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FUNCTION TRANSFORMATIONS WITH AUTOMATA

ABSTRACT. We use conventional models of computations to define
rather unconventional computational processes. Specifically, we use
one-tape automata to compute real-valued functions and two-tape
automata to describe transformations of those functions. As trans-
formations we consider the integration and the derivation of a func-
tion.

§1. INTRODUCTION

Finite automata are among the simplest models of conventional com-
puting. They operate on words over a finite alphabet ¥. As real numbers
in the unit interval can be interpreted as infinite words, these automata
can be used with infinite inputs to compute real-valued functions. For an
ordinary finite nondeterministic automaton A we can associate to each
accepted word the number of different ways it can be accepted, that is
the multiplicity associated to the input. Further, instead of mere accep-
tance, we can use nondeterministic automata equipped also with weights,
first introduced by Schiitzenberger in [8], to compute real-valued functions
fa : ¥* — R4. Combining this with infinite computations we can use
finite automata to define real functions f : [0,1] — Ry (or R), see [2].

Ordinary two-tape automata called transducers — that is automata with
inputs and outputs — compute word functions f : ¥7 — X3 from an input
alphabet to an output one. These constitute relations between words. With
a weighted variant we can compute a weighted relation between words,
p: X7 x X5 — R,. Finally, as we can see, a weighted relation on infinite
words, that is of 3¢ x X, can be interpreted as a transformation of a
function into another one, as first formalized in [3].

In Sections 2 and 3 we describe how finite automata can be used to
define real functions. In particular, we consider how the continuity of the
function is related to the automaton defining it. Then in Section 4 we
use finite (weighted) transducers as models to define transformations of
real functions. Two particularly interesting such transformations are the

Key words and phrases: weighted finite automaton, weighted finite transducer, real-
valued function, derivative, integral.
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integration and the derivation of a given function. We analyze how this
can be done on the level of automata representations of these functions. In
particular, in turns out that although functions defined by finite automata
are typically fractal type functions, and hence analytically complicated,
they can be easily integrated, that is the automata-theoretic representation
of the integral is easy to compute from the automata-theoretic presentation
of the function.

The goal of this paper is to provide complete proofs for some results
published earlier without proofs or with not sufficiently detailed proofs.

§2. PRELIMINARIES

We consider words over the alphabet ¥, with € being the empty word
of length 0. Every infinite word can be interpreted as a real number in the
interval [0, 1]. The mapping:

e 0,1, (w) = @

interpretes the word w = wyws ..., where w; € ¥ ={0,...,n — 1}, as the
number w:

D= w2 . (1)

The only real numbers in the interval [0,1] that have two representations
w = wiws ..., where w; € ¥ = {0,1}, are those that have a finite repre-
sentation (1), that is those that have a finite binary representation. For
these numbers the representations are v10“ and v01% for some finite word
v. Let the former be the standard representation. Now the mapping ™

SR\ B41¢ (0,1, (w) = @

is an injection. The values of (1) are obtained by iteratively halving the
unit interval [0,1]: wy is 0 or 1 depending on whether the corresponding
number is in the first or second half, and similarly w; is 0 or 1 if the number
is in the corresponding ith step on the left or right part, respectively. For
example the words 0110w represent numbers in the interval illustrated in
Figure 1.
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Fig. 1. Recursive subdivision and addressing of the words
0110w.

We use automata defined in [2], whose transitions have been labeled
with real numbers. A Weighted Finite Automaton (WFA) is a 5-tuple

A = (Q7 E? W7 I7 F)7
where

(i) @ ={q1,42,---,qn} is a finite ordered set of states,
(ii) ¥ is a finite alphabet,
(iii) W ={W, | a € £}, where W, : Q@ x Q@ — R is a weight function
of the transitions labeled by symbol a,
(iv) I:Q — R is an initial distribution and
(v) F:Q — Ris a final distribution.
As the set of states is defined as linearly ordered we may use vector no-
tations logically. The weight functions W, can be interpreted as n x n
matrices. If W,(p,q) = «, the element (p,q) of matrix W, is a. In this
formalization the initial distribution [ is a row vector and the final distri-
bution F' a column vector. The underlying automaton of A is the NFA,
whose transition relation contains exactly the 3-tuples (p, a, q), for which
Wa(p,q) # 0 and whose initial and final states are those that have a non-
zero value of images of I and F.
Weighted finite automata compute functions ¥* — R. A word u € ¥*
defines a distribution Pa(u) on A. It is defined recursively with matrix
multiplication:

Pa(e) =1,
Py(va) = Py(v) - W,, forallveX™.
The word function F 4 defined by A is
Fy:Y" >R, Fu(u)=Py(u)-F.

