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MULTIPLE-GRAIN DISSIPATIVE SANDPILES

ABSTRACT. The two-dimensional directed sandpile with dissipation
is transformed into a (1 + 1)-dimensional problem with discrete
space and continuous “time.” The master equation for the condi-
tional probability that K grains preserve their initial order during
an avalanche is solved exactly. Explicit expressions for asymptotic
forms of solutions are given for the cases of the infinite and semi-
infinite lattices. A nontrivial scaling is found in both cases.

§1. INTRODUCTION

Nonequilibrium dynamic systems have been for some time of consider-
able interest, as they can exhibit critical behavior in close analogy with
systems at thermal equilibrium. A certain class of such dynamic systems,
various sandpile models [1-7], have become a standard framework when
analyzing self-organized criticality [8,9], that is, when the dynamics of the
system inevitably drives it to a critical state independent of the initial
state. Despite the extensive work on these systems, it is only fairly re-
cently that a more detailed understanding of problems like when exactly
sandpile models exhibit self-organized criticality, or what are the possi-
ble universality classes of their critical behaviors, have begun to emerge.
The contemporary theory of low-dimensional nonequilibrium physics in-
cludes different subjects intensively studied in combinatorial mathematics,
in particular, the theory of Young diagrams, random walks, and random
matrices [10-12].

Most of the work so far on sandpiles was thus concentrated on properties
such as the average duration of avalanches and their size distribution,
which both exhibit scaling in a critical state. However, there may well be
interesting many-particle correlations in sandpiles which likewise exhibit
scaling, similarly to that found for problems like vicious walkers [13,14]
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and nonintersecting Brownian walkers [15], for which it was also found
that the scaling exponents may depend in a nontrivial way on the number
of walkers as well as on the boundary conditions imposed [16-21].

In the present paper, we provide an example of such a correlation for
the case of the two-dimensional (2D) directed sandpile model introduced
in [1]. For the sake of generality, the sandpile model is assumed to be
dissipative, that is, the number of “grains” is not conserved in the topplings
of unstable sites. We consider two different boundary conditions, namely,
the infinite lattice and the lattice with an absorbing boundary at the origin
(the “semi-infinite” lattice). As is well known by now, the model is critical
only at vanishing dissipation [6,22]. For this sandpile model, we study
critical properties of the probability that K particles preserve their initial
order during an avalanche. We find nontrivial scalings for both cases of the
infinite and semi-infinite lattices.

To obtain an exact analytic form for the multiple-grain correlations,
we first reformulate the sandpile model as a problem in (1 + 1) dimen-
sions, where the “time” direction is continuous. The master equation for
the continuous-time model can be solved exactly. The obtained exact ana-
lytic form for the multiple-grain correlations allowed us next to show that
nonzero dissipation introduces an exponential cut-off in their asymptotic
form, which also include a power law with scaling exponents that depend
nonlinearly on K. The scaling exponents are found different for the two
boundary conditions.

§2. DISCRETE-TIME SANDPILE MODEL

The 2D directed sandpile model on a lattice introduced in [1] (see also
[2]) is constructed such that to each site (j,n) an integer height variable
(the number of grains) z(; ) is assigned. The site has a threshold height
z(cjm) below which it is stable. The dynamics of the model consists of two
steps. First, we choose a site (j,n) at random and add one grain to it, i.e.,
Z(jm) & 2(jn) + 1. For 25 n) 2 Z(cj,n)7 the site (j,n) becomes unstable and
its grains are distributed among the “downhill” neighboring sites. In the
following, we will use the notation in which the locations of lattice sites
in the horizontal direction are labelled by j, k, or [, and in the downhill
direction, by n. By n we can equivalently denote the number of steps in a
cascade of toppling processes. In a toppling at a site (j,n), grains are thus
distributed to the sites (j + 1,7 + 1) and (j — 1, + 1). By suppressing
the n labels (understanding that two adjacent columns in the lattice are
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connected in a toppling and that there is no dependence on n), we can
express a toppling in the form

Zj — Zj — Alj, (21)

in which the elements of the toppling matrix A satisfy A;; > 0, and
Ay; < 0 for [ # j. The condition Zj Ay; 2 0 for every | guarantees that
no grains are created in the toppling process. Without loss of generality,
we can put Aj; = z(; . The allowed number of grains in a stable site
(J,n) is now 1,2,..., Aj; — 1. The sites (j,n) such that >, A;; > 0 are
called dissipative. Boundary sites are always dissipative, so that grains
can leave the system through the boundaries. After an initial toppling at a
site, neighboring sites can also become unstable, and sites keep on relaxing
with parallel updating until all sites are stable. In this way an avalanche
of topplings is generated. The existence of dissipative sites ensures that all
avalanches terminate in a finite time.

