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COVERS COUNTING VIA FEYNMAN CALCULUS

ABSTRACT. Let G be a finite group. In this paper we present a tool
for counting the number of principal G-bundles over a surface. As an
application, we express (nonstandard) generating functions for the
double Hurwitz numbers as integrals over commutative Frobenius
algebras associated with symmetric groups.

§1. INTRODUCTION

This note is devoted to a partial case of the following big problem.

Big problem: Let M = {u1,...,pur} be a finite ordered collection of
conjugacy classes of a finite group G. Count the weighted number of prin-
cipal G-bundles over a closed oriented surface X of genus g with & marked
points qi, - . ., g such that the holonomy around ¢; belongs to the class u;
fori=1,... k.

Here “weighted” means that we count each bundle with the weight
reciprocal to the number of its automorphisms.

The significance of this problem is the computation of correlation func-
tions of a certain two-dimensional topological quantum field theory.

An efficient way to deal with it is to use its connection with the combina-
torics and representation theory of the group G. Namely, if #N (M) is the
number of homomorphisms from the fundamental group of X/{q1,...,qr}
to G such that the image of the element corresponding to the complete
revolution around g; is contained in the conjugacy class corresponding to
i, then the number of bundles is the ratio of #N (M) to the order of G.
For the details, see [9].

We use this connection for counting the number of bundles of a special
kind. Namely, denote by h,(u,v;r) the weighted number of principal G-
bundles over a 2-sphere with a nontrivial holonomy around r + 2 points
qo, - - -, ¢r+1 such that the holonomy around ¢ is in the conjugacy class p,
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the holonomy around ¢, is in the conjugacy class v, and the holonomy
around all the other points belongs to a fixed conjugacy class 7.

The main result of this note is the following. We construct generating
functions for the numbers h,(u,v;r) as integrals over the center of the
group algebra C[G]. Namely, for an explicitly constructable square matrix
A, (B), we have

oo

1 tr -1 tr(f,-1 fo o .z
Zhr(l/f;’/”')ﬁr _ Z_ (fu f:;zG(f [ ) / ZuZ,e <AL (B)z,z> dm,
k=0 T

ZC[G]

where all notation is explained in the text. This presentation allows us to
express the generating functions for the numbers h,(u,v;r) as entries of
the matrix (A4, (8))~! multiplied by certain constants.

As a corollary of this presentation, we find that the corresponding gen-
erating functions are rational functions in 8. We also derive a nonlinear
differental equation for these functions.

The main example for our considerations is given by the (disconnected)
double Hurwitz numbers. This is the case where the group G is a symmetric
group Sy and the distinguished class 7 is the class of a transposition.
principal Sg-bundles are just ramified covers of degree d. These numbers
have a very rich structure related to various fields of mathematics.

In the case where one of the holonomies (say, v) is in the conjugacy
class of the unit, the celebrated ELSV formula (see, for example, the orig-
inal paper [4]) relates the numbers of connected covers with intersection
numbers on the moduli space of complex curves.

The geometric meaning of the double Hurwitz numbers is not yet com-
pletely understood. In the paper [7], the authors conjectured that if v =
(d), then there exists a moduli space Pic, , such that these numbers can be
expressed in terms of intersection numbers on some properly chosen com-
pactification. They have also found an expression for generating functions
for the double Hurwitz numbers in terms of Schur polynomials, and found
an explicit formula for the one-part double Hurwitz numbers (this is the
case where there is a complete branching over one of the special points).
In the paper [11], it was shown that a generating function for the double
Hurwitz numbers is a 7-function for the Toda lattice hierarchy.

Later, in [2] it was found that the computation of the double Hurwitz
numbers can be carried out in the language of tropical geometry. In [1],
the authors give a method for computing the number of covers with an
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arbitrary ramification. In a sense, our work is a continuation of the research
carried out in [1].
The paper [6] provides the following formula for a generating function

for the double Hurwitz numbers, generalizing the results of [7]. Let the

cyclic type of pu be (u,)l ”1) and the cyclic type of v be (v;);_ Hy ) .By¢(z) w

denote the following function:
§(Z) — 62:/2 _ 672/2.

Then, for 4 and v satisfying a certain condition (the pair (u, v) is contained
in a chamber of Ry, (,); for the details, see [6]), we have

o0 Z,,,
Z hT (//'7 v; T') )
r
r=0

1 1 1 ,
(#Aut w) IT i (#Aut v) [Tv; <(dz) Z H s(z ZJ ),

Ha) L) +H(0) 41

where t(1, v) is a finite number and Q% ,; are certain quadratic polynomials
in p; and v;.

This result is obtained using the infinite wedge space formalism.

