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A NEW UPPER BOUND FOR (n,3)-MAX-SAT

ABSTRACT. It is still not known whether the satisfiability problem
(SAT), and hence maximum satisfiability problem (MAX-SAT), can
be solved in time poly(|F|)c™, for ¢ < 2, where c is a constant, n is
the number of variables, and F' is an input formula. However, such
bounds are known for some special cases of these problems where
the clause length, the maximal number of variable occurrences or
the length of the formula is bounded. In this paper, we consider the
(n,3)-MAX-SAT problem — a special case of MAX-SAT where each
variable appears in a formula at most three times. We present a sim-
ple algorithm with running time O*(2"/3). As a byproduct we also
obtain a polynomially solvable subclass that may be of independent
interest.

§1. INTRODUCTION

It is still not known whether the satisfiability problem (SAT), and
hence maximum satisfiability problem (MAX-SAT), can be solved in time
poly(|F|)e™, for ¢ < 2, where ¢ is a constant, n is the number of variables,
and F' is an input formula. Therefore, many restricted versions of these
problems are studied:

e k-SAT and MAX-k-SAT are special cases of SAT and MAX-SAT,
respectively, where each clause of an input formula contains at
most k literals;

e CILin-SAT and ClLin-MAX-SAT take as input formulas contain-
ing at most An clauses, where A is a constant;

e (n,k)-SAT and (n,k)-MAX-SAT take as input formulas where
each variable appears in a formula at most k times.

e Unique k-SAT is a special case of k-SAT where an input formula
has at most one satisfying assignment.

Table 1 summarizes some of the known results for the mentioned prob-
lems (as usual, O*(-) suppresses polynomial factors).

In this note, we focus on (n,3)-MAX-SAT problem. (n,3)-MAX-SAT
is known to be NP-hard [6]. We prove that it can be solved in time
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Table 1. Known results.

problem time reference

k-SAT O*((@ +¢)™) | Moser, Scheder [3]
Unique 3-SAT 0*(1.308™) Hertli [2]

Unique 4-SAT 0*(1.469") | Hertli [2]
MAX-2-SAT O*(1.74™) Williams [10]

ClLin-MAX-SAT O*(c"),c <2 Dantsin, Wolpert [12];
Kulikov, Kutzkov [11]
(n,k)-SAT O*(a™),a <2 | Wahlstrém [13]
(n,3)-MAX-SAT |  0*(1.273") | Kulikov [3]

0*(2%) = 0*(1.25993"). This improves the previously known upper bound
0O*(1.27203™) [5]. We prove an upper bound by the standard splitting tech-
nique. Informally, we show how to reduce any formula with n variables to
two formulas with (n — 3) variables. This implies an upper bound O*(2%).

As a byproduct we also obtain a polynomially solvable subclass that
may be of independent interest. Namely, by finding a maximum matching
in a special graph we are able to solve (n,3)-MAX-SAT for the following
formulas:

e cach variable appears once negatively and twice positively;
e all negative literals occur in unit clauses only.

Example of such a formula is

@)ANGANE)A(xVyV2)AxVy) A(2).

§2. DEFINITIONS AND NOTATION

For a Boolean variable x, we say that x is a positive literal and T is
a negative literal. By [, we denote either x or Z, i.e., [, is a literal of
the variable 2. A complementary literal for a literal [ is . We say that a
literal | is a pure literal in a formula F, if the complementary literal does
not occur in F' (we omit F if it is clear from the context). A clause is a
disjunction of literals. A formula is a conjunction of clauses. We usually
refer to a clause and a formula just as a set of literals and a multiset
of clauses, respectively. Through the rest of the paper we consider only
formulas where each variable appears at most three times. For formulas
F} and F>,, we say that F} is a subformula of Fy if Fi C F, as multisets
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of clauses. F5 is called a closed subformula of Fi, if no variable appears in
both Fl\F2 and FQ.