Weighted finite automata may compute real functions [0,1] — R when
we extend the word function to infinite words and interpret real numbers
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as words. Now A defines an w-word function
fa: 2 >R, fa(w)= (nILH;O PA(prefn(w))) -F (2)
and a real function

Fa:[0,1] =R, fa(x)= fa(w),

where w is the standard representation of z.

The definition (2) requires some convergence analysis. For that reason
we define a type of automaton, for which f, is always defined and finite.
A WFA A is a level automaton, if and only if

(i) the only cycles in the underlying automaton are of the form p —*—
p7

(ii) Wa(p,q) > 0 when p,q € Q and a € X,

(iii) for all p € @Q: if there exist such ¢ € @, b € ¥, ¢ # p, that
Wi(p,q) # 0, then 0 < W,(p,p) < 1 for all a € X; otherwise
Wea(p,p) =1foralla e X,

(iv) the elements of I and F' are non-negative real numbers, except for
some applications, and

(v) the underlying automaton does not have unused states.

The condition (i) implies, that for every state of a level automaton A,
there exists a unique number, which we will call the degree of the state.
States which at the underlying automaton lead only to themselves, are of
degree 0. For a state ¢; that leads to other states, let the smallest degree
of those other states be j. Then ¢; is of degree j + 1. A level automaton A
is a line automaton if and only if for each number 0, ...,n — 1 there exists
exactly one state of that degree. A level automaton A with ¥ = {0,1} is
0-faithful, if and only if

Z Wo(p,q) =1 forallpe@.
q€Q
If F=(1,1,...,1), we have
Lemma 1. If a level automaton A is 0-faithful, then
Fa(v) = fa(w0¥)  for allv e L.

Proof. By definition, the sum of the elements on every row of Wy is 1.
Therefore, since all elements in the final distribution are ones, we have
WoF = F. O
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Consequently, if € [0,1) has a finite binary representation v1, then
for a O-faithful level automaton we have F4(v1) = fa(z). Finally, a WFA
A is called average preserving if for all p € @Q,

Z Wa(pvq)F(q):|E|F(p)>
a€¥,qeQ
where F'(p) is the element in the final distribution corresponding to the
state p.

Both the property of being 0-faithful and the property of being average
preserving provide a normal form for level automata computing real func-
tions as any function computed by a level automaton can be computed
also with a O-faithful or average preserving automaton, for details, see [2].

§3. COMPUTING REAL FUNCTIONS

As an important result of imposing the level structure, we have:

Theorem 2. Let A be a level automaton. The value of the function fa(w)

is defined and finite for all w € {0,1}*. The function f4 is continuous at
all points x, which do not have a finite binary representation.

A detailed proof can be found in [2]. The theorem immediately yields a
condition for continuity.

Corollary 3. Let A be a level automaton. The function fA s continu-
ous, if and only if it is continuous at all points that have a finite binary
representation.

The point % has a special role.

Lemma 4. Let A be a level automaton. The function fA s continuous at
point %, if and only if

fa(01%) = f4(10%).
Proof. Obviously the equality is a necessary condition. The sufficiency
follows from Theorem 2, for details, see [2]. O

Deciding continuity at any point having a finite binary representation
can be reduced to deciding continuity at point % for another automaton.

Lemma 5. Let z € (0,1) have a finite binary representation vl. Let A

be a level automaton and A, the automaton A with tiLe initial distribution

Pa(v). Then fa is continuous at z, if and only if fa, is continuous at
1

point 3.
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Fig. 2. The two state automaton Ay.

Proof. Follows from Lemma 4, when we notice that
Pa(vu) = Py, (u),
for all u € X*. O

If an automaton defines a continuous function with every initial distri-
bution, we call it strongly continuous.
For any two state line automaton A, that has weight matrices

VVOZ<Bk ,])-/) andW1:<§ (;),

depicted in Figure 2, we have a simple continuity condition. The proof can
again be found in [2].

