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OPTIMAL HEURISTIC ALGORITHMS FOR THE
IMAGE OF AN INJECTIVE FUNCTION

ABSTRACT. The existence of optimal algorithms is not known for
any decision problem in NP\ P. We consider the problem of testing
the membership in the image of an injective function. We construct
optimal heuristic algorithms for this problem in both randomized

and deterministic settings (a heuristic algorithm can err on a small

fraction % of the inputs; the parameter d is given to it as an ad-

ditional input). Thus for this problem we improve an earlier con-
struction of an optimal acceptor (that is optimal on the negative
instances only) and also give a deterministic version.

§1. INTRODUCTION

1.1. Optimal algorithms. When we face a computational problem that
is not known to be solved in a reasonable (say, polynomial) amount of time,
we are still interested to solve it as fast as possible. The existence of an
optimal algorithm that for every possible input returns its answer at least
as fast (up to a polynomial) as any other algorithm for the same problem
does, is an important structural feature of the problem and the model of
computation (deterministic algorithms, bounded-error randomized algo-
rithms, etc.).

While Levin’s optimal algorithm for NP search problems is known for
decades [8], it does not give an optimal algorithm for any decision prob-
lem, because, while for NP-complete problems the worst-case complexity
of search and decision are polynomially related, a decision algorithm still
can be exponentially faster for some inputs. Also Levin’s algorithm does
not stop at all on the negative instances. For many interesting languages
including the language of Boolean tautologies TAUT, the existence of an
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algorithm that is optimal on the positive instances only (such algorithm
is called an optimal acceptor) is equivalent to the existence of a p-optimal
proof system (that is, a proof system that has the shortest possible proofs,
and these proofs can be constructed by a polynomial-time algorithm given
proofs in any other proof system) [7,10,12] (see [6] for survey). Chen, Fliim,
and Miiller [2] recently proved that the existence of optimal acceptors for
all co-NP-complete languages is equivalent. Monroe [11] recently showed
that proving the nonexistence of optimal acceptors for a co -INP-complete
language is equivalent to proving that for every Turing machine M ac-
cepting a complement to the bounded halting problem there is a single
“counterexample”, i.e., a single machine Njy; and its input xps that force
M to work on (Nyps,xar, 1Y) longer than any polynomial in ¢.

1.2. Optimal heuristic randomized acceptors. An obvious obstacle
to constructing an optimal algorithm by enumeration is that no efficient
procedure is known for enumerating the set of all correct algorithms for,
say, TAUT or SAT. A possible workaround is to check the correctness for
a particular input; however, even for SAT, a search-to-decision reduction
maps the input instance to a different instance and thus potentially in-
creases the complexity.

The correctness can be, however, checked in the heuristic setting. A
heuristic algorithm for a language L and probability distribution D on the
inputs is allowed to make errors for some inputs; the probability of error
according to D must be kept below %, where d is an integer parameter
given to the algorithm. In [5] an optimal heuristic randomized acceptor for
every r.e. language L and every polynomial-time samplable D concentrated
on L is constructed. In other words, this is an algorithm that accepts (with
bounded probability of error) every x € L in the fastest possible way, and
accepts ¢ L for inputs of total D-probability at most %.

1.3. Our results: derandomization and optimal heuristic algo-
rithms. In this paper we consider the decision problem for the image
of an injective function (under the uniform distribution) that maps n-bit
strings to (n + 1)-bit strings. Its study is motivated, for example, by the
fact that a particular case of this problem is the problem of recognizing the
image of an injective pseudorandom generator, which has no polynomial-
time heuristic randomized algorithm [5, Theorem 5.2]. It is known that
injective pseudorandom generators exist if one-way permutations exist [3].
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For this problem, we extend the previous results in two directions. First,
we devise an optimal algorithm, while [5] gave a construction of an optimal
acceptor. Note that optimal algorithms halt on all inputs and optimality is
defined for all inputs, not just the positive ones. In [5], the correctness test
was performed by repeated sampling inputs in L and running a candidate
acceptor on them. In our case L is the image of an injective function and we
can still sample it. However, we still do not have a samplable distribution
on L, i.e., on the complement to the image. The check is then done by
testing the algorithm on a random input from {0,1}" and computing its
overall probability of acceptance.