For simplicity, we denote from now on the Boolean value true by 1 and
false by 0. We allow a formula to contain also a special clause (T') that is
always satisfied and does not depend on any variable (this clause is needed
for counting the number of currently satisfied clauses). For a literal [ and a
formula F, by F[l] we denote a formula resulting from F' by assigning the
value 1 to [. To do this, we first replace each clause containing the literal [
by (T), then remove the literal [ from the remaining clauses. This definition
extends naturally to several literals: e.g., F[l1,l2] = F[l1][l2]. By F[ly = l3]
we denote a formula resulting from F' by replacing all occurrences of [,
and Iy by I; and [y, respectively. The V-neighborhood of a literal I, denoted
by VN(I), is the set of all variables that appear in the same clause with
literal [.

Let Opt(F') be the maximum number of clauses of F' that can be si-
multaneously satisfied. Denote by V(F') the set of all variables appearing
in F. A truth assignment to variables, 7: V(F) — {0,1}, is a function
that assigns every variable of F' a Boolean value true or false. An optimum
assignment for a formula is a truth assignment which satisfies the largest
possible number of clauses of this formula.

§3. ALGORITHM

The algorithm is given below. We analyze its running time in the fol-
lowing section.

Algorithm N3MaxSat
Input: A formula F' in CNF
Output: The maximum number of simultaneously satisfied clauses
Normalizing rules:
N1 Remove all empty clauses
N2 Replace all clauses containing a pair of complementary literals
with (7)
N3 If (F = Fi A F»), where Fy, F5 are closed subformulas,
then return N3MaxSat(F;) + N3MaxSat(F5)
N4 Rename all variables such that for any variable x, Z appears only
once
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Simplification rules:
S1 If (F contains a pure literal 1), then return N3MaxSat(F'[I])
S2If (F=(zVA) ATV B)AF), where A, B are clauses, Fj is a
formula that does not contain z and 7, then return N3MaxSat((A Vv
BYAF) +1
S3 If (F contains a clause (z)), then return N3MaxSat(F[z])
S4If (F=(xVy A@Vy AN(TVA NGV B)AF),

then return N3MaxSat((AV B) A F1) +3
S5If (F=(zVy A(Vy) AEZVAA(yVB)AF),

then return N3MaxSat(F; A A) + 3
S6If (F=(xVy) ANCAF and (I,1, € C) ), where C is a clause,
F} is a formula,

then return N3MaxSat(F[z = y])
Branching rules:
Bl If (F = CAFy) and (7,7 € C)), where C is a clause, Fj is a
formula,

then return max(N3MaxSat(F[z]), N3MaxSat(F'[Z]))
B2 If (F=CAF)) and (Z,y,z € C)), where C is a clause, F] is a
formula,

then return max(N3MaxSat(F[z]), N3MaxSat(F[Z]))
B3 If (F=(yva)AF),

then return max(N3MaxSat(F[z,y]), N3MaxSat([Z, 7]))
Matching:
Comment: F' depends on n variables and contains k (7) clauses
Construct the following graph Gp:
— introduce a vertex for every clause consisting of positive literals
only;
— introduce an edge between two vertices for every variable, if the
corresponding clauses share this variable (G g could be a multigraph).
Find a maximum matching M in the graph Gp, return k& + n + | M|

§4. ANALYSIS

In this section, we first prove that the algorithm is correct and then
prove an upper bound O*(2"/3) on its running time.

4.1. Correctness of normalizing, simplification and branching ru-
les. Correctness of the normalizing rules as well as the first two branching
rules is obvious. Below we prove that all the remaining rules are correct.
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Throughout all the subsection we assume that the formula under consid-
eration is normalized. Recall that in normalized formula negations of all
the variables appear exactly once.

Lemma 4.1 (correctness of S2). If clauses A, B and formula Fy do not
depend on a variable x, then

Opt((zV A) A (V B) A Fy) = Opt((AV B) A Fy) + 1.

Proof. First we prove that Opt((z V A)A(ZV B) AFy) > Opt((AV B) A
Fy) + 1. For any truth assignment 7 that satisfies k& clauses in the formula
(AV B) A Fi we give a truth assignment 7., that satisfies & + 1 clauses
in the formula (z V A) A (TV B) A F1. Thew depends on 7 and the values of
A and B under 7.

Tnew = TU{z =1}
Toew = TU{z =1}
Tnew = T U {z =0}
Toew = TU{z =1}

I
== oo
T w

I

N

_ O = O

The reverse inequality Opt((zVA)A(TVB)AF1) < Opt((AVB)AFy)+1
is easier to show: 7 satisfies k clauses of (zV A) A (TV B) A Fy, so T satisfies
at least k — 1 of (AV B) A F}. O

Lemma 4.2 (correctness of S3). If FF = (z) A G, then Opt(F[z]) >
Opt(F[Z]).