In the language of the infinite wedge space, the application of our tech-
nique to the problem of computing the double Hurwitz numbers is rather
trivial. Namely, we study the vacuum expectations of operators of the form

<H%i(1 —BF)7! Ha—uj>,

which is nothing more but the study of the entries of the block-diagonal
operator (1 — 3F>)~! in the basis [ a_,,|0).

Our technique allows us to produce generating functions for the double
Hurwitz numbers even in the case where the pair (u,v) belongs to a res-
onance arrangement in the terminology of [6]. It works also in the case of
an arbitrary finite group.

The paper is organized as follows. A presentation of the fundamental
group of a surface is constructed in Sec. 2. Section 3 presents a reformu-
lation of the enumeration problem in the algebraic language. Section 4 is
a short overview of Feynman calculus, and Sec. 5 is devoted to the appli-
cation of this technique to our problem. Section 6 contains the calculation
of the (disconnected) double Hurwitz numbers for the degrees d = 2, 3,4.
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We also give a comparison of our generating function with that of [6] in
one particular case.

The author expresses his sincere gratitude to J. Rau and G. Borot,
who have carefully read a preliminary version of the paper, pointed out
some inaccuracies, and helped to make it more readable. I also thank
G. Mikhalkin, S. Duzhin, P. Mnév, P. Putrov, and N. Kalinin for fruitful
discussions concerning the subject.

§2. THE GROUP PRESENTATION CORRESPONDING TO A
PAIR-OF-PANTS DECOMPOSITION OF A SURFACE

We begin with a special presentation of the fundamental group of a
punctured surface.

Definition 2.1. Let g and n be two nonnegative integers such that
2 —29 —n < 0. Denote by H,, the fundamental group of a connected
oriented surface of genus g with n punctures.

Let us define some notions we are going to use for constructing a pre-
sentation of Hy .

Definition 2.2. By a 1-3-valent graph I' we mean a finite graph having
only vertices of valence 1 and 3. The first Betti number of I' (regarded as
a one-dimensional cell complex) is referred to as its genus. The 1l-valent
vertices of T are referred to as the ends; edges incident to ends are called
leaves; all the other edges are called inner edges. The set of all vertices
of T that are not ends is called the set of inner vertices and is denoted by
VO(T). The set of all edges of T is denoted by E(T); the set of inner edges
of T is denoted by E°(T). The set of edges of ' adjacent to v € VO(I') is
denoted by E,.

From now on, all the graphs we are dealing with are supposed to be
1-3-valent unless otherwise stated.
Another notion we are going to use is the following.

Definition 2.3. Let I' be a connected graph. A maximal tree T in [ is
a connected subgraph of T' of genus 0 such that the set of vertices of T
coincides with the set of vertices of I.

Each connected graph contains a maximal tree.

Definition 2.4. An enhanced graph is a connected graph enhanced with
the following additional data:



62

M. KAREV

e q choice of an orientation on all edges of T';
e a choice of a cyclic order on the set of half-edges adjacent to every

3-valent vertex of [';

e a choice of a mazimal tree T in T';
e q choice of a basepoint p in T'.

For a given edge e € E(T') and a given orientation on e, a vertez v adjacent
to e is referred to as a source of e if e is directed outwards with respect to
v. If e is directed inwards with respect to v, the vertex v is referred to as a
sink of e.

We use the same notation for an enhanced graph and its underlying

graph if this does not lead to an ambiguity.

The starting point of the following construction is an enhanced graph

I" with n ends and genus equal to g. Our construction of a presentation of
H, ,, consists of the following steps.

(1) Regard I" as a one-dimensional cell complex. Subdivide each in-

ner edge of I' by a 2-valent vertex. Glue an additional 1-cell, in
such a way that both boundary components get glued to the same
point, to each of the newly added 2-valent vertices, and to each of
the ends of I'. All the newly added 1-cells are referred to as cir-
cles. Choose an orientation on all the circles in an arbitrary way.
The obtained cell complex is homotopy equivalent to a bouquet of
|E(T)| + g circles. Its fundamental group is the free group of the
corresponding rank. We present it in the following way.

e (enerators corresponding to edges in T are presented by based
loops that start in p, go along edges of T' to the attachment
point of the circle corresponding to the edge we are inter-
ested in, make a complete revolution around it in the positive
direction, and return back to p along edges of M.

e (enerators corresponding to edges that are not in T are pre-
sented by based loops with base p. According to the chosen
orientation, each edge that does not belong to 7" has a be-
ginning and an end. Start in p, go along edges of T' to the
beginning of the edge we are interested in, go along this edge
to the attachment point of the circle, make a complete rev-
olution in the positive direction, and return back the same
way.

If e is an edge of T', the generator corresponding to e described

above is denoted by pe.