Our second result is a derandomization of this construction, namely, a
deterministic algorithm that is optimal on the average. To do this, we use
an expander-based construction of Goldreich and Wigderson [4] of small
families of functions with good mixing properties, and also use the input
as a source of pseudorandomness. It also derandomizes the construction
of [5] of optimal acceptors if we consider it for the same class of problems
(i.e., recognizing the complement of the image of an injective function).

A byproduct of the derandomization is the existence of an optimal au-
tomatizable proof system for the complement of the image. For our prob-
lem, this extends [5, Theorem 4.1], where only an optimal weakly automati-
zable randomized heuristic proof system is constructed, i.e., a proof system
where the automatization procedure outputs a proof in a stronger system.
(The necessary definitions and the corollary are given in Sec. 6.)

1.4. Organization of the paper. In Sec. 2, we give the necessary defi-
nitions. Then, in Sec. 3, we give a general construction of an optimal algo-
rithm that suits both the deterministic and randomized cases but misses
an important part: the procedure for estimating the frequency of a par-
ticular answer of an algorithm on a particular distribution of the inputs.
In Sec. 4, we give a (rather simple) randomized testing procedure, and in
Sec. 5, we give a (somewhat more complicated) deterministic one. Finally,
we present directions for further research in Sec. 7.

§2. DEFINITIONS

2.1. Basic notation. An ensemble of probability distributions is a se-
quence of probability distributions {D,, },en, where D,, is concentrated on
{0,1}™. We will denote such an ensemble by a single letter D and abuse
the language by calling D a distribution.
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Let U denote the ensemble {U, },en, where U, is uniformly distributed
on {0,1}". For every language L C {0,1}*, we denote the uniform distri-
bution on L N {0,1}"™ by U, (L); then U(L) = {U,,(L) } nen.

A distributional problem is a pair (L,D) consisting of a language
L C {0,1}* and a distribution D.

We use subscripts to denote the probability space; for example, Pr . p,
means that the probability is taken over x distributed according to D,, and
Prs means that the probability is taken over the internal random bits of
the algorithm A.

The algorithms that we study can output either 1 (accept) or 0 (reject),
or L (give up). They can also diverge, i.e., run forever (denoted o). For
an algorithm A and an integer 7', we denote by AST the algorithm that
behaves as A until the step T', and then gives up.

The time spent by a randomized algorithm A on input z is defined as
the median time

1
ta(z) = min {t eN ‘ f;r[A(:U) stops in time at most t] > 5} .

We will also use a similar notation for the order statistics the “probability
p time”:

tff) (z) = min {t eN ‘ f;r[A(:U) stops in time at most t] > p} .

2.2. Randomized heuristic algorithms.

Definition 2.1. A(z,d) is a randomized heuristic algorithm for a distri-
butional problem (L, D) if for every n,

1, z€lL,

Pr [A(z,d) # L(z)] < (—11, where L(z) = {0 z¢L.

z—Dn;A
Remark 2.1. Note that [1] and [5] define randomized heuristic algorithms
and acceptors in a different way separating the probabilities over x and over
A. Note also that [5, Sect. 2] proves that algorithms defined in these two
different ways simulate each other (the proof is given there for acceptors
and goes for algorithms without changes).

Definition 2.2. A function f: {0,1}* x N — N is polynomially bounded
on a set X if there is a polynomial p such that for every x € X and d € N,
fla,d) < p(|z|d).
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A heuristic algorithm A is polynomially bounded on set X if its median
time t4 is polynomially bounded on X . If X is equal to {0,1}* we omit it.

Definition 2.3 (1]). HeurBPP is the class of distributional problems that
can be solved by polynomially bounded randomized heuristic algorithms.