Proof. It is easy to see that by changing the value of z from 0 to 1 in any
truth assignment, we can only increase the number of satisfied clauses, as
we gain the clause (z) for sure and we may lose the clause containing z. O

Lemma 4.3 (correctness of S4). Let
F=@xVvyAN@Vvy AE@TVAANGVB)AF,

where formula F and disjunctions of literals A, B do not depend on vari-
ables x,y. Then Opt(F) = Opt(F1 A (AV B)) + 3.

Proof. It is obvious that Opt(F) < Opt(F; A (A V B)) + 3. Like in
Lemma 4.1, it is enough to consider the same truth assignment for both
formulas.

Now, we show that Opt(F) > Opt(Fy A (A V B)) + 3. For any truth
assignment of formula Fy A (A V B) we construct a truth assignment ey
that satisfies at least three clauses more in the formula F'. 7,6 depends
on the values of A, B under 7.
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A=0,B=0|mmew=7U{z =1,y =0}
A=0,B=1|Tew =7U{z =0,y =1}
A=1,B=0|Tew =7U{z =1,y =0}
A=1,B=1|Tew=7U{z =1,y =0}

Lemma 4.4 (correctness of S5). Let
F=@xVvyAN@Vvy AE@TVAA(yVB)AF,
where Fy does not depend on variables © and y. Then
Opt(F) = Opt(Fy N A) + 3.

Proof. If 7 is a truth assignment satisfying k clauses of Fj, then the truth
assignment 7 U {xz = 1,y = 1} satisfies k + 3 clauses of F. So,

Opt(F) = Opt(Fy A A) + 3.

If Opt(F) > Opt(FyLAA)+3, then there is a truth assignment that satisfies
in F four clauses more than in F} A A. Hence, under this assignment A = 0
and = 0. Now, it is impossible to satisfy (z V y), (x Vg) simultaneously.
A contradiction. O

Lemma 4.5. If F = (ZVy) A F1, then there ezists an optimal assignment
7 such that 7(z) = 7(y).

Proof. It is enough to prove that

Opt(F[z,y]) > Opt(Flz,y]) and  Opt(Flz,y]) > Opt(Fly, z))-
The first claim follows from the the following fact if z = 1, then we can
assign y = 1 due to Lemma 4.2, so Opt(F[z,y]) > Opt(F[z,7]). The
second claim follows from the following if y = 1, then due to S1 we can
assign « = 1, so Opt(F[z,y]) = Opt(F[Z,y]). O

Correctness of B3 follows from the just proved lemma.

Lemma 4.6 (correctness of S6). Let F' = (TVy)ANCAFy andl,, 1, € C.
Then Opt(F[z = y]) = Opt(F). After normalizing, the formula Fz = y]
contains at most 8 occurrences of the variable x.

Proof. Due to Lemma 4.5, it is enough to consider assignments in which
x = y. Replace y with z in the formula F. In the new formula variable
x occurs 6 times. But we can eliminate the clause (z V T) as well as the
clause C or at least one literal from it. O
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4.2. Correctness of the last step. If normalizing, simplifying, and
branching rules are not applicable to F', then any clause containing a
negative literal has length exactly one. Given such a formula F, the al-
gorithm constructs the graph Gr and finds a maximum matching in it.
Note that the number of variables in F' is equal to the number of clauses
with negative literals. Moreover, this number equals also the number of
edges in Gr.

Theorem 4.7. If each variable of a formula F appears once negatively
and twice positively and all negative literals occur in unit clauses, then

Opt(F) = V(Gr) + E(GFr) — p(GFr) = E(GF) + v(GF),

where E(Gr), V(Gr), v(Gr), p(GFr) are correspondingly the number of
edges, the number of vertices, the size of a mazimum matching, the size of
a minimum edge cover in the graph Gp.