COVERS COUNTING VIA FEYNMAN CALCULUS 63

e (enerators corresponding to nontrivial cycles in ' are pre-
sented by based loops with base p. The set of such generators
is in a bijection with the set of edges of I' that do not belong
to T'. Start in p, go along edges of M to the beginning of the
edge that is not in 7', continue along it to the end, and return
back to p along edges of T'.

If e is an edge of I' that is not contained in the maximal tree, the
generator described above is denoted by g..

For each of the 3-valent vertices of I', prepare a 2-cell with an
oriented boundary. Attach these cells to the cell complex in such
a manner that the boundary goes as follows. Begin in a 3-valent
vertex, go along one of the edges attached to it to the attachment
point of the circle, and go along it using the following convention:
if we have arrived there along the orientation of the edge, go along
the circle in the positive direction. Otherwise go along it in the
negative direction. Then return back to the 3-valent vertex we
have started with and continue along the next half-edge according
to the chosen cyclic order. Repeat the procedure for each of the
edges adjacent to the vertex. Figure 1 illustrates how the gluing is
performed.

Fig. 1. An example of gluing a 2-cell to a graph with at-
tached circles. A vicinity of a 3-valent vertex of the graph
is shown in the top part of the figure.
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The obtained cell complex is homotopy equivalent to a con-
nected oriented surface of genus g with n punctures. Each of the
attached 2-cells provides a relation in its fundamental group. Note
that for every edge e not contained in the maximal tree, the genera-
tor g. appears in only one of the obtained relations. Van Kampen’s
theorem implies that these relations are the defining relations of
Hy .

The Euler characteristic of a connected graph of genus g is equal to
1 — g. This allows us to compute explicitly the number of generators and
relations in the presentation in terms of the genus and the number of
branching points. Therefore, we have just proved the following lemma.

Lemma 2.5. The group H,, admits a presentation with 4g — 3 + 2n
generators and 2g — 2 + n relations.

Each 2-cell used in the construction corresponds to a pair of pants. So
the obtained presentation corresponds to a pair-of-pants decomposition of
a surface.

Example. Let us consider the enhanced graph shown in Fig. 2 with the
blackboard cyclic ordering of half-edges in its vertices. The maximal tree is
chosen as shown. The basepoint is the only 3-valent vertex in the maximal
tree.

Fig. 2. An enhanced graph. The maximal tree is shown
in bold. The orientation of an edge is shown by an arrow-
head. The cyclic ordering of half-edges obeys the black-
board convention. The basepoint is the only 3-valent ver-
tex of the maximal tree.
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The corresponding group presentation is as follows:

Hy 1 = (Pa, Db, Pes Pd> Pes 9d> Ge |
Pa 'pope = Py 92 Pegepa = P2t g7  pagape = 1).

§3. REFORMULATION OF THE PROBLEM IN TERMS OF THE GROUP
ALGEBRA

The problem of enumerating principal G-bundles is equivalent to the
problem of enumerating morphisms from the fundamental group of a punc-
tured surface to a finite group G (for the details, see, for example, [9]).

The number of possible morphisms between two groups does not depend
on their presentations. Thus, considering the presentation constructed in
the previous section, we split the main problem of this note into two parts:

e Fix the conjugacy classes of all images of the generators of Hy ,,
corresponding to the edges of the chosen graph I', and count the
number of such morphisms.

e Take the sum over all possible choices of conjugacy classes of im-
ages of the inner edges.

A similar method was discussed in [1], where the authors considered
the problem from the tropical point of view. In a sense, on the one hand,
the main result of this paper is a generalization of the result of [1] to
the case of an arbitrary finite group. On the other hand, it is nothing
else but an application of a well-known argument, which can be found, for
example, in [3], but in a slightly nonstandard form. That is why we present
a complete proof of the main theorem.

To deal with the first part, we need some algebraic notions.

Definition 3.1. Let G be a finite group. By the complex group algebra
of G we mean the algebra of complex-valued functions on G with the con-
volution as the multiplication. Its center is denoted by ZC[G]. The set of
conjugacy classes of G is denoted by Ag.

The center ZC[G] of the complex group algebra has a natural basis
indexed by Ag (see, for example, [9, Appendix A]). Namely, if u is an ar-
bitrary conjugacy class, then the corresponding basis element is its char-
acteristic function (here we regard a conjugacy class as a subset of G).
For a fixed group G, denote the basis element of ZC[G] corresponding to
a conjugacy class p by f,. This basis is referred to as the standard basis.
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The trace function trg, endowing ZC[G] with the Frobenius structure, is
defined as follows.

Definition 3.2. Let G be a finite group. The trace function is the linear
functional trg: ZC[G] — C defined on the elements of the standard basis

as follows:
tra(f,) = {1 g

0 otherwise,

where (1) denotes the conjugacy class of the unit element in G.