Definition 2.4. Function f: {0,1}* x N — N dominates function
g:{0,1}* x N — N on set X (denoted f = g), if there are polynomials p
and q such that for all x € X and d € N,
z,d) < max z,d)d|z|)}.
gland) < max (/o) lo])
Remark 2.2.

(1) If f = g on X and f is polynomially bounded on X, then so is g.
(2) » is transitive.

Definition 2.5. For randomized heuristic algorithms A and A’ for the
same distributional problem (L,D), the algorithm A simulates A’ if
t'y = ta onsupp D = {z | D(z) # 0}.

An optimal randomized heuristic algorithm for a distributional problem
(L, D) simulates every randomized heuristic algorithm for (L, D).

2.3. Deterministic heuristic algorithms.

Definition 2.6. A deterministic heuristic algorithm is a randomized heu-
ristic algorithm that does not use its randomness.

The running time t4 is now simply the number of steps made by the
algorithm A. However, for deterministic heuristic algorithms, the notions
of the polynomial boundness and the simulation will be relaxed by allowing
the restrictions not to hold on a small number of inputs.

Definition 2.7. A function f: {0,1}* x N — N is polynomially bounded
on the average w.r.t. distribution D, if there is a polynomial p such that
for every n,d € N,

Pr () < pln-d)) 21— o

A deterministic heuristic algorithm is polynomially bounded on the av-
erage if its running time is polynomially bounded on the average.

Definition 2.8. A function f: {0,1}* x N — N, dominates g: {0,1}* x
N — N on the average w.r.t. distribution D (denoted f 7= g), if there are
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polynomials p and q such that q(n,d) > 2d and for every n,d € N,

1
Pr [y, d) <pln-d- [0 D) 21— 7
It is easy to see that the class of functions polynomially bounded on the
average is closed under domination on the average.

Proposition 2.1. Let f =~ g and f is polynomially bounded on the average
w.r.t. D. Then g is also polynomially bounded on the average w.r.t. D.

Proof. Let p and ¢ be two polynomials in the definition of >, and p’
be a polynomial in the definition of polynomial boundness of g; without
loss of generality we can assume that p is nondecreasing. The polynomial

boundness and the restriction on ¢ give

1 1
P <p'(n- >1- >1— —.
w(_lgn [f(z,q(n,d)) <p'(n-q(n,d))] a(n,d) 2d
Substituting it into the domination condition we get
1 1 1
P < d-p(n- 2l-——-—=—==1--.
x(_f)n [g(ZE, d) p(n d-p (n Q(n, d)))] 2 2d d

d

Definition 2.9. For heuristic algorithms A and A’ for a distributional
problem (L, D), we say that A simulates A’, if t'y 7= ta w.r.t. D.

A deterministic heuristic algorithm for a distributional problem (L, D)
is optimal on the average if it simulates every other deterministic heuristic
algorithm for (L, D).

Definition 2.10 ([1]). HeurP is the class of distributional problems that
can be solved by deterministic heuristic algorithms that are polynomially
bounded on the average.

2.4. The problem of recognizing the image of an injective func-
tion. In this paper we concentrate on the following problem.

Definition 2.11. Let f: {0,1}* — {0,1}* be a polynomial-time com-
putable injective function such that The problem of recognizing the image
is the distributional problem (Im f,U) where U is the uniform distribution.
We will also denote by Im f the corresponding characteristic function, i.e.,

(Imf)(z) =1ifzecImf and (Im f)(z) =0 if ¢ Im f.
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To show the importance of this problem and its nontriviality for heuris-
tic algorithms let us consider a particularly hard case when f is a pseudo-
random generator.

Definition 2.12 (see, e.g., [3, Sec. 3]). Let f: {0,1}* — {0,1}* be a
polynomial-time computable function such that |f(r)] = |r| + 1 for all
r € {0,1}*. Then [ is called a pseudorandom generator if for every poly-
nomial-time randomized algorithm A and for every polynomial p,
1
dIng Vn > n Pr [A(f(x)) =1 — Pr [A(x)=1]| < —.
o¥n>my | Py [A(F@) =1~ Pr [@)=1| < —

It is known that injective pseudorandom generators exist if one-way

permutations exist [3].

