any lattice broken line L, we can consider its image under the map *
using the construction from the previous section. This map induces a map
on the simplicial homology groups:

Z~H\(L7Z) 5 H(Ki,2) 22L& 7 & L.
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The image of 1 € Z in the group Hy(K4,Z) will be denoted by (L) and
called the class of the broken line L.

Lemma 3. If a lattice polygon M can be dissected into triangles whose
areas have nonnegative 2-adic valuations, then the map % sends H,(0M,7Z)
to 0.

Proof. Let us denote the points of K4 in the following way:
X1 =(0,0), Xo =(0,1), X3 =(1,0), X4 =(1,1).

The three cycles

op = X1 Xo + Xo X3 + X3X,

Oy — X1X3 + X3X4 + X4X1,

03 — X3X2 + X4X3 + X2X4
generate Hy (K4, 7Z) = Z®Z®Z. Suppose that (OM) = A\o1+ 202+ A303 €
H(K4,7Z).

The 2-adic valuation of an integer is always nonnegative, and it is equal
to zero if and only if the integer is odd. It is clear from the definition of a
2-adic valuation that for a point (z,y) € L,

(z,y) =(0,0) € Zy x Zo = W((w,y)) =A,
(@,9) = (0,1) € 2o x Zz = ((x,y)) = B,
(x,y) = (1,0) € Zo X Zo = W((x,y)) =C,

C

—~

z,y) =(1,1) € Zy X Zy = W((w,y))

This means that the map 7 is well defined on K4 & Z, X Zs and
71'((:17,]/)) = 71'((:17,]/)). Any area-preserving affine transformation A €
Z? x SLy(Z) C R? x SLy(R) acts on the four vertices of Ky & Zy x Zo

by a permutation; a simple check shows that 71"’4((.7,', y)) = F(A(l‘, y))

We will apply Lemma 2 to the three colorings corresponding to the
following area-preserving affine transformations:
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E: (z,y) — (z,y),
U: (z,y) — (z+y,y),
Vi (z,y) — (y+1,2).

By Lemma 2, Deg(0M, %) = 0. We have
0 =7P((0M)) = \7E(01) + AP (02) + A3nP(03)
M(AB + BC + CA) + M (AC + CC + CA) + )7 (CB + CC + BC)
=M(AB + BC + CA).

Thus A\; = 0. Similarly, applying the same procedure to the affine trans-
formations U and V', we see that Ay = 0 and A3 = 0. O

§5. BALANCED POLYGONS

For two vectors v = (vg,vy) and w = (wg, wy), their wedge product is
defined as the oriented area of the parallelogram formed by these vectors.
It can be calculated as the following determinant:

Vg Wy
Uy Wy

vAw =

= U Wy — VyWs.

Definition 2. For any closed broken line L = LyLs ... Ly, we define its
generalized area as

1 — S
Area(L) = 3 Z OL; NOL;y,, where Lyy1:= L.
i=1

For a non-selfintersecting broken line, the notion defined above gives
the oriented area of the polygon bounded by the broken line.

Lemma 4. For a lattice parallelogram P the following is true:

e If the area of P is even, then (OP) = 0.
o If the area of P is odd, then

<6P> S {:l:(O'Q +O'3),:|:(0'3 +0'1),:|:(0'1 + 0'2)}.
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Proof. A parallelogram can be cut into two equal triangles of integer area.
An application of Lemma 2 gives the first assertion.

To prove the second assertion, we will show that if a parallelogram P has
an odd area, then all its pairs of coordinates of vertices are different modulo
2. If the vertices of the parallelogram have coordinates (z1,y1), (z2,ys2),
(z3,y3), (4,y4), then its area is equal to

Area(P) = (z2 — 21)(y3 —y1) — (y2 — y1) (w3 — x1)
= (za —w1)(y3 —y1) — (ya — 1) (3 — 1)-
It is clear from this formula that if there are two vertices with both x and

y coordinates being conjugate modulo 2, then Area(P) is even.

Thus the vertices of the parallelogram are colored in colors A, B,C, C.
Depending on the order in which these colors follow each other, we obtain
one of the cycles (o2 + 03), +(03 + 01), (01 + 02). O

The following lemma generalizes Lemma 4.

Lemma 5. If B is a balanced lattice polygon, then the image of its bound-
ary under the map * represents a class (0B) in the group Hy(K4,7Z) =
ZBZDZ that lies in the subgroup of index 2 generated by o9+ 03, 03+ 071,

and o1+ 02!
(0B) = (02 + 03) + pa2(03 + 01) + ps (o1 + 02)
for some p1, ps, ps € Z.

Furthermore,

Area(B) = p1 + p2 + p3 (mod 2).

Proof. Parallelograms are basic examples of balanced polygons, and we
have seen that Lemma 5 holds true for them. Now we are going to show
that any balanced polygon is built from parallelograms in some sense. For
this we need to describe an action of the group S,, on the set of broken
lines.

For a broken line L = L;L,...L, , denote by v; = L;L;y; the side
vector of L (here L,y1 := L1). Any permutation o € S, acts on the set
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of broken lines according to the following rule: o(L) = M where M is the
broken line M M- ... M, with M; = L; and

Miy1 = L1 +vg-1(1) + Uo-1(2) + -+ + Vs-1(5)

for every 4. This action sends balanced broken lines to balanced ones and
lattice broken lines to lattice ones.