Theorem 6. With initial distribution (1,0) and final distribution (1,1),
the line automaton Ay, for which o, € [0,1) and 0 < 7,4, defines a con-
tinuous function fa,, if and only if at least one of the following conditions
is fulfilled:

(i) a+p=1,

(ii) 6(1 —a) =~(1 - 5).

Example 1. We consider the automaton A, with a = 8 = 6 = % and
v = 0. The component of the distribution corresponding to the state 1

equals %lv‘ for an input word v. For every input symbol 1 that component
is added to the distribution in state 0 multiplied with the coefficient % As
a result, we have

n (o)
fa,(w) = lim (2" + Zwﬂi) = Zwi27i;
i=1 i=1

for w = wyws . . .. Comparing this with (1) it is easy to see that fA[ (z) =z
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Fig. 3. The four state automaton A(t).

Now we start to analyze a particular parameterized family of automata
A(t), depicted in Figure 3, with weight matrices (4), initial distribution
(1,0,0,0) and final distribution (0,0,0,1). The states are in the order
(2,1,1’,0). The choice of z(¢) is explained later.

Theorem 7. The automaton A(t) is strongly continuous.

Proof. The automaton A(t) computes the function g : ¥ — R with an
initial distribution (a, b, ¢,d). Then, because the state 0 is not connected
back to other states and the states 1 and 1’ are not connected to each
other, we have

9= a’f.A(t) +bfA1 +cfA11 +d7

where A; and A,/ are the subautomata containing only the states {1,0}
and {1’,0}, respectively. According to the definition of strong continuity
and Lemma 5, the automaton A(t) is strongly continuous, if f4(;), f4, and
fa,, are continuous. Because the automata A; and A/ satisfy the condi-
tion (i) in Theorem 6, they define continuous functions. The continuity of
fa) follows from the symmetry of A(t) with respect to the labels 0 and
1, as fA(t) (01™) = fA(t)(IOn) for any n > 0. (]

However, the subautomata A’, containing three states in the order
(2,1,0), and A" with the states (2,1’,0), define continuous functions only
for some values of z(t). This guides us to fix the value z(¢). The continuity
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condition
far(10¥) = far (01%)
by the weight matrices

t 1 z(t) t 0 z(t)
Wo=10 i 1 and Wy = |0 % 0
0 0 1 0 0 1

of the automaton A’ is equivalent to
1 1 4
t t 1= ) =2t

4t
whenever ¢ # 1. Negative values of the function z(t) bring the automaton
A(t) outside of the class of level automata, but as the negative value is
merely a weight of a noncycle, this is only a technicality.
The automaton A(t) in Figure 3 has been examined originally in [4],
with the values ¢ € {1,2,2}, and later in [7], [5] and [6]. Therein it was
reported:

and further to

Theorem 8. The function fA(t)’ fort € (0,1), with t ¢ {i, %, %} and
4t
t) = ——
o(t) = 57
is continuous, but does not have a derivative at any point.
Proof. The continuity follows from Theorem 7. Let now z € [0,1) be an

arbitrary point and w its binary representation with w, its prefix of length
n. We will examine the following w-words:

wo(n) = w,0,
wi(n) = w,10%,
wy(n) = w,110* and
ws(n) = w,1¥.
We notice that o
@ — i) < 5
for i =0,1,2,3. We denote the distribution given by w,, as

PA(t) (wn) = (anaﬁn:’)/na 6n)



156 T. SALLINEN

and compute the values fa(s) (w;i(n)).
The weight matrices associated to the automaton A(¢) are

t 1 0 =z(t) t 0 1 =z(t)
o ;1 0o 1 o 2 0 o

Wy = 0 0 % 0 and Wy = 0 0 i 1 (4)
00 0 1 00 0 1

We need the limits lim,,—, o (Wp)™ and lim,,_, o, (W1)™. Focusing merely to
the uppermost row and disregarding the nonessential values marked with
stars, we have

" pe(t) * an(t) 4 } 0 x(t)
TR L I R
e e 000 1
thrl tk + %pk (t) * tl” ,’L’(t) + Dk (t) + qk (t)
= N % %
* * *
— (WO)k+17

and the recursions

Qa1 (1) = tF - z(t) + pr(t) + qr(t) and

1
pr(t) =" 4 -1

with the initial values p1(t) = 1 and ¢, (¢t) = x(¢). Then, generally

ES
|
-
S

w) =Y (-2 + 30 (- (1))
i=0 j=1
k-1 i
- (ti ) 4i(41t()4t —11)> ’