Proposition 2.2 ([5, Theorem 5.2]). If f is a pseudorandom generator,
then there are no randomized heuristic algorithms for the problem (Im f,U)
with running time that is polynomialy bounded on Im f.

2.5. Estimator.

Definition 2.13. We call an estimator an algorithm Estimate(A, z, g,
v,€,T) that given
e an algorithm A (i.e., its Goedel number), which can be either ran-
domized or deterministic,
an input = € {0,1}",
a function S : {0,1}™ — {0,1}"™ (as an oracle),
a value v € {0,1},
a rational number € € (0;1),
an integer T,

runs in time upper bounded by a polynomial of T, n, and % and outputs a
rational number p such that

Pr‘ —  Pr AST :U‘>€:| < €,
o=, Fr 45T =] >
where the outermost probability is taken over the internal random bits of
Estimate and over uniformly distributed = € {0,1}™.

Remark 2.3. At first glance, it may seem that the expected answer of
Estimate is not related to « and therefore Estimate does not need z. How-
ever, we will see later that in the deterministic case the input x is the
only source of pseudorandomness and thus it does matter for determinis-
tic heuristic estimators. For the randomized case it can be indeed ignored.



22 E. A. HIRSCH, D. M. ITSYKSON, V. O. NIKOLAENKO, A. V. SMAL

Remark 2.4. In this paper, we use estimators for two functions: the
identity function id and the function g that cuts the last bit of the input
and applies the injective function f whose image we are trying to recognize,
to the first n—1 bits of the input to get an n-bit string uniformly distributed
on Im fN{0,1}™.

§3. THE GENERAL CONSTRUCTION OF AN OPTIMAL ALGORITHM

In this section, we describe the “main” algorithm Opt for a distribu-
tional problem (Im f,U), which we use both in the deterministic and in
the randomized case. It uses an enumerator A, for algorithms of certain
type (that is, A; is a Turing machine with Goedel number i, and it can
be either a randomized or a deterministic machine depending on the enu-
merator), and an estimator Estimate for the same type of algorithms. We
assume that Ap is a deterministic brute-force algorithm for testing the
membership in Im f running in 2" steps for an integer constant ¢ > 1
(note that Im f can be certainly accepted in time O(2™ - p(n)), where p(n)
is the complexity of f).

The algorithm Opt resembles Levin’s optimal algorithm for NP search
problems [8]. It executes all algorithms A; in parallel. When A; stops with
an answer v, the answer is verified in the same parallel process; if the
verification is successful, Opt stops all parallel processes and outputs this
answer. However, the verification procedure is very different from that of
Levin (note that we have a single bit to verify). It depends on the answer:
if v = 0, then we verify that A; returns 0 on a randomly selected element
of Im f with negligible probability. This is done by sampling elements from
Im f and calculating the frequency of the answer 0 (note that the uniform
distribution on the Im f is polynomial-time samplable using the function
f itself). If v = 1, then we verify that A; returns 1 on a randomly selected
input uniformly distributed on the complement of Im f with negligible
probability. However, the uniform distribution on Im f may be hard to
sample. Instead, we reduce this problem to the estimation of two other
probabilities as

1 1
Pr|...]== Pr L+ = Pr
Ll)(—Un[ ] 2 ¢—U, (Im f)[ ] 2 2—U, (Tm f)[ ]

Algorithm 3.1. Opt[A,., Estimate](x, d)
(1) Let n = |z| and let d’ = 20cn?d.
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(2) For every i € {0,1,...,n}, execute the following process in paral-
lel:

e Run A;(z,d").

e If i = 0 and Ay outputs v € {0,1}, then stop all parallel
processes and output v.

o If i > 0 and A;(x,d’) outputs v € {0,1} in T steps, run
Test (v, Estimate, A;, 2M1°6 71 2 d'). If Test accepts, then stop
all parallel processes and output v.