We omit the subscript G in the notation for the trace function when
this does not cause an ambiguity.

Definition 3.3. Let I be a graph and G be a finite group. By a coloring
of T' we mean a map ¢: E(T') — Ag. If T is an enhanced graph, given a
vertex v € VO(T'), an edge e € E,, and a coloring c, by ¢,(e) we mean c(e)
if e is oriented in such a way that v is a source for it, and the reciprocal
conjugacy class otherwise.

The procedure from Sec. 2 allows one to construct a presentation of the
fundamental group of a three times punctured sphere with 3 generators and
1 relation: one should use an enhanced graph D with one 3-valent vertex
and three 1-valent ones. Fix such a presentation and denote by p. the
generator corresponding to an edge e € E(D). Let G be an arbitrary finite
group and ¢ be a coloring of D. Denote by Np(c) the set of morphisms
Hy3 — G such that the image of the generator p. is contained in the
conjugacy class c(e) for all e € E(D).

A tautological corollary of the definition of the trace function reads as
follows.

Lemma 3.4. Let G be a finite group, and let ¢ be a coloring of the enhanced
graph D described above. Then the set of morphisms from Hy 3 to G such
that the image of the generator p. corresponding to an edge e € E(D) is
contained in c(e) has the cardinality

#Np(c) th< II )fE,,(e)):

ecE(D

where v denotes the only vertex of D.

Now we are ready to prove the following lemma.
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Lemma 3.5. Let G be a finite group. Let I' be an enhanced graph with
coloring c. Then the set Nr(c) of morphisms Hy, — G such that the
image of the generator p. corresponding to an edge e € E(T') belongs to
the conjugacy class c(e) has the cardinality

#8500 =100 ( TLw( 11 o)) I sy

veV?o e'el, e€E°

where ¢t (e) denotes the conjugacy class reciprocal to c(e) for every edge
ee€ EI).

Proof. First of all, note that for every conjugacy class u € Ag, the value
tr(f.f,-1) equals the number of group elements belonging to p.

Consider the enhanced graph I'' obtained from I' by cutting all the edges
not belonging to the maximal tree and attaching 1-valent vertices to the
remaining half-edges. The newly obtained leaves inherit the orientation
from the edges and the coloring from the cut edges. The cyclic orientation
in the set of half-edges adjacent to a vertex remains the same. Denote the
inherited coloring by ¢’. The enhanced graph I allows us to construct a
presentation of Ho g4p.

The maximal tree for IV coincides with I".

The number #Nr/(¢’) is computed inductively. Pick an arbitrary vertex
v and make a random choice of images of the generators p. correspond-
ing to the edges e € E,. According to Lemma 3.4, this can be done in

tr( I fz(e)) different ways.

eckE,

Let v be the second vertex adjacent to e. Since the choice of an image
for the generator p, is already made, the choice of images for the generators

corresponding to the remaining edges adjacent to v’ can be performed in
tr(He/eE;) fE(e’))
tr(fee) fe-1(e))

ways.
Any two vertices in I are connected with at most one edge. It follows

that
/ 1
#Np () = H tr< H fme’)) H )m

veVo(T) e'€E, ecEO(T

There is a natural map b: E(I') — E(T), which sends an edge of I’
to the corresponding edge of I' before cutting. The map b gives rise to a
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morphism ¢: Hy g4n — Hg . At the level of generators, this morphism is
described in the following way:

e If ¢/ is an inner edge of I, or €’ is a leaf shared by both I' and I",
then the generator p.s goes to the generator corresponding to the
edge b(e’) € E(T).

e If ¢’ is aleaf of [V coming from a cut edge of I', and its end is a sink
of ¢/, then the generator p., goes to the generator corresponding
to the edge b(e’) € E(T).

o If ¢’ is a leaf of [V coming from a cut edge of I', and its end is a
source of €/, then the generator p.s goes to gb_(i,)pb(e/)gb(e/).

The check that ¢ is indeed a group morphism is straightforward.

The morphism ¢ induces a natural map ¢*: Nr(c) — Nr/(c).

For an edge e € E(I') that is not contained in the maximal tree, denote
by eT its preimage such that its end is a sink of eT. The other preimage
is denoted by e™.

Let f' € Nr/(c'). We can construct from it a morphism f € Nr(c) in
the following way. If e € ' is contained in the maximal tree, then the
image f(p.) coincides with the image f’(py-1(.)). Otherwise the image
f(pe) coincides with f/(p.+).

The only thing left is to fix images of the generators g. corresponding
to the edges of I' that are not contained in the maximal tree. We fix them
in such a way that f'(p.-) = f(g.")f' (pe+)f(ge). The verification that f
is indeed a group morphism is straightforward.