@
I
=)
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where, by definition, the empty inner sum, when ¢ = 0, equals zero. The
case for W is symmetric. We now have, for 0 <t < 1,

0 0 0 7t 0 0 0 r(t

000 3% 000 O
lim (Wy)" = 3 and lim (W;)" = .
n—co 000 O (W) 000 4%

000 1 000 1
where

r(t>—Z(t '”””(“+4i—1(4t—1>> C1-t 3¢-D

=0

Now we are ready to compute the values f 4 (wi(n)). We have

(1) (wo(n)) = r(t )an + éﬁn + On,

Faw (wi(n)) = (-7 () en + Bn + T + O,
&) (wa(n)) = (- r(t) +t-x(t) + z(t) + 1)an + 2B + 290 + 6, and
() (wa(n)) =r(t ) + 5% + On.

We also note that «,, = t"™ for all n. Next we examine the differences

Faw (wo(n)) = faw (ws(n)) = 5(Bn — 7a) and
faw (wi(n)) = faey(wa(n)) = (t-r(t) =2 - r(t) =t - x(t) — Dan  (5)
+i(5 'Yn)a

where the coefficient of «,, can further be modified to

Thus the coefficient is given by a linear function depending on a param-
eter ¢. The function is continuous in the interval [0,1) except where the
functions z(t) and r(t) are not continuous. The coeflicient for a,, is zero,
if and only if t = %.

Now, regardless of the values of 3, and 7,, for every n at least one of
the differences (5) has an absolute value of at least 1 |2t — 1| a,,. Then for

all n there exists an i, € {0, 1,2, 3} for which

4

|fay(w) = faq) (wo(n))| > i ‘—t 1

3 Q. (6)
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Fig. 4. Graph of the function fA( )(m)

2
3

Because the values i,, are taken from a finite set, the inequality (6) holds
with a fixed value of i,, infinitely many times. Thus there exists an infinite
subset Iy C N and a number i,, € {0,1,2,3} for which

1 1

| faey (W) = Fa (wio (n))] > ‘gt -3

Q.

Combining this with (3) we have

| fay(w) = faw (wi,(n))| - Ft B 1‘ (21)". (7)
13 4

—_—
|@ — wi, (n)|

Because the set Ij is infinite, the function fA (t) does not have a derivative
at the point defined by w, if the right-hand side of (7) grows unbounded
3

when n tends to infinity. This is what happens, when + < ¢t < 2 or

% <t < 1. The case for 0 < t < % is symmetric. O

An example of the function with ¢t = % is shown in Figure 4. For ¢t = i, %

the derivative exists and equals zero at all points having a finite binary
representation, see [4]. For ¢ = 1 the function z(t) is undefined.
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§4. TRANSFORMATION OF FUNCTIONS DEFINED BY LEVEL
AUTOMATA

Our goal here is to take functions computed by level automata, make
desirable modifications to them and find new automata computing the
resulting functions. As a tool we use transducers. They are a special type
of automata, which in their basic form transform an input from an input
alphabet into an output in an output alphabet.

We use transducers computing weights, or more specifically weighted
relations between two words. Essentially, they transform a function by as-
sociating the value computed for each input word of the original function
to the value computed for each input word (that is, output of the trans-
ducer) of the new function. The new value is the original value multiplied
by the weighted relation between the words.

Formally, as defined in [3], a Weighted Finite Transducer (WFT) is a
6-tuple

T= (Q)EhEZ;W)I)F))

where

(i) @ ={aq1,¢2,---,q.} is a finite ordered set of states,
(ii) ¥, and ¥, are two finite alphabets,
(i) W={Wup | a€ B Ueg,beXyUce}, where Wy, : @ xQ — Risa
weight function of the transitions labeled by symbols a and b,
(iv) IT:@Q — R is an initial distribution and
(v) F:@Q — R is a final distribution.

If Wab(p,q) =0 whenever a = € or b = ¢ for every p,q € Q, we will call
the WFT e-free. It W, ;(p,p) = 0 whenever a = € or b = ¢ for every p € @,
we will call the WFT e-loop free.