Algorithm 3.2. Test(v Estimate, A, T, z, d)
(1) Let e = 2, A'(z) = A(z,d’) and
let g(y ob) = f(y) for y € {0,1}1*1=1 b € {0,1}.
(2) If v =0:
(a) Compute p = Estimate(A’,z,g,0,¢,T).
(b) If p < 2¢, accept; otherwise reject.
v=

(3) It
(a) Compute a = Estimate(4’,x,9,1,¢,T).
(b) Compute 3 = Estimate(A4’, z,id, 1,¢,T).
(c) Accept, if 28 — a < 4¢; otherwise reject.

In what follows d’ = 20cn?d and € = 2 = 5 as in the algorithms
above.

Lemma 3.1. For an algorithm A, denote p= Pr  [AST(z,d)=1].
z—Uy,(Im f);A

Let a and B be the random wvariables computed at step 3 of Test(1,
Estimate, A, T, z,d’). Then Pr[|p — (28 — a)| > 3¢] < 2e.

Proof. Let

a = Pr AST (2, d) =1] = Pr AST (2,d) =1
th(Un_l);A[ (z,d) =1] w(_Un(Imf);A[ (z,d) = 1]

and let b = Pr [AST(.’L', d) = 1]. Clearly, p = 2b — a. By the definition

of an estimator f’r[|a —a] > €] < e and Pr[|b — 8] > €] < e. Using the
triangle inequality we get Pr[|(2b — a) — (28 — a)| > 3¢] < 2e. O

Theorem 3.1. If Estimate is a randomized (resp., deterministic) estima-
tor and Ae is an enumeration of randomized (resp., deterministic) Turing
Mashines then Opt[A., Estimate] is a randomized (resp., deterministic)
heuristic algorithm for (Im f,U).
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Proof. Since Ay always gives the correct answer, it suffices to prove that
for every i € {1,2,...,n}

A;(x,d") outputs 0 or 1 in some T < 2™ steps A

i) £ (Im )(2) A
Test (v, Estimate, A;, 211871 ¢ d') = 1

Since Agp runs in 2" steps, no other algorithm A; is allowed to run
longer. Thus we can split every algorithm into cn “parts”: Afl, Afz,
Ai@, ... and it now suffices to prove that for every i € {1,2,...,n},

ke {0,1,...,cn}

r < —.
z—Up;A;;Test dn

A (z,d') € {0,1} A .
<

ok
x«—Unl;)z‘I\‘i;Test Ai ? (;U’dl) 7+_ (Im f)(:l?) A < cdn?’
Test(v, Estimate, 4;, 2, z,d") = 1

This probability can be split into two parts depending on the correct an-
swer:

L p u@d)=0ad+E P A (@ d)=1A.]

2 2—f(Uno1)iAi * 2 peU,@mf)A;

To bound the first part, note that if f((l;’r A [Afzk (z,d) = 0] > 3¢,
T n—1);A4%

then by the definitions of Estimate and Test we have Pr[Test(0, Estimate,
A;,2% x,d") = 1] < e. Thus the first part of the probability is less than %(—:.

We now consider the case when z « U,(Im f). By Lemma 3.1, if

k
Pr[AS? (¢,d’) = 1] > Te, then Pr[Test(1, Estimate, 4;, 2, z,d’) = 1] < 2.
Thus the second part of the probability is less than %(—:. In total we have
3¢+ e < - by the definition of € and d’. O
Lemma 3.2. Let A be a heuristic algorithm for (Im f,U). Then for every
integer T' and any v € {0, 1},
Pr  [Test(v, Estimate, A, T,z,d") = 0] < 2e.

xz—U,;Test

Proof. Consider v = 0. Then Test rejects with probability

2
Pr AST(y,d)=0] < = =e.
yopor AT d) =0l <
Consider now v = 1. Since, by Lemma 3.1,
2

PL [AgT(yad/) = 1] < T €,
z—Uy,(Im f);A d
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Test rejects with probability less than 2e. O

§4. AN OPTIMAL RANDOMIZED HEURISTIC ALGORITHM

In this section we describe the randomized estimator for randomized
algorithms, which completes the construction of an optimal randomized
heuristic algorithm. The algorithm we implement in the randomized es-
timator is very straightforward: execute AST sufficiently many times on
random inputs sampled using the function g evaluated at randomly gen-
erated points; then calculate the frequency of the correct answer.