Moreover, it is clear that ¢*(f) = f’. Since for every e not belonging to
the maximal tree, the choice of an image of g, can be performed in

G|
tr(fee) fe-1(e))
ways, and the choices for different edges can be made completely inde-

pendently, because each g. appears in only one relation, we arrive at the
assertion of the lemma. (]

Recall that in fact we are interested in the number of morphisms
H,, — G such that only the conjugacy classes of images of the gener-
ators corresponding to the leaves are fixed.

Definition 3.6. Let G be a finite group and ' be a graph. A boundary
condition is a map M : E(T)\E°(T') — Aq. The set of all possible colorings
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c: BE(I') — Ag such that M = c|gr)\gor) is denoted by C(M). Abusing
notation, denote Uc(p)Nr(c) = Nr(M).

Theorem 3.7. Let G be a finite group, I' be an enhanced graph, and M

be a boundary condition. Then the number #Np(M) = >, #Nr(c) is
ceC(M)

invariant under the following moves of enhanced graphs:

another choice of a mazimal tree in T';

a change of the orientation of an edge e € E°(T);

a change of the cyclic order on the half-edges adjacent to a vertex
v e VOD);

a local transformation of I' as shown in Fig. 3.

T
>

Fig. 3. The local graph moves. The figure shows all pos-
sible resolutions of a 4-valent vertex.

Proof. A different choice of a maximal tree in I" respects every single term
in the sum Y.  #Nr(c).
ceC(M)

Assume that an edge e € E°(T) has coloring c(e). Changing the orienta-
tion of the inner edge e and switching its coloring to the reciprocal coloring
¢ 1(e) also preserves every single term in the sum under consideration.

The independence on the choice of a cyclic ordering of the half-edges
adjacent to a vertex v € VO(I') follows from the commutativity of ZC[G].

The invariance under a local move of I' follows from the fact that the
number of possible morphisms from one group to another (with some fixed
conditions) does not depend on the presentation of the group. But we
would like to give an alternative argument.

The commutative algebra ZC[G] can be endowed with a Hermitian
product. Namely, consider the semilinear conjugation acting on a basis
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element f,, for p € Ag in the following way:
“fu— f“a.

The product is defined by the formula (a,b) = tr(ab) for a,b € ZC[G].
The basis vectors of ZC[G] form an orthogonal basis with respect to this
product.

Consider the trace of the product of four basis vectors of ZC[G] cor-
responding to conjugacy classes 1, ft2, 43, ta € Ag. Due to the general
properties of Hilbert spaces and the commutativity of ZC[G], for any per-
mutation o € Sy this trace can be expanded as follows:

tr(fu,(l) fu,@) fV)tr(fN,(g) fﬂa(4) fl/*l)
tr(ijL_l)

This formula implies the desired invariance. O

tr(fmfuzfﬂsfm) = Z

vEAG

Since the space of all connected 1-3-valent graphs is connected with
respect to the above-mentioned moves (see, for example, [8]), the only data
that matters for the computation of the number #Np (M) is the genus of
the enhanced graph I, the orientation of the leaves of I', and the boundary
condition M. If we are dealing with a group where every conjugacy class is
self-reciprocal, such as a symmetric group Sg, then the orientation of the
leaves is also completely irrelevant.

Example. Let ['(2,1) be a connected 1-3-valent graph of genus 2 with 1
leaf and (—1) be the conjugacy class of the nonunit element of S;. Endow
I" with an arbitrary enhancement. We are interested in the computation of
the number #Np(2,1)(M), where M is the boundary condition that assigns
the class (—1) to the only leaf of I'(2,1). As stated above, this number is
independent of the choice of an enhancement of I'.

Let ¢ be a coloring of I'(2, 1). The multiplication table of ZC[S;] implies
that if there exists a vertex v € V°(I'(2,1)) such that there are exactly
one or three edges adjacent to v colored by (—1), then this coloring does
not contribute to the sum.

On the contrary, if every vertex v € V°(I'(2,1)) is adjacent to exactly
zero or two edges with coloring (—1), then this coloring contributes 1.

This actually means that #Np 2 1)(M) = 0.

On the other hand, for the same group S,, for a graph I'(2, 2) of genus 2
with 2 leaves, and for the boundary condition M’ that assigns (—1) to
every leaf of the graph, the number # Np(;2)(M’) is equal to 16, which
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coincides with the prediction of the Frobenius formula (see, for example, [9,
Appendix A)).

§4. COMPLEX FEYNMAN CALCULUS

This section can be regarded as a short exposition of the theory of
Feynman calculus.