The path o from state p to state ¢ is a sequence of adjacent transitions

If p = q, we call such a path a loop. Let u = a1 ---a, and v = by --- by,
with v € X7 and v € X5. We define the projections n* and 72 of the path
o into ¥} and 3 as 7! (0) = u and 7?(0) = v, respectively. The weight of
the path o denoted by W (o) is the product of all weights of all transitions
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of o:
W(a)zW(pﬂpl) -W(p1 ﬂ)m). W( 1 M)q)

= Wal,b1 (papl) : Waz,bz (Pl;Pz) ottt Wan,bn (pnfla(I)'

(8)
Let T = (Q, %1, %2, W, I, F) be a WFT and let

Tpqlu,0) =) W(o), (9)

where the sum is over all paths ¢ from p to ¢ such that 7!(c) = u and
72(0) = v, provided that the sum converges. We define the weighted rela-
tion pr as

pr(u,v) = Y I(p)Tpq(u,0)F(q), (10)
P,aEQ

for u € ¥} and v € Xj. If the sum does not converge, pr(u,v) remains
undefined.

In the special case of an e-free WFT 7, for words u = ajas ...a; € IF
and v = byby ... by € T% of equal length we have, by (8), (9) and (10)

pT(U,’U) :I'Wﬂ17b1 'Wa2752 T 'Wak,bk - F, (11)

and pr(u/,v') =0, if |u'| # [v'|.

Let p be a weighted relation over 37 x X3, that is a function ¥} x X5 — R,
and let f be a function ¥j — R. We define the application of p to f to be
the function g : ¥ — R, g = p(f), where

g(v) =Y plu,0)f(u), (12)

u€eXy

for v € X3, if the sum, which can be infinite, converges. The application
T(f) of the WFT T to f is defined as the application of the weighted
relation pr to f, that is 7(f) = pz(f). This is how we use weighted
relations to transform real-valued functions. Similarly, we define 7 (.A),
the application of a transducer 7 to an automaton A, as applying the
weighted relation pr to f4. Next we show how weighted transducers are
used to define p7(f) in terms of automata-theoretic representation of real
functions.

We denote by ® the ordinary tensor product of matrices, which is also
called the Kronecker product or direct product. It is defined as follows. Let
K and M be matrices of sizes k x £ and m x n, respectively. Then their
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tensor product is the matrix:
Ky M - Ky M
KoM= : : ,
KuM - KM

of size km x fn. Using the tensor product we can establish a very natural
relation between automata and transducers.

The core of our transformation is shown in the next result, originally
stated in [1].

Theorem 9. Let A = (Qa, X1, Wa,Ia, Fa) bea WFA and T = (Q,%1,2s,
W,I,F) be an e-free transducer. Then there exists a WFA A’ such that
far = pT o fa, that is an automaton which directly computes the function
that results in applying the weighted relation pr to the original function

fa.

Outline of proof. Let A4 have m states and 7 have n states. Then we
construct an mn-state WFA A’ = T (A) over alphabet a € X2 with initial
distribution 4, = I ® I 4, final distribution F = F ® F4 and weight
matrices
WA/,b = Z Wa,b ® WA,a;
a€X,

for all b € ¥y, where W4:, and W4, are the matrices W, and W, for the
automata A’ and A, respectively. As the transducer 7 is e-free, the weight
matrices are uniquely determined. Now, by (11) and definition (12), we
can see that A’ computes the function f4 = p7(fa), that is the function
defined by A’ is the same as the result of application of the WFT 7 to the
function computed by the WFA A. O

Next we illustrate the power of transformations transducers are capable
of. The following two results are reported without proofs in [3]. We begin
by analyzing the transducer 75 in Figure 5 that has weight matrices

2 0 0 0 0 2 2 0
WO,OZ(O 0>,W0,1=(0 2>;W1,0=<0 0> andW1,1:<0 0>

and initial and final distributions (1,1) and (—1, 1), respectively. The states
of the transducer 74 are ordered from left to right in Figure 5.