Algorithm 4.1. Estimate-Random(A4, z, g,v,¢,T)
o Let s = [_ln(;/f)] +1.
e Fori=1,2,...,s,do
(1) Generate y <« g(Up,)-

<T(4)): ]
) (2 )
(2) Execute AS'(y); let u 1 if the answer equals v, and let
u; = 0 otherwise.
S

e Output 1 Zlul
=

Lemma 4.1. The algorithm Estimate-Random is an estimator for ran-
domized algorithms.

Proof. By Chernoff bounds (see, e.g., [9]),
Pr [

Remark 4.1. In fact, a slightly stronger statement holds. Namely, the
probability can be taken over internal random bits only and not also over
the inputs as it is stated in the definition of an estimator.

1 s
- u; — Pr [AST(y)=vw
S, R MW =

Lemma 4.2. For any randomized heuristic algorithm B for the problem

(Im f,U), tg = t&{f[)A. Estimate-Random] WheTe A, enumerates all rando-

mized algorithms.

Proof. Let B = A;. To show the asymptotic bound, it suffices to consider
|z| > i. Then A; is executed by Opt. Since Estimate-Random does not
use z, Lemma 3.2 implies that for any z, Proegi[Test(v, Estimate-Random,
A;,T,z,d") = 0] is less than 2e. Therefore, for every z, the algorithm Opt
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stops in time polynomial in n, d, and the median time t4,(z,d’) with
probability at least % — 2e. (I

Theorem 4.1. Let us Ao, enumerate all randomized algorithms. Con-
sider the algorithm Rop(z,d) that executes three parallel copies of Opt[Aa,
Estimate-Random|(z, 3d) run in parallel; the parallel execution is stopped
as soon as one of the copies accepts or rejects. Then Rop is optimal ran-
domized heuristic algorithm for (Im f,U).

Proof. By theorem 3.1 algorithm Rop is a heuristic randomized algo-
rithm for (Im f,U). With probability at least % at least one of three
parallel executions of Opt[A,, Estimate-Random](z, 3d) stops in at most

(1/4) (1/4)

tOpt[A.Estimate—Random] (iU, 3d) steps, and tOpt[A.Estimate—Random] = tROpt'

By Lemma 4.2, for any randomized heuristic algorithm B for the problem
. . 1/4

(Im f,U) the following is satisfied: tg > tggt[h.’Estimate_Random], therefore

tg tROpt' O

§5. AN OPTIMAL DETERMINISTIC HEURISTIC ALGORITHM

To complete the construction of an optimal randomized deterministic
algorithm we need a deterministic estimator. In contrast to the randomized
case, we cannot generate truly random inputs for AST. Thus we replace
them by pseudorandom inputs. In order to make this derandomization, we
use the following result by Goldreich and Wigderson.

Theorem 5.1 ([4]). There exists a positive constant v such that for all
integer n and for all § > 277" there exists a family of functions Fs ,, each
mapping {0,1}" to itself, satisfying the following properties.

e Succinctness: there exists a bijection between {0,111 and Fsns
where 1(0) = O(log }). Let ¢o.n denote the function from Fsp, cor-
responding to a € {0, 1}1(‘5). This property means that the number
of functions in the family Fs , is polynomial in %.

o Efficient evaluation: there exists a logspace algorithm that takes
two inputs: a € {0,111 a string x € {0,1}" and returns o ().

o Mizing property: for every two subsets A, B C {0,1}" there exists
FaBsn C Fsn such that |Fa penl = (1 — 0)|Fsnl and for every
function ¢ € FaBsn:

Pr [z € AN (x) € B] - p(A)p(B)| <9,

z—U,
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where p(S) = % denotes the density of the set S.