Let 7; denote the transposition (i,7 + 1). It is well known that the set
{m | 1 <i < n—1} generates S,. One can check that

Area(r; (L)) = Area(L) — viy1 A v;

and

(rj(L)) = (L) = (P).
Here P is the parallelogram L;L;1L; 12X with X = L;+wv;41. These prop-
erties guarantee that the broken lines L and 7;(L) satisfy the conclusions
of Lemma 5 simultaneously.

Since the lattice polygon B is balanced, the number n of its vertices
is even and the sides of B can be indexed by numbers a;,as, ..., a; and
B1,B2,...,0k so that n = 2k and the sides with indices «; and 3; are
parallel, equal in length, and have the opposite orientations inherited from
the boundary of the polygon. The numbers «; and f; are just positive
integers from 1 to n = 2k, so one can consider the permutation

T B1 ax P2 ... ar B
A1 2 3 4 ... 2k—1 2k/°

In the broken line o(0B), any side with an odd index is followed by a
side that is parallel, equal in length, and has the opposite direction. Both
the area and the class of 0(0B) in H;(K4,Z) are equal to 0. Since o can
be presented as a product of transpositions 7;, the boundary 9B satisfies
the conclusions of Lemma 5. O

Now we are ready to complete the proof of our main result.

Proof of the nonequidissectibility of a balanced lattice polygon.
Suppose that for a balanced lattice polygon B of integer odd area there
exists a cut into an odd number of triangles of equal areas. If Area(B) = S
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and the number of triangles is equal to IV, then the area of each of them

is % Since S and N are odd numbers,

I/2(S/N) = VQ(S) - VQ(N) =0.

By Lemma 3, the class of the broken line 0B in Hy(K4,2) X ZOZ®Z
is equal to 0, and, according to Lemma 5, there exist py, uo, s € Z for
which

(0B) = p1(02 + 03) + p2(03 + 01) + ps(o1 + 02) = 0.
Therefore, u; = p2 = pu3 = 0 and
Area(B) = S = p1 + p2 + 13 = 0 (mod 2).
This contradicts the oddness of S. O

§6. APPENDIX: CONNECTIONS WITH TROPICAL GEOMETRY

In this section, no new results are obtained, so the style is rather infor-
mal.

It is more natural to define tropical colorings on RIP? — the real projec-
tive plane. It is well known that a point of RIP? is defined by its homoge-
neous coordinates, a triple of real numbers [z : y : z] with not all z,y, z
equal to 0. For any nonzero A, the triples [z : y : z] and [Az : Ay : AzZ]
determine the same point. One can define a momentum map

m:RP? — T

from the projective plane to the triangle 7' in the plane with vertices (1,0),
(0,1), and (0,0) by the formula

g—va(2) (1, 0) 491 (0, 1) 49l (07 0)
9—va(z) 4 2-va(y) 4 2—v2(z) .

m iy 7)) =

One can check that the image of any line in RIP?2 under the momentum
map is the union of three segments sharing a common endpoint. For each
segment, the remaining endpoint lies on a side of the triangle T', and the
whole segment is contained within a line passing through the vertex of T
opposite to this side.
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Color B

Color A

Fig. 5. The tropical coloring of the plane and the image
of a line.

The image of the line z + y + z = 0 cuts T into three pieces, whose
points we color in three colors A, B, and C. Now we can color each point
in RIP? in the color of its image under the momentum map. This coloring
coincides with the coloring 7 constructed at the beginning of the paper if
regarded on the affine chart of RPP? with z = 1.

Property P1 is obvious now: one can see that the image of any other
line under the momentum map can intersect only two parts into which the
image of the line  + y + z = 0 cuts the triangle T'.

In the paper [9] by A. Hales and E. Straus, colorings of RIP? are studied
in more detail. One of their results is the following theorem.

Theorem (A. Hales, E. Straus, 1982). Let C be a set of algebraic curves
in R? having the same Newton polygon P with n integer points inside (C
is an n-dimensional linear system of algebraic curves). Then there exists
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a coloring of R? inn+ 1 colors such that no curve in C' contains all n+ 1
colors and no color is confined within a curve in C.>

As a specific instance of this theorem, one obtains a coloring of the
plane in six colors such that any conic contains at most five colors.

Fig. 6. The image of a conic under the momentum map
and the corresponding coloring.

In [9], such colorings are constructed algebraically; here we will give a
tropical explanation of this construction. By R* we mean R\ {0}. Let us
consider the algebraic torus R* x R* and the “momentum map”

m:R* x R* — R?,
where

m((z.9)) = (@), 12(v)) € R,

There exists a curve with Newton polygon P whose image divides R?
into n + 1 regions. We assign to them different colors. It can be proved
that the image of any other curve with Newton polygon P intersects at
most n regions. Now, we can color each point of R* x R* € R? in the color
of the region of R? containing its image. This coloring coincides with that
constructed by Hales and Straus.

3 Actually, the result obtained in [9] is stronger: it holds for colorings of the projective
plane over any field that has a nontrivial non-Archimedean valuation, and for arbitrary
n-dimensional linear systems of algebraic curves without based points.



ON EQUIDISSECTION OF BALANCED POLYGONS 157

This illustration shows that the colorings constructed in [9] are natural
from the perspective suggested by tropical geometry. Unfortunately, this
does not lead to a simpler way of proving Theorem 6, because of both
combinatorial difficulties in analyzing the way in which two tropical curves
intersect and algebraic difficulties in extending colorings from R* x R* to
the whole R2.
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