Feynman calculus is a powerful tool for enumerating graphs. We will
apply it to compute generating functions for the numbers of principal G-
bundles. Briefly speaking, the machinery of Feynman calculus works as
follows. Consider a graph with edges colored by a finite number of colors.
Feynman calculus provides us with a rule how to assign a number to every
vertex and every edge of such a graph. The weight of a graph is calculated
as the product of the above-mentioned numbers over all vertices and edges
divided by the order of the automorphism group of the graph. Then we
take the sum of the weights over all possible graphs. It turns out that this
sum can be interpreted as the result of computing an integral. For the
details on Feynman calculus in the real case, we refer the reader to [5]
or [9].

M. Mulase and J. Yu in [10] studied Feynman calculus over a von Neu-
mann algebra. In fact, our considerations are a generalization of the meth-
ods of Mulase and Yu to the case of graphs with 1-valent vertices.

In a sense, our considerations can be treated as a theory of Feynman
calculus over a space of diagonal matrices.

Here we will be interested in complex Feynman calculus. The reason
is that complex calculus works for any finite group G, while real calculus
works only in the cases where every conjugacy class of G is a self-reciprocal
class.

To proceed we will need some preliminary considerations.

Definition 4.1. By C"™ we mean the n-dimensional complex vector space

with a chosen orthonormal basis { f;}_, with respect to a chosen Hermitian
n

product. The measure dm on C" is defined as dm = ][] dRez;dIm z;,
i=1

where z; is the coordinate corresponding to the basis element f;.

Lemma 4.2. Let A be an endomorphism of C", expressed in the standard

basis as a positive definite symmetric real-valued matriz, and let p be an

arbitrary vector in C™. The following equalities hold:

(1) f e~ <Az.z> dm =
Cn

" .
det A?
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2) f e—<Az,z>+<p,z>+<z,p> dm =
C’n

7" <AT pp>
det A

Proof. The first equality can be deduced from the fact that every sesquili-
near positive definite form can be diagonalized by the action of U(n). Thus
it suffices to verify this formula in the one-dimensional case, where it is
nothing else but the product of two Gaussian integrals.

The second equality follows from the first one by the change of variable
2 2+ A7lp. O

The lemma immediately implies the equalities

/Zi2j67<AZ’Z> dm =
Cn

™
det A

/zizje*<AZ’Z> dm =0,
C’".

/ZiZjei<Az’Z> dm = 0.

[C’n.
They can be obtained by differentiating the second equality of the lemma
by p or p.

Definition 4.3. Let k be a positive integer and Ky, Ko be two finite sets.
By a pairing we mean a bijection o: K; — K. The set of all pairings is
denoted by I1(K, K>).

It is clear that #II(K1, K2) = 0xk,, #k,(#K1)!, where 0. . is the Kro-
necker symbol.

The next theorem is a standard fact. Its proof in the real case can be
found in [5]. The proof for the complex case can be obtained by the same
considerations.

Theorem 4.4 (Wick)., Let L = {ly,...,l,}, L' = {I},...,1,} be two
collections of complex linear forms on C", and let A be an endomorphism
of C™ expressed in the standard basis by a symmetric positive definite real
matriz. Then

/ H 1(z) H I'(z)e”<A**>dm = d;nA Z H A7 o(

Cn lel; l'elL’ o€ll(L,L")leL

and the integral converges absolutely.
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Let us again stress the fact that the only way to obtain a nonzero value is
to have the same number of linear and semilinear forms under the integral.

§5. PRINCIPAL (G-BUNDLES OVER A SPHERE

Definition 5.1. Let ¥ be an oriented surface and f,g: ¥ — X be two
principal G-bundles with a nontrivial holonomy around a finite number
of points. Then f and g are considered to be equivalent if there exists an
automorphism h: X' — X' such that f = g o h. The automorphism group
Aut f of a principal G-bundle f: X' — X is the group of automorphisms
h: ¥ — Y such that f = f oh. The number m is referred to as the
weight of the cover.

Consider the following enumeration problem.

Problem. Fix k + 2 points qo,...,g-+1 on CP! and a finite group G.
Choose two conjugacy classes p and v of G. Find the weighted num-
ber of principal G-bundles over CP! with a nontrivial holonomy around
qo, - - - , @r+1 such that the holonomy around gy is in g, the holonomy around
gr+1 is in v, and the holonomy around all the other points (g1, ..., q,) be-
longs to a fixed conjugacy class 7.

Denote the corresponding number by h, (u,v;r).

As it was mentioned in the introduction, the weighted number of prin-
cipal G-bundles with fixed conjugacy class of holonomies can be computed
as the number of morphisms from the fundamental group of an r 4 2 times
punctured sphere to the group G divided by the order of G.