Corollary 5.1. In terms of Theorem 5.1, for every two subsets A, B C
{0,137,

P c AN € B — p(A)p(B)| < 26.
%UmgU(ﬂ‘")[w ¢(x) € B] — p(A)p(B)

Proof.
Pr re ANg(z) € B
W_UMWU(H")[ ¢(z) € B]
:Pr[az c AN (b(x) €B | ¢ € .7:,4713,57”] . Pr[qﬁ S .7:,4713,57”]
+Prlx € ANG(x) € B| ¢ & Fa,ponl Prld & Faponl
Mixing property implies that the last quantity can be bounded from above
by p(A4)p(B)+24, and from below by (p(A)p(B)—38)(1-38) > p(A)p(B)—24,
since p(A)p(B) < 1. O

We now describe a (deterministic) estimator for deterministic algo-
rithms. Let F5, be the family of functions from Theorem 5.1.

Algorithm 5.1. Estimate-Deterministic(4,z,g,v,¢,T)
e Let n = |z] and § = €.
o If § < 277", then execute AST(y) for every y € {0,1}", compute
the relative frequency of the answer v and output this number.
e If § > 277" then for every ¢ € Fs,, execute AST (g(¢(z))), com-

pute the relative frequency of the answer v and output this number.
Proposition 5.1. The algorithm Estimate-Deterministic is an estimator.

Proof. If § < 277", the algorithm Estimate-Deterministic computes the
exact answer, and it has enough time for that, because ¢ is so small.
Otherwise, let B = {y € {0,1}" | AST(g(y)) = v}. Let

Cr={rc 0", Pr [6)cB]>p(B)+c),

and let

C. ={ze{0,1}"| wﬁ%n)[‘f’(x) € B] < p(B) — €}

Let p(Cy) > §. Then

Pr [v€CysAg(a) € B> p(C1)(p(B) +€) > p(Ci)p(B) +

7

| N
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which contradicts Corollary 5.1. Therefore, p(C )< 5. Similarly, p(C_)<5.
Thus p(C_UCL) < e O

Theorem 5.2. The algorithm Opt[A., Estimate-Deterministic] is optimal
on the average, where A, enumerates all deterministic algorithms.

Proof. Let A; be a (correct) deterministic heuristic algorithm for (Im f, U).
To show the asymptotic bound, it suffices to consider |z| > i. Then the
algorithm A; is executed by Opt.

To estimate the fraction of the inputs « such that
Test (v, Estimate-Deterministic, A;, T, x, d’) rejects, note that Estimate-De-
terministic does not use randomness. Therefore Lemma 3.2 implies that
this fraction is less than 2e < 2%.

For every other z, the running time of Opt is polynomial in n, d, and
ta,(z,d). O

Remark 5.1. The algorithm constructed in Theorem 5.2 is also an opti-
mal-on-the-average deterministic acceptor for the distributional problem
(Im f,U) as well as for the problem (Im f,U). (We refer the reader to
Section 6 for the precise definitions and statements.)

§6. DETERMINISTIC HEURISTIC ACCEPTORS AND PROOF SYSTEMS

In this section, we give the definitions of deterministic heuristic accep-
tors and automatizable deterministic heuristic proof systems and prove
that they are equivalent in terms of the running time vs proof length.
While this is not difficult to see, it is in contrast with the situation in the
randomized setting where only the equivalence to weakly automatizable
proof systems is proved [5].

Note that [5] considers distributional proving problems, i.e., distribu-
tional problems (L, D) with L Nsupp D = &. In this appendix we use
a natural generalization of these definitions to arbitrary distributions in
order to keep the same notation as in the main part of the paper.