Assume now that all lattice sites are initially in a stationary state (i.e.,
are stable): z(j ) = Z(Cj,n) — 1. If we add a grain at a randomly chosen site
(1,0), then the conditional probability Gj;(n) that an extra grain is at site
(j,m) satisfies the equation

Gin(n) = 3 {Gyrauln — 1)+ Gyuln — 1)}, (22)

with the initial condition Gj;(0) = d;;. Since we consider only symmetric
topplings, the conditional probability also satisfies G;(n) = Gij(n). It is
easy to verify that (2.2) coincides with the equation for the corresponding
probability expressed in the conventional “light cone” coordinates, see [1,

Eq. (5)].

§3. CONTINUOUS-TIME SANDPILE MODEL

We can also express (2.2) in the form
1
Gji(n+1) = Gju(n) = 5 {G(n) + Gjo1a(n) = 2G(n)}. (3.1)

Consider now a process in which the discrete number of steps is replaced by
a continuous parameter, which will be called “time” in the following. Let
P;j;(t) be the conditional probability that a grain is at a horizontal location
j at time t after an arbitrary number of steps since it was dropped at a
horizontal location [ at ¢ = 0. Transforming (3.1) into such a continuous
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time, we find that, during a short time interval d¢, the probability Pj;(¢)
changes so that

Pii(t+dt) — Py (t) = % {Pjr1a(t) + Pj—1,(t) = 2P ()} dt,  (3.2)

which leads to the master equation

k

with the toppling matrix
Ajk = 2(5]']9 — (5j+1,k + (Sj_L]g). (34)

This toppling matrix means that, as above, at each toppling two grains
are removed from the site and distributed to its nearest-neighbor downhill
sites. Here we consider only symmetric topplings, for which Ay, = Ag;,
and thus Pjg(t) = Pg;(t). The initial conditions are Pj;(0) = d;. For a
model of N sites in the horizontal direction, the lateral boundary elements
of the toppling matrix can be defined so that Ag; = An,yy1 = 0, and
hence the boundary sites 7 = 1 and 7 = N are always dissipative, as
required.

Note that the continuous time is not a simple continuum formed by the
discrete variables n, but Pj(t) includes processes with all possible num-
bers of steps. In fact, the function Pj;(t) can be regarded as a generating
function of the conditional probabilities Gj;(n), since we find that

etle(t) = Z Gﬂ(n)tn—n' (35)
n=0 :

The expected number of topplings at a site j in the avalanche resulting
from a perturbation (adding a grain) at a site ! is given by I';;(0) =
>0 o Gji(n). The Laplace transform of the conditional probability,

o0

Lalh) = [ Patt)at (3.6)

0

is the Green function of the master equation (3.3). It is easy to verify that
I'j;(0) satisfies the condition »_, AjxT'k(0) = dj (see [2]).

The master equation (3.3) can easily be solved for the toppling matrix
(3.4) with the initial condition Pj;(0) = d;;. Consider first the case of the
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infinite lattice in the horizontal direction, so that —oco < j,1 < co. In this
case, we find that

P (1) = e U (8), (3.7)
where [;(z) is a modified Bessel function. Asymptotically, for large ¢, the
conditional probability for a single grain thus behaves as

P (1) oc t712, (3.8)

This is a pure power law, so that the duration of avalanches scales with the
exponent §_. o) = 1/2. This exponent coincides with the known result
for 2D directed sandpiles [1], as it should.

We can analyze the effect of boundary conditions by introducing an ab-
sorbing boundary at the origin. To this end, we first recall the solution for
a finite lattice of N sites (see, e.g., [22]) for which the boundary conditions
are Pj(t) = 0 for j,l =0 and j,i = N + 1. In this case, we have

2 U wik wlk
P: _ E —tEyk o : )
(1) N+1k:1e MY AN (3:9)
where the spectrum is of the Bloch form,
wk
E,=1- . 1
F NI (3.10)

In the limit N — oo, the sum in Eq. (3.9) can be replaced by an integral,
with the result

™

2
Pj(lo’oo) (t) = — /e_t(l_cosw) sin(lz) sin(jz) dx
™
0

The asymptotic behavior for large ¢ of the conditional probability is now
given by

PP (1) oc 7302, (3.12)

The scaling exponent, indeed, depends on having a boundary at a finite
distance: §(g,00) = % = §(—c0,00) T 1. As expected, the same exponent was
found for the scaling of avalanche sizes with the corresponding boundary
conditions [23,24].
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§4. DISCRETE- AND CONTINUOUS-TIME MULTIPLE-GRAIN
CORRELATIONS

Having established that our master equation method indeed reproduces
the previously known results, we now turn to the more interesting problem
of correlations between multiple grains during the “avalanche dynamics.”