Definition 5.2. Let G be a finite group and {f,}uca, be the standard
basis of ZC[G]. Endow ZC[G] with a Hermitian product < -,- >q, such
that the basis { fu} e is orthonormal with respect to it. Let T € A be a
fized conjugacy class. Denote by A.(B) the linear endomorphism of ZC[G]
represented in the standard basis by the matriz with entries

(AT)}“/(B) = tr(fu—lfu(]- - B.f‘r))
for p,v € Ag.

Note that for any 7 there exists a neighborhood of the point 8 = 0 such
that the matrix A, (/) is nondegenerate.

Theorem 5.3. Let G be a finite group, and let u, v, and T be three ele-
ments of Ag. The generating function h], ,(8) = >, h.(u,v;T)B" is given
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by the following formula:

hl,u(ﬂ)zzitr(f“lf‘%zg(f”lf”) / 2pEge<ArB)2E> g

ZC[G]

where Z, denotes the value of the integral

Z, = e~ <Ar(B)z.2> gy
ZC[q)

Proof. Let ', be an enhanced graph of genus 0 with r + 2 leaves such
that every inner vertex of I, is adjacent to at least one leaf. It is clear
that there are exactly two inner vertices v; and v of I, adjacent to two
leaves. Denote one of the leaves adjacent to v; by e;, and one of the leaves
adjacent to vy by es. Orient the leaves of I',. so that for each of them the
corresponding end is a sink.

Denote by M, the boundary condition that assigns the class p to e,
the class v to es, and the class 7 to every other leaf of T',.

It is clear from our previous considerations that h, (u,v,r) = M‘#‘ig\l)

According to Theorem 3.7, the number of covers can be computed by
the formula

he(p,vsr)

:#—16' Z ( H tr(HfaAe’))) H m

ceC (M) “veVp(ly) e’cE, e€Ey(I'y)
Let k be a nonnegative integer. Denote by X, the set of maps
z: {1,...,r} — (Ag,)*.

The notation z;(k) for i = 1,2 stands for the corresponding component of
the map. By an automorphism of a map z € X, we mean an automorphism
h of the set {1,...,r} such that = x o h. The group of automorphisms
of a map = € X, is denoted by Aut z.

Let D be a linear automorphism of ZC[G] represented in the standard
basis by a matrix D, = tr(f,-1f,).

Let us discuss the denominator Z, from the statement of the theorem.
Using the absolute convergence of the integral in a neighborhood of the
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point 8 = 0, we expand the expression in the following manner:

2= % #Auw / Htr (Fort foa 0 fr) Zar 0 B e =777 dim.

r=0 zeX, Z(C[G] =1

To compute this expression, we apply Theorem 4.4. For ¢ € X,, let
IT* denote the subset of I, = II({1,...,7},{1,...,r}) such that z (k) =
25 (o(k)) for any o € II*. The elements of TI* are called admissible pair-
ings. For any nonnegative integer r, we obtain

ﬂ-#c

= r d tr(fwl(k fwg Ic)fT)
Ir T det D Zﬂ Z Z #Autx 1;[ tr(fm(k f

'S0 seX.oche o(k)

This expression can be interpreted in the following way. Let a flower be
an elementary piece of a graph consisting of two vertices connected by an
edge and two oriented half-edges attached to one of the vertices. For one
of the half-edges, the adjacent vertex is a sink (we call this half-edge left);
for the other one, the adjacent vertex is a source (this half-edge is right).
The edge connecting the vertices of a flower is oriented in such a way that
its end is a sink. Each half-edge of a flower is colored by an element of Ag,
and the only edge of a flower is colored by the fixed class 7 of G.

n

Fig. 4. A flower. The left half-edge is colored by u € Ag,
the right half-edge is colored by v € Ag.

Every pairing o € II,. corresponds to an element of the symmetric group
S,. Namely, set the result of applying this element to k& € {1,...,r} equal
to o(k). By abuse of notation, we denote a pairing and the corresponding
permutation by the same letter.

Pick an arbitrary x € X,. For each k € {1,...,r} prepare a flower
with the left half-edge colored by z1 (k) and the right half-edge colored by
x2(k). Every admissible pairing provides a recipe to assemble a colored
1-3-valent graph. Namely, the right half-edge of the kth flower gets glued
to the left half-edge of the o(k)th flower. The resulting graph can be dis-
connected, but each of its connected components has genus 1. The number
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Fig. 5. An example of assembling a graph. The directions
of the edges are not shown.

of connected components of the graph equals the number of cycles in the
permutation ¢. For an example, see Fig. 5.

We claim that Theorem 3.7 implies that Z, is a generating function for
the weighted number of principal G-bundles over a collection of disjoint
tori such that every nontrivial holonomy around a point is in the class 7
multiplied by 7#4¢ /det D. Note that, on the other hand,

Z, = 7*h6 [det A, (B).