Definition 6.1. A deterministic heuristic acceptor for a distributed prob-
lem (L, D) is a deterministic algorithm A(z,d) such that

e For every x and d, the algorithm A(z,d) either does not stop or
outputs 1 (i.e., accepts).

o Foreveryx € L andd €N, A(z,d) = 1.

e For everyd, Procp, [t ¢ LANA(z,d) =1] < &.
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Proposition 6.1. Let f: {0,1}* — {0,1}* be a polynomial-time com-
putable injective function such that |f(x)| = |z|+ 1. The problem (Im f,U)
has a deterministic heuristic acceptor that is optimal on the average with
respect to f(U). Similarly the problem (Im f,U) has a deterministic heuris-
tic acceptor that is optimal on the average with respect to U(Im f).

Proof. Note that by running a brute-force search in parallel we can trans-
form an acceptor into an algorithm. If we run a brute-force search for a
negative response we transform an algorithm into an acceptor (that does
not err on the language). Then we can apply Theorem 5.2. O

Definition 6.2. A deterministic heuristic proof system for a distributional
problem (L, D) is a deterministic algorithm I (x,w,d) such that
o Il(z,w,d) runs in time (|z|d)°™.
o For every x € L and d € N, there exists w € {0,1}* such that
(z,w,d) = 1. We call such a string w a II'¥-proof of z.
e For every d, Prop, [z ¢ L AJw I(z,w,d) =1] < 5.
If for © ¢ L, there is a string w such that I(z,w,d) = 1, we call w a
fake I1(9)-proof of .
For x € L, we denote by ly(x,d) the length of the shortest II' -proof
of .

Definition 6.3. A deterministic algorithm B(x,d) is an automatization
procedure for a heuristic deterministic proof system Il if for every x € L
and d € N, the algorithm B(x,d) takes time polynomial in |x|, d, and
tri(z,d) and outputs a TI'D -proof. For x ¢ L, the behavior of the algorithm
B is not restricted.

A proof system is automatizable if there is an automatization procedure
for it.

Similarly to the classical case, heuristic deterministic acceptors and
proof systems can be converted into each other. The details follow.

Let A(z,d) be a deterministic heuristic acceptor for a distributed prob-
lem (L, D). The corresponding proof system II4 can be defined as follows:
My(z,17,d) = 1 if A(z,d) accepts in at most T steps. Clearly, II4 is an
automatizable heuristic proof system; the automatization procedure just
simulates A(x,d), computes the number of steps T required for the accep-
tance, and outputs 17. Also ¢y, (z,d) < (ta(z,d) + |z| + d)°W).

Assume now that II is an automatizable proof system for (L, D), and
B is its automatization procedure. The corresponding acceptor Apn(z,d)
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can be defined as follows: simulate B(x,d); if it outputs a proof, accept;
otherwise do not stop.

Since these transformations translate the running time into the proof
length and vice versa, we can avoid going into the details of specific heuris-
tic simulations (similar to > we defined for heuristic algorithms) and prove
a more general statement.

Definition 6.4. Let < be a transitive relation on the set of functions from
L x N to N. We call it a simulation if for every two such functions f,g, if
fx,d) < (g(z,d) + |z| + d)°D then f < g.

Proposition 6.2. Let < be a simulation. Then a distributed problem
(L,D) has an acceptor A with the smallest t4 under < (in the set of
the running time functions for all possible acceptors) iff there is a deter-
ministic heuristic automatizable proof system with the smallest ¢y under
<.

Proof. We use the correspondence described above (A and II4). Assume
that A is an acceptor with the smallest running time t 4. Then I1 4 is a proof
system with the smallest ¢11,. Indeed, consider another proof system II.
The construction of Ap implies that t4,, < . Since t4 is the smallest
running time for acceptors, t4 < ta,. The construction of II4 implies that
l, < ta. By transitivity, {m, < /.

The proof of the converse is similar. O

Corollary 6.1. The distributional problem (Im f,U) has a deterministic
heuristic automatizable proof system Il that is optimal on the average with
respect to f(U) (i.e., its length function fy is the smallest under ).

§7. FURTHER RESEARCH

A natural question is to generalize the construction to suit any (not
necessarily injective) function.

However, a much more challenging question is to construct an optimal
heuristic proof system for (Im f,U) (see [5] and Sec. 6 for the rigorous
definition of a heuristic proof system).
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