To this end, let us address the following problem. Consider the same
lattice as above with all its sites in a stationary state, z(j ) = Z(Cj,n) -1,
and add K grains at randomly chosen K horizontal locations Iy > ls >
.-+ > lg. The toppling rules are the same as above: at each toppling two
grains are removed from the toppling site j, and a grain can jump to each
of the two nearest-neighbor sites in the downhill direction. However, if
2(jn) — Z(j+1,n+1) = 0, the site (j,n) cannot topple. The probability that
the additional grains will be at dissipative sites j; > jo > -+ > jx at time
t (after an arbitrary number of topplings) satisfies a generalized version of
the master equation (3.3), namely,

K
d 1
E'ley--wjlf?lly--wll{ (t) = 2 Z [ley---7jK§l17~~~ylr717l7‘+17l7‘+1y---7lK (t)

r=1
+ le7---7jK7l17---7lr—17l7‘_17l7‘+17---7lK (t)} - Kle,---7jK;l17---7lK (t)a (41)
supplemented by the condition P, . j. i, ix () = 0 if j. = jr41, for all
r=1,...,K — 1. The solution to this equation is given by
le---.jK7l1---lK (t) = det K{Pjrls (t)}a (4'2)

1<r,s<
where Pj;(t) is the one-grain conditional probability which satisfies Eq. (3.3)
with the same boundary conditions as the solution of Eq. (4.1).
As for the single grain, in the multi-grain case the continuous condi-
tional probabilities Pj, . jxiii....i1x (t) are generating functions of the dis-
crete ones, G, ixils....ix (1), and we find that

K
n!

o0
eKtlev"':jK;lly---le (t) = Z Gy ooicilnyeolic (n) (4.3)
n=0

The discrete probabilities satisfy the equation

K
1
Gj17---,jK;l17---,lK (n) = oK E {Gj1,---7jr—17jr+17jr+1,---7jK;l17---7lK (n - 1)
r=1

+ Gj1,---,jr—17jr—17jr+1,---7jK;l17---7lK (n - 1)}: (4'4)
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supplemented by the condition G, . jxiii,...1x (n) = 0 if j, = jr41, for all
r=1,..., K —1.

§5. SCALING OF CONTINUOUS-TIME MULTIPLE-GRAIN
CORRELATIONS

5.1. The infinite lattice. Let us now consider the asymptotic behavior
as t — oo of the above multi-grain conditional probability. We first consider
the case of the infinite lattice in the horizontal direction, when the one-
grain probability is given by (3.7). Using the integral representation for
the modified Bessel function, we arrive at the expression

e 17 T e
P )= L /da:1 .../de et i (1-cos m)

x  det {ei(lf%-)-”r-}. (5.1)

1<r,s<K

Making use of the symmetry of the integrand with respect to permutations
of the integration variables 1, ...,z g, the determinant in this expression
can be transformed as

K
det {ei(ls—jr)zr}_> det {eizsxr}He—ijsxr
r=1

1<r,s<K 1<r,s<K

K! K%t@( {e7) 1<%th {et=r}. (5.2)

The two determinants above can be represented in terms of Schur functions
(for a survey on Schur functions, see, e.g., [25]):

_ deticopcr (@)
S}\(.’L'l,.’l,'g,.-.,.’L'K)-— K—Fk
deti<sp<k (Ts ")
A +K—k -1
= det @k J] (@eo—=)t (5.3)
1<8,k<K
1<s<k<K
where A = (A1, A2,...,Ak) is a partition, i.e., a nonincreasing series of

nonnegative integers A\; > A2 = ... > Ag = 0. If we consider the case



12 N. M. BOGOLIUBOV, A. G. PRONKO, J. TIMONEN

where j. > —K and [, > — K, we find that

7" ™
(_00700) — # . 71525(”7 (17 m)
Py kit ) = Kl /dwl /da:K e _i(1—cosa
J S
< [T le - e, (5.4)
1<r<s<K

where A\, =5, — K +rand p, =1, — K +r.