Theorem 10. Let ¥ = {0,1} and A be a 0-faithful level automaton over
Y. Then we can construct such a WFA Aq that if fa has a derivative at
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Fig. 5. A WFT 74 computing the right derivative

point x = W, we have

Faslo) = 4]

Proof. For a sufficiently large i let w; = pref;(w) and z; = w/l@ Then
we have z — 27" < z; < z. By Lemma 1 we have F4(w;) = fa(w;0%) =
fA(xi). We apply the transducer 74 in Figure 5 to the automaton A. With
input w; the co/l}struction resulting from the left-hand side state of 74
computes —2¢ - f4(x;), because each transition weight is doubled and the
final distribution negated. The construction resulting from the right-hand
side state always deduces the lexicographically smallest binary word of
equal length larger than w;,; and uses it as input computing with input
w;—1017 the function 2779 . Fq(w;—1107). As

wiﬁo“’ - wiﬁow =277,

with input w; the right-hand side state computes 2 - fA (:rl + 2”) and the
whole construction computes

_ fA(SEi +274) — J?A(l’i)‘

—i

Fryay(wi) = =2° - fa(z:) +2" fa(zi +277)

(13)

Let now p > 0. As we assumed the existence of the derivative, the right

derivative then exists and equals the derivative at x. Then there exists
0 > 0 such that for every h satisfying |h| < 6 we have

falz+h) = fa(z) 5

Y = fal@)| <p.
Let i > —log, d so that 27% < §. Then we have
falwi) = falz) &
pra— fal@)] <np
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and

Falzi+279) — falx)
i +270—x — fal@)

< W.

Using these and the triangle inequality we can find an upper bound for
the difference of (13) and the derivative:

Falei + 2~ fal@) 5 | = |Fateir29) - f;(;:i) — 27 fl()

B ‘ (Falwt2 ) —Fa@)— (@2 —a) Fu(@) - (Fale) ~Fal@)—(zi—2) Fu()) ‘
- als

i

- ‘ |Fatei+2=) = Fa@) — (@it~ —2)- P4 (@) | +] Fa(o) ~Fa(0)~(@i—2)- F4 ()] ‘
< £

plei+ 27—zl +ple; —x]  plei+2 -z —xi+x)  p-270
< 92— - 92— T T
that is, for any p > 0 the value of Fr, (4)(w;), with sufficiently large

i, differs from the derivative at @ by less than u. It follows that Agq =
74 (A). O

In Theorem 10 we assumed the derivability in the given point. We do
not know how much weaker assumptions would be sufficient here.

Next we move on to the transducer INT in Figure 6 that has weight
matrices

Woo = (3),Wou = (3), Wio = (3) and Wi, = (3),
along with I = F' = (1), and the transducer 7g in Figure 7 with

1 0 1 0 0 10
WO’OZ(S %>,W0,1:<0 §>’W1’°:<0 %) andWl’lz(S %)

and initial and final distributions (1,0) and (1, 1), respectively. The states
of the transducer 7y are ordered from left to right in Figure 7.

Theorem 11. Let ¥ = {0,1} and A be an average preserving level au-
tomaton over X defining a Riemann-integrable function. Then we can con-
struct such a WFA AR that:

Fin (@) = / " Fato) dr.
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0,0: 1
@ 0,1:%
1,0: 3
1,1:1

Fig. 6. A WFT INT.

Proof. We begin by analyzing the transducer INT in Figure 6. Given a
WFA A that has weight matrices Wy and Wy, the WFA INT(A) computes
the distributions

1

1
Pixray(0) = §PA(0) + §PA(1) = Pinr(a(1),

1 1
Pinr(a) (v0) = 5 Pin(a) (0)Wo + 5 Pinvra) (0) W = Prnriay (v1)

and thus, with any finite word v,

1
Fint(a)(v) = Z WFA(U),
ueED*
lul=]v]
that is the average of F 4 over every input word of length |v|. With infinite
words w, the average becomes

21 . 1
Fivrin) = Jim (%gm (21)) S RZCET

where the second equality follows from our assumption of integrability.
Let uv = w € ¥* and fint(a),.(v) be the function the automaton

INT(A) computes with initial distribution P4(u) on input v. Then

ul®

1“) o~
fixraya(v) = 20 /A Fat) dt, (15)

u0«
as only words containing the prefix u contribute to the sum in (14).

