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FAN, SPLINT, AND BRANCHING RULES

ABSTRACT. Splint of root system for simple Lie algebra appears nat-
urally in studies of (regular) embeddings of reductive subalgebras.
Splint can be used to construct branching rules. We demonstrate
that splint properties implementation drastically simplify calcula-
tions of branching coefficients.

1. INTRODUCTION

Embedding ¢ of a root system A; into a root system A is a bijective
map of roots of Ay to a (proper) subset of A that commutes with vector
composition law in A; and A.

¢ZA1—)A
¢O(a+ﬁ):¢oa+¢oﬂ, Oé,ﬁEAl

Note that the image Im(¢) must not inherit the root system properties
except the addition rules equivalent to the addition rules in A; (for pre-
images). Two embeddings ¢; and ¢o can splinter A when the latter can
be presented as a disjoint union of images Im(¢;) and Im(¢ps). The term
splint was introduced by D. Richter in [1] where the classification of splints
for simple Lie algebras was obtained. There was also mentioned that splint
must have tight connections with the injection fan construction. The fan
I’ C A was introduced in [2] as a subset of root system describing recurrent
properties of branching coefficients for maximal embeddings. Injection fan
is an efficient tool to study branching rules. Later this construction was
generalized to non-maximal embeddings and infinite-dimensional Lie alge-
bras in [3, 4].

In the present paper, we study connections between splint and injec-
tion fan for regular embedding of reductive subalgebras a in simple Lie
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algebra g. We show that (under certain conditions described in section 3)
splint is a natural tool to study reduction properties of g-modules with
respect to a subalgebra a < g. Using this tool we obtain the main result —
the one-to-one correspondence between weight multiplicities in irreducible
modules of splint and branching coefficients for a reduced module Lg la-

2. INJECTIONS AND SPLINTS

Consider a simple Lie algebra g and its regular subalgebra a — g such
that a is a reductive subalgebra a C g with correlated root spaces: b C bg.
Let a® be a semisimple summand of a, this means that a = a®* @ u(1) &
u(l) & .... We shall consider a® to be a proper regular subalgebra and a
to be the maximal subalgebra with a® fixed that is the rank r of a is equal
to that of g.

The following notations are used:

r, (rqs) — the rank of g (resp., a®);

A (A,) - the root system;

AY (resp., A}) — the positive root system (of g and a, respectively);

S, (Sq) — the system of simple roots (of g and a, respectively);

Q;, (a(a)j) the ith (resp., jth) simple root for g (resp., a);

i=0,...,r, (j=0,...,rs);

w; , (w( )]) — the ith (resp., jth) fundamental weight for g (resp., a);

i=0,...,7, (j=0,...,r4s);

W, (W,) — the corresponding Weyl group;

C, (Cy) — the fundamental Weyl chamber;

C, (C’a) — the closure of the fundamental Weyl chamber;

6 (w ( )length( w) |

p, (pa) — the Weyl vector

L#, (L%) — the integrable module of g with the highest weight y;

(resp., integrable a-module with the highest weight v);

NH(NY) - the weight diagram of L* (resp., L%);

P (resp., P,) — the weight lattice;

PT (resp., PJ) - the dominant weight lattice;

E (resp., &) — the formal algebra;

mé”), (méy)) — the multiplicity of the weight £ € P;

(resp., € Pq) in the module L#, (resp., £ € LY);
ch (L#*)(resp., ch (LY)) — the formal character of L* (resp., L%);
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3 6(w)ew°(#+p)—p
ch (L) = ”EWH ==y — the Weyl formula;

acAt
R= 1] (1—-e®)
acAt
(resp., Rq := [] (1 —e %)) — the Weyl denominator.
acAT

Let L* be completely reducible with respect to a,

L= @ WL

VEP;—
mach (L) = > beh (LY). (1)
VEP;—

For the modules we are interested in the Weyl formula for ch (L*) can be
written in terms of singular elements [5]

gl .— Z E(M)ew(uﬂ))*p’
weWw

namely,

g gl

35 = @)
T (0) R

The same is true for submodules ch (L¥) in (1)

ch (L*) =

\Ill(lu) lIIgV)
v©® " R

a

ch (LY) =

with
\Ilg") — Z 6(w)ew(1’+pa)*pn,
weWq
Applying formula (2) to the branching rule (1) we get a relation con-
necting the singular elements ¥*) and ¥ :

Z 6(w)e“’(ﬂ+p)_p Z e(w)ew(""l‘pa)_pﬂ
weWw _ (p) wEWa
- bllﬂ — 9
T - 2 e
(D) g
— () Za
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In [3], it was proven that singular branching coefficients ké“ ) correspond-
ing to the injection a <— g are subject to the set of recurrent relations:

KR = [ ) dim (29 ™) et
3 s(70) (wew/WL ( ) §—v0,ma (w(p+p)—p)

(4)
+ 2 swﬂo)kgia).
’YEFa~g

where a, is the subalgebra determined by the roots of g orthogonal to
roots of a and W is a Weyl group of a

Aq, :={B € Ag|Vh € ba; 5 (h) =0}, (5)

aL:=a; ®bhy a:=adbh, (6)

and 7 is the projection operator. Inside the main Weyl chamber C singular
branching coefficients coincide with branching coefficients: bé“ ) = k’é” ) ve €

Cy. When an injection is maximal the projection becomes trivial and the
relation (4) is simplified:

1
KW = ——— | Y W) rputurny—p + . sOr+0) kL | ()
s(0) \ S T,

The recursion is goverened by the set I';_.4 called the injection fan. The
latter is defined by the carrier set {£} for the coefficient function s(§)

a—g
{&}ag = {€ € Pals(§) # 0}
appearing in the expansion
I[I (Q-e)==> stme™ (8)
acAT\AT YEP,
Now we remind two definitions introduced in [1]

Definition 2.1. Suppose Ay and A are root systems with corresponding
weight lattices Py and P. Then ¢ is an “embedding.”

o:{ By )

if
(a) it injects Ay in A, and
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(b) acts homomorphically with respect to the vector groups in Py and P:

$(7) = p(a) + ¢(B)
for any triple o, 3,y € Py such that v = a + 3.

¢ induces an injection of formal algebras : & — & and for the image
& =Imy (&) one can consider its inverse ¢~ : & — &o.

Notice that one must distinguish two classes of embeddings: when the
scalar product (defined by the Killing form) in the root space P, is invariant
with respect to ¢ and when it is not ¢-invariant. The first embedding is
called “metric,” the second — “nonmetric.”

Definition 2.2. A root system A 7splinters” as (A1, As) if there are two
embeddings ¢1 1 A1 — A and @2 : Ag — A, where (a) A is the disjoint
union of the images of ¢1 and ¢o and (b) neither the rank of Ay nor the
rank of Ao exceeds the rank of A.

It is equivalent to say that (A;, As) is a “splint” of A and we shall
denote this by A ~ (A, As). Each component A; and A, is a “stem” of
the Splint (Al s Az)

To study relations between injection fan technique and splint let us
consider the case when one of the stems A; = A, is a root subsystem.

Splint A &~ (A;, As) is called ”injective” if A; = Ay, is a root subsystem
in A corresponding to a regular reductive subalgebra a — g.

In case of injective splint the second stem Ag := Ay = A\ A, can be
translated into a product (8) and it defines an injection fan I'g.4. Denote
by Ago the coimage of the second embedding ¢ : Agg — Ay. The following
conjecture follows.

Conjecture 2.3. Fach injective splint A =~ (Aq, As) defines an injection
fan with the carrier {£} fized by the product

a—g

H (1 — 6_6) = — Z s(y)e™” (10)

peat ver

In case of injective splint we say that subalgebra a < g splinters A
(and call a the ”splinting subalgebra” of g). In [1] splints are classified (see
Appendix there) and the first three types of them are injective.
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3. HoOw STEMS DEFINE MULTIPLICITY FUNCTIONS

In this section, we study properties of injective splints A ~ (A4, Ag). It
will be demonstrated that under certain conditions to find branching coef-
ficients for a splinting injection a < g means to find weight multiplicities
of an irreducible s-module L? with fixed highest weight v. Notice that s
must not be a subalgebra of g.

Let us return to relation (3) and multiply both sides by R,:

1 v
Ta-en™ = 2 W a

+
BGAQ’ veP,

Here the first factor on the Lh.s. is the inverse of the fan I'y_.;. Consider
the highest weight module L?. The embedding ¢ : A;o — Ay sends the

singular element \I'g") into \IIE;”). Applying the inverse morphism ¢! to

-1
the product ( T - e‘ﬁ)> 1) (\Ilgy)) one gets the character of the

geA?
module LY,
1 1
-1 (v) _ (v) _ v
d) H (1 _6_6)¢(‘P5 ) - H (1—6_6)‘115 _Ch(LE) (12)
geAat gead,

Our task is to find the singular element \Ilgg) for the module L§ as a com-

ponent in \I'é”) and to prove that LE is uniquely defined by L§ and that the
branching coefficients b/ on the r.h.s. of (11) coincide with multiplicities
még) of the corresponding weights in /\/'55 .