Ast — oo (and js — I, < tfor all r,s = 1,..., K), the main contribu-
tions to the above integrals come from near the origin of the integration
variables, and in the leading order we find that

(—o0,00) sx(1,1,...,1)s,(1,1,...,1)
P O () o 2mEK!
X / dry - -- / dry e 5 Lm=1%m H (z, —x5)% (5.5)
—00 —00 1<r<s<K

The prefactor of the integral can be computed (see, e.g., [25]) using the
well-known result

B H1<r<s<K(>‘7‘ —r—Xs +5)

= K—1 J
|

while the integral is the Mehta integral of the Gaussian unitary ensemble

of random matrices [26], which can be explicitly evaluated:

sx(1,1,...,1)

(5.6)

oo oo

/ d.’I;l"' / d:L'K eiétzf(n:l‘t?n H (:L-T_:L-S)Z

1<r<s<K

2m) K215 ml

We thus find that, as ¢ — oo, in the leading order the multi-grain
conditional probability is given by
Pj(lj~(~>~oy,7jOKo§)l1y---7lK (t) ~ Ajlv---:jK;lly---let_FY (5-8)

with the scaling exponent

1= (5.9)
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and the amplitude

Nicocr<x U = 1) Gr = Js)
@m*[Ihym!

Ajl7~~~yjK;l1,---7lK (5.10)

5.2. The semi-infinite lattice. Let us now consider the conditional
probability in the presence of an absorbing boundary at the origin. As
in the one-grain case, let us start with a finite lattice of NV sites in the
horizontal direction. Substituting (3.9) into (4.2), we find that

ok X N «
Py ircitasents (1) = N+ DK Do D e R B

k1=1 kx=1

.T'kr . lSk’f’
x  det {sinwj sin — }, (5.11)

1<r,s<K N +1 N +1

where Ej is given by (3.10). The multi-grain conditional probability for
the semi-infinite lattice follows from this result by taking the large N limit;
the resulting expression is similar to (5.1), but with a determinant that
now contains sine functions instead of exponential functions:

- 1 T T B . ) )
P )= — [ dor-o [ doice tN K (1—coszm)

x det {sin(jrz,)sin(lsz,)}. (5.12)

1<r,s<K

Again, using the symmetry with respect to permutations of the integration

variables x1,...,Zk, we can transform the determinant in this expression
as
K
det in(j in(l det in(l in(y
et {sin(jyz,) sin(lyz,)} — et {sin(l,z,)} Tli[lsm(],mr)
1
— in(j i . 1
— 1<9§2K {sin(jszr)} 1<$~1,2t<K {sin(lsz,)}. (5.13)

Using the character of the irreducible representation of the symplectic Lie
algebra corresponding to a partition A,

( ) et O g Oy
Sp)\ L1y,L2yy LK) i—= — — — y .
det1<j7k<K($§( k+1 7; (K k+1))
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we can express (5.12) in the form

(0,00) _ 1 —t XK (1—coszm
Pj1,...,jK;l1,...,lK(t) = KK /dml-../dajKe ty meq(l—cosz,,)

2
x( det. {sinswr}> spy (e, ef®2 . el¥K)

1<r,s<K

id)z

iwl
e e

x sp,, (e ey (5.15)

where A, = j, — K +r—1and y, =1, — K+r—1. The determinant in the
above integrand can be evaluated using the identity (for a proof, see [27])

K
det {sinsz,} = 25D H sin ;.

1<r,s<K
r=1

. Tj— X . Tj+ T
X . (b.16
H sin ———sin —— (5.16)
1<G<k<K

For the conditional probability we finally obtain the expression

(0,00) 22K(E~ XK (1—cosem)
,00 COS Ty,
Pj17---7jK;117---,lK (t) 7TKK' /dwl /de € m=t

K
. 9 ‘2331'—:6]4,237]'4—3316
X HSIH Ty H sin 5 Sin B
1<j<k<K

x sp,y (€1, etz ””K)sp (ef™ ez . el™x),  (5.17)

In the limit ¢ — oo, we can approximate the integrals in the above
expression with the integrals

oo oo K
Ly E_ a2 2 232 2
/ dzy - -- / drge 1 H (x5 — o) H 5
e e 1<j<k<K j=1

ngl (Qm)'
N (2m)K2tKRK+1)/2” (5.18)

For a proof of (5.18), see [26]. For the leading asymptotic term of the
generating function, we thereby find

0, _
j(l,.(.)i;K;ll,...,lK (t) ~ Aj17---7jK;l17---7th 7. (5'19)
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Here the scaling exponent is given by

V= w (5.20)

and the amplitude is

[1E_ (2m)!
Aji il = msm(l, SN 1)Spu(1, .o 1), (5.21)

in which
K-1
2(K —m) + 1]!
1,...,1) = — ey 5.22
Sp)\( ’ ’ ) H .]s m' K—l—m) ( )
1<r<s<K m=1
A similar expression can be found for sp,(1,...,1) with the j,’s replaced
by I,.’s.