We apply the transducer 7g in Figure 7 to the automaton A. The right-
hand side state of 7g works analogically to the transducer INT earlier,
except its initial distribution component is 0. Let w = ajas ... and its
prefix of length i be w; = a1 ...a;. Then, for 1 < j <4, we have w;_1a;v =
w;. The left-hand side state of the construction now computes with input
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0,0:%

0,0: % 0,1:1 0,1:1
2 1,1 2 0,1 2
L1:3 1,0: 3
o1

L,1:35

Fig. 7. A WFT T computing [;° f(t) dt.

w; the distribution 55 P4(w;), which is needed for (15). The coefficients
% and 2/*! cancel each other out leaving us only the integral. With input
w;0¥ the automaton 7g (A) then, for every a; = 1, flips a; into 0 and adds
to the computation in the right-hand side of the construction the function

1 wj_101« R
gfINT(.A),wJ-_10(U0w) = //\ fa(t) dt,
wj_10‘*’
thus adding the interval [wﬁl\ow,w]fﬁlw) to the integral. To put this
in other terms, for every a; = 1 it is computing the average of f4 over
every infinite input word lexicographically between w;_0 and w;_;01*.
Overall, the construction computes

" .1 n 1 w
T () (w;0 )Znhf;o Q_nFA(in ) + Z mfINT(A),wj,lo(UO )
wj_11€pref(w;)
i
= [ Faw
0

and finally, with w = uav and a € %,

. 1 1 w_
oy (w) = T}LH;O Q—an(U’) + Z WfINT(A),uO(U) :/ fa(t) dt.
ul€pref(w) 0

It follows that Ag = Tr(A). O

Finite automata typically compute fractal type of functions. If they are
Riemann-integrable, we can apply the previous process. The integral of
the function in Figure 4, computed by an automaton Ag(t), is shown in
Figure 8.

In above the integration was done within the framework of general
weighted transducers with a uniform representation. With some additional
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0.08 LN T T

-0.08 1 1 1 \\\ 1
0 0.2 0.4 0.6 0.8 1

Fig. 8. Graph of the function [’ fA@ (t) dt. The dashed
linear function is added for reference.

considerations the result can extend also to other WFA than level au-
tomata, as the level structure is only needed to guarantee the finiteness
of the values of the original automaton. The process always duplicates the
number of states. However, at least for level automata, this can be done
straightforwardly and even without the assumption of existence of the in-
tegral, as shown in [2]. Moreover, only one additional state is needed.

Theorem 12. For each level automaton A of degree n there exists a level
automaton Ay of degree n + 1, such that

Fa(w) = / " Fa) dr. (16)

Moreover, given the automaton A the automaton A; can be constructed
by uniform rules. We first find an average preserving level automaton A,y
of the same degree defining the same function. Next, we define a level
automaton Ay of degree n + 1 as follows:

(i) Its states are those of A,p with an added state t.
(ii) Its transitions contain those of Aqp with weights divided by 2.



FUNCTION TRANSFORMATIONS WITH AUTOMATA 167

0,1

Fig. 9. A one state WFA Ay computing a constant func-
tion.

(iii) From each original state q of A,y there is a transition in Ay to the
state t labeled by 1 and with the weight %ZPEQ Wo(q,p), where
Wy is the weight function of A,p, and Q) its set of states.

(iv) The state t contains loops of weight 1 with both labels 0 and 1.

The usefulness of the theorem is illustrated by the fact that it alone
yields automata representations for every polynomial.

Example 2. We begin with the simple one state automaton Ay in Figure
9. Given that both inputs 0 and 1 have weight 1 attached to them, the
function computed is the same, I - F, for every input word. Fixing F' = (1)
and I = (ag), we have

on (:If') = aop,
the constant function. For now, let us fix ag = 1.

We then apply the process of Theorem 12 to Ay. It is average preserving
and thus A,, = Ag. The result is the automaton 4; in Figure 10, with I =
(1,a1) and F' = (0,1), which is not average preserving. It can be modified,
however, so that it computes the same function and is average preserving.
Fixing a; = 0 and applying Theorem 12 to the result we then receive the
second automaton in Figure 10, with I = (3,0,a2) and F = (0,0,1). By
(16) we have

fuw = [tar=e, fuw=[ra=ge
0 0 2

With the initial distribution I = (1,0,0) the automaton A, then computes
fa,(z) = 2%

Looking at the three automata we notice that the automaton Ap is
contained in A; at the state 1. Also, the automaton A; is contained in A,
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at

0,% 0,1

1,1

Fig. 10. A two state WFA A; computing a linear func-
tion and a three state WFA Ay computing a quadratic
function.

states 1 and 2. We can then compute

on(bO) + fAl (01) + fa,(ba) = boa® + by + by

using only the automaton 4, with the initial distribution (b, b1, bg). Con-
tinuing further we can acquire an automaton for any at most nth degree
polynomial with n + 1 states.
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