Now consider the integral

Z = / ZNZ,,e_<AT(ﬂ)Z’Z>dm.
Vistel

As it was mentioned during the study of Z,, we can use the expansion

oo

T 1 _ r ] ) N
ZB z;% / Z“Z”Htr(f“(k)fEZ(k)fT)211(k)za;2(k)e N

k=1

The only difference from Z, is in two distinguished forms z, and %, .
Again applying Theorem 4.4, we see that the computation of this integral
differs from the computation of Z. only by the existence of two additional
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elementary blocks. One is represented by a vertex with adjacent half-edge
oriented in such a way that the vertex is a source, colored by p. The other
is represented by a vertex with adjacent half-edge oriented in such a way
that the vertex is a sink, colored by v. Our rules for assembling graphs
from flowers and these two additional details are the same. For each graph
we pick only one copy of each of these details.

Note that both distinguished details always contribute to the same con-
nected component of a graph of genus 0. This connected component is
exactly the graph we discussed at the beginning of the proof.

The division by Z, allows us to get rid of the contribution of all com-
ponents of genus 1. The origin of the factor tr(f, ' f.)tr(f, ' f,)/#G is
obvious. O

A direct application of Theorem 4.4 leads to the following corollary.

Corollary 5.4. We have
T _ tr(fu—lfu)tr(fu—lfu)
hy,u(ﬁ) - #G
where A-Y(B) is the matriz inverse to A (B).

(A;l (B))N,V:

Since the matrix A, (/) is linear in /3, we obtain the following result.

Corollary 5.5. For any finite group G and any p,v,7 € Ag, the gener-
ating function hy, ,(8) is a rational function in 3.

Another simple theorem follows from our representation of these num-
bers in terms of graphs.

Theorem 5.6. The generating function for the numbers h.(u,v;r) satis-
fies the following equation:

B () + Bshl (B) = (#G) 3

BV
86 AEAs,

hy, \(B)RS , (B)
tr(fa-1fa)

This equation corresponds to the presentation of a genus 0 chain-like
graph as the union of two graphs of the same type along their leaves.

§6. DOUBLE HURWITZ NUMBERS

Let d be a positive integer, and let 74 € Ag, be the class of a transpo-
sition. In this section, we present the matrices A,,(3) and (A4,,(3))* for
d=2,34.
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For d = 2, the basis elements are ordered in the following manner. The

first one corresponds to the partition (11), and the second one corresponds
to (2):

For d = 3, we use the ordering (111), (12), (3):

1 =368 0
AT3 (6) = _3/8 3 _6/8 )
0 —-63 2
68°—1 __ B __3p°
932—1 932-1 9626_1
(Ars(ﬁ))_lz T 9B7—1 _2761273 9521
__3p® __ B 38°—1
982—1 932 -1 982—1

For d = 4, the ordering of the basis elements is (1111), (112), (22), (13), (4):

1 —-63 0 0 0
68 6 —68 243 0
A, B)=| 0 —68 3 0 —128],
0 —2453 0 8 —24p53
0 0 —128 —243 6
and (A, (B))"! is equal to
2484348241 _ 2083 -3 248% 42532 __3p2 1683
1443%—4082+1 1443%—4082+1 1443%—4082+1 3682 —1 1443%—40B82+1
__ 208%-8 _ 20821 123%48 __ 8 832
14434 —4082+1 86434 —24082+6 43234 —-120682+3 7232 -2 43234 —-12082+3
24844252 128348 7284308241 __3p2 _ 24328
144B4—40262+1 4323%—-12082+3 43234 —-12032+3 3632 -1 43234 —-12032+3
__38 __8 __38° 12821 __ B
3682 —1 72B2—2 3682 —1 28832 —8 72822
1633 832 248328 R _ 2082-1
1443%—4082+1 432B%—12082+3 43232 —1208+3 72B2—2 8643%—24082+6
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For example,

6-6 1—208? i(?)_(i’“ qk—1

T4 —_ — 2k
(.0 (8) = 4l 86454 — 24052 +6 £ 8 T )8

Let us compare this generating function with a known result. The double
Hurwitz numbers with g = (d) are known as the one-part double Hurwitz
numbers. Consider the following function:

g(z) = ez/2 — e_z/2 =2 s1nh(z/2)

Counsidering the particular case p = v = (d), we use a formula derived
in [7] and reproved in [6]. In our notation, this formula reads as
1 ¢(d?z

LA ) = )
(@, [@din) = H oy

o0

r=0

Substituting d = 2, 3,4 and applying the inverse Borel transform

17 _s(d?zt)
d2/6 ¢(dzt) at,
0

we see a perfect agreement with the above-mentioned expressions.
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