We thus find that the scaling exponent of the multi-grain sandpile prob-
lem considered here is not equal to the one found previously for the “lock-
step” version of vicious walkers, for which v = K(K — 1)/4 [13,14], but
corresponds to the “random-turns” version of vicious walkers [13,17]. The
connection to the “random-turns” version of vicious walkers is also valid
for the discrete-time correlations, as discussed below.

§6. SCALING OF DISCRETE-TIME MULTIPLE-GRAIN CORRELATIONS

For definiteness, here we consider in detail the case of the infinite lattice
in the horizontal direction; the case of the semi-infinite lattice can be
considered similarly, and below we outline the results for both cases.

Using the relation between the continuous and discrete conditional prob-
abilities, see (4.3), in the case of the infinite lattice we find from (5.1) the
representation

T s K n
(~00,00) __ 1
Gt ez (1) = W/dv’”l"'/d“‘ <ZC0”M>
-7 - m=1

x det {eil-mmerl o (6.)
1<r,s<K

We are interested here in the large n limit with the [,’s and j,’s kept

fixed. In order to apply the standard saddle-point approximation, we ex-

press the first factor of the integrand in the above equation in the form
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exp {nlog(>_,, coszy)}, and thereby obtain the following system of sad-
dle-point equations:

sin x,-
Yo
m—1 COS Tpp

It is obvious that the solutions to this system of equations satisfy sinxz, =0
(r =1,...,K) with the restriction that ) cosz,, # 0. Requiring that
the matrix of second derivatives

52 K . .
log (Z cos iCm) _ Z:Kcos zp 5u sin z, sin 4  (63)

Oz,x K
TS m=1 m=1 COS Tm (Zm:l cos :Um)

for the solution of (6.2) is a negative definite matrix, we find that the steep-
est descent corresponds to the solution for which cosz, =1 (r =1,...,K),
i.e., the main contribution to the integrals in (6.1) comes from near the
points ¢, =0 (r = 1,..., K), similarly to the case of the continuous con-
ditional probability.

Therefore, replacing the first factor of the integrand in (6.1) by its ap-
proximation near the origin of the integration variables,

K n K
n
E K" ———E 2 6.4
<m:1 CoS :cm> o exp { 5K 2 xm} , (6.4)

and transforming the second factor of the integrand as in Sec. 5.1, we
find that, as n — oo, the leading order form of the discrete multi-grain
probability in the case of the infinite lattice can be expressed as

=0, r=1,...,K. (6.2)

(—00,00) sa(1,1, ... s, (1,1,...,1)
j17...,jK;l17...,lK (n) ~ (QF)KK'
X / dxy - -- / drg e—(n/2K) m=1Tm H (:L'r — ;L's)2. (65)
N 0o 1<r<s<K

Clearly, this expression is the same as (5.5) with ¢ replaced by n/K. It is
easy to check that a similar result is valid for the semi-infinite lattice, now
using the procedure of Sec. 5.2. Hence, the leading terms of the large n
limits of the discrete multi-grain probabilities can be obtained from those of
the large t limits of the continuous probabilities simply by the replacement
t—n/K.
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We have thus shown that, as n — oo for fixed [,.’s and j,.’s, the discrete
multi-grain conditional probabilities scale as

Gjly---7jx;l17~~~,lx (n) ~ Bj17~~~7jK§l17~~~le n-’ (6'6)
with

. — YA. .
LyeesJ K3l yeel g = K A]17~~~yJK§ll7~~~,lK7

B; (6.7)
where the exponent v and the amplitude Aj, . j... .1 are given by (5.9)
and (5.10), respectively, in the case of the infinite lattice, and by (5.20)
and (5.21), respectively, in the case of the semi-infinite lattice.

Therefore, the obtained results imply that the discrete forms of the con-
ditional probabilities scale exactly as the continuous ones, as they should.
In particular, this implies that these results also coincide with the known
scaling properties of the random-turns version of vicious walkers [16].
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