Proof. Consider an optimum truth assignment 7 for F. Without loss of
generality suppose that 7 satisfies all clauses with positive literals (oth-
erwise we can flip the value of a variable in an unsatisfied clause with
positive literals without decreasing the number of satisfied clauses). Note
that all the edges labeled by the variables that are set to true by 7 form an
edge cover of Gp. Thus, Opt(F) = V(GFr) + E(Gr) — p(GF). To conclude
the proof we use the following well-known fact: p(Gr) + v(Gr) = V(GF)
(see [7]). O

4.3. Running time. In this subsection, we prove an upper bound on
the running time of the presented algorithm by estimating the number
of variables in two formulas that the algorithm gets after branching. In
all the analysis below we assume that the considered formula is already
normalized and simplified.

Lemma 4.8. In a formula F[z] we can eliminate at least two variables.

Proof. Consider V-neighborhood of z. Note that |V N(z)| > 2, as other-
wise one of the S3, S4, S5, N3 rules would be applicable to F'. Then in
a formula F[z], there are at least two variables that appear at most two
times. They will be eliminated by normalizing and simplifying rules. O

Lemma 4.9. If F = CAF;, and z,y € C, where C is a clause, Fy is a
formula, then in formulas F|x], F[Z] we can eliminate (using normalizing
or simplification rules) two variables.
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Proof. The statement for F[z] follows immediately from Lemma 4.8. Now,
consider F[Z]. If we assign the value 0 to z, then y will be assigned 1 due
to simplifying rules. So, we again get a special case of Lemma 4.8, but
instead of = we are using y. (]

Below in this subsection we assume that B1 is not applicable to a
formula F'.

Lemma 4.10. If F = CAF| and Z,y,z € C, where C is a clause, F} is a
formula, then in formulas F|x], F[Z] we can eliminate (using normalizing
or simplification rules) at least two variables.

Proof. To get the desired result it is enough to see that
2 < min{[VN(z)l, [VN(z)|}.
Then the proof is identical to the proof of Lemma 4.8. (]

Below in this subsection we assume that rules B1 and B2 are not ap-
plicable to a formula F'.

Lemma 4.11. Let F = (Z V y) A F1. Then either at least two variables
are eliminated in F[z] and F[Z] or one variable is eliminated in F[Z] and
four variables in F[z).

Proof. Lemma 4.5 states that there exists an optimum assignment 7 such
that 7(z) = 7(y)
Consider the following cases:

e All clauses containing literals z,y , except (Z V y), have length at
least three. In this case |V N (z)UV N (y)| = 5, because these clauses
contain only positive literals and the total length of these three
clauses is at least 9. So, if z = 1, then y = 1 and we can eliminate
3 additional variables. If = 0, then y = 0, so we eliminate one
variable.

e In the formula there is a clause (zVZz) or (yVZz) and variable z differs
from z,y then it is enough to consider two cases z =y =2z =0 or
x =y =z = 1 (like it was mentioned before). So, in this case we
eliminate 2 variables in formulas F[z], F[z].

e The only remaining case is when in addition to the clause (y V T)
we have a clause ¢ V z or y V z. If x = 1, we eliminate 2 variables
in F[z] due to Lemma 4.8. If z = 0, then y = 0. Hence, due to
simplification rule S3, we have z = 1.
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O
Theorem 4.12. The running time of the algorithm N3MazSat is O* (2% ).

Proof. Denote by T'(n) the worst-case running time of the algorithm for
formulas with n variables. Note that normalizing, simplifying, branching
rules take time polynomial in n (clearly, the length of the formula is linear).
Moreover, if we apply any case of normalizing, simplification rules, then
the number of variables in the resulting formula does not increase and the
length of the formula decreases.

We now consider branching rules. When we apply any branching rule
we get two smaller problems. From Lemmas 4.9, 4.10, and 4.11, we get the
following recurrence relations on the running time

T(n)<T(n—-2)+T(n—>5)+poly(n),
T(n) < 2T (n — 3) + poly(n).

And final stage of our algorithm, construction of a graph Gr and ob-
taining a maximum matching, takes only polynomial time [7].

It is well known that in this case T'(n) = O*(A"), where A is the largest
root of the equations 2® — 2 = 0, 2% — 23 — 1 = 0. The largest root of the
first equation is 1.25993... and it is bigger than 1.23652... which is the
largest root of the second equation. This concludes the proof.

O
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