For a highest weight irreducible module Lj the singular element \I'E,”)

is an element of £ corresponding to the shifted Weyl-orbit of the weight
(u+p) € PT with the sign function € (w). It is convenient to use also
unshifted singular elements

W) .— gWer, (13)
In these terms the relation (11) looks like

)<1>§;‘> = > el (14)

VEP;—

ePs—Pa
HBeAj'(l —e P
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The orbit related to @g” ) s completely defined by the set of edges

{A\i},_, , adjusted to the end of the highest weight vector u + p. For
u = > m;w; these edges are
A= — (ml + 1) o,

)

i=1,... (15)

,T.

Each formal exponent et P+ in <I>,(3” bears the sign coefficient € = (—).

The defining property of @g“ ) is as follows. Consider any pair of edges

Ai, Aj and the corresponding weights p + p, o+ p + A; and p+ p + A;.
Apply the reflection s, (or sq;),

(1+p) (n+p+N)
$a; 09 (B+tp+X) =4 (utp) (16)
(n+p+2A)) (L+p+ A — (mj + 1)sa, 0 y)

Property 3.1. The edge \;; of @g”) starting at the weight (n+ p+ A;)
along the root —sq; o aj has the same length in (sq, o a;) as A; has in «;.
(The same is true for the edge X;;, its length in (sq; o a;) is equal to the
length of \; in «a;.)

In ") the elements (A= (mit1)sa;005) gy (ntrtds—(mit1)sa;oni)
have the sign coefficient € = (+).

Remember that only three types of splints are injective and thus are
naturally connected with branching. Below we reproduce the part of the
splints table from [1] corresponding to injective splints:

type A || Aq | A,
(1) G2 Ag A2
Fy Dy Dy

) B (r > 2) D, oA,
(x) Co(r>3) @ A, D,

(i) 4Lr=2) [ A ould)| o4
32 Al Du (1) A2

Each row in the table gives a splint (Aq, Ag) of the simple root system
A. In the first two types both A, and Ag are embedded metrically. Stems
in the first type splints are equivalent and in the second are not. In the
third type splints only A, is embedded metrically. The summands u (1)
are added to keep r, = r. This does not change the principle properties
of branching but makes it possible to use the multiplicities of s-modules
without further projecting their weights. The second injective splint of
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type (ii) (marked by a star) does not generate a unique auxiliary s-module
and in this case branching is related to splint in a more complicated form.
We will not study this case here.

Splints induce a decomposition of the set S = S, U S, with Sc =SNS5,
and S, = SN.S;s. It is easy to check that for any injective splint the subset
S is nonempty. It follows that in the set {A\;},_, . one can always find

simple roots S € A and that the orbit corresponding to @é” ) contains

the edges
Ak = —(mk +1) By (17)

attached to the weight u + p. As far as A, is a root system and for any
pair of simple roots from S, the property 3.1 is fulfilled, the element @é”)
being a singular element for a set of a-modules. Consider 5; € A, whose
coimage in Agg is simple. In Appendix it is shown that for any such g;
there exists a root a; € S such that 8; = a; + B It is easily seen that
the corresponding edge intersects the boundary plane of the fundamental

chamber C, orthogonal to the root ay,
Sa (1 +p —pB1) = sa, (B + p) —PSaBr = 1+ p — PBy, (18)

ptp—sa (k+p)=(m+1)ar=(m+1)3 — (m+1)B%

=pB — psa, B (19)

It follows that p = (m; + 1) and s4, 8 = Br- Now apply the operator sga,
and find that the edge along the root sg, o attached at the weight sg, (u+
p) is also equal to —psg, ;. This means that for the triple of roots 8y, 5
and sg oy in A, the edges A, = —(mp +1) Bk, N = —(my +1) 6, and
Ari = — (my + 1) sg, oy demonstrate the property 3.1. One can continue
this procedure further in the 2-dimensional subspace fixed by the roots g
and f; and find the set of formal exponents that being supplied with the
corresponding sign factors compose the coimage of the singular element of
a module for the subalgebra in s (this subalgebra has rank r = 2).

The same can be proven for any positive root 8; € A that is simple
in Agy and correspondingly for any r = 2 subalgebra in s. The latter
means that to ”find” a singular element of s-module in @g” )it is necessary

to incorporate in it additional formal elements { —ettP~(Mi+1513 € S 1.
This fixes the starting edges of the diagram ¢ (@gﬁ)). As it follows from
the reconstruction procedure the highest weight 1 is totally defined by the
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weight p, they have the same Dynkin numbers:
u = kawk - ﬁ = kaa}k. (20)

The next step is to check whether the image ¢ (@2’7‘)) belongs to Cy and

the set ¢ (@g’j)) \ @g”) | corresponds to the weights in the boundary Cq
(including the subset {—er+r=(mit1)5|3, ¢ S.1). Provided this condition

is fulfiled let us return to relation (14). One can add to @g”) pairs of
formal elements constructed above with the opposite signs: e (w) |w W

and —e (w) | . Attribute the signs € (w) |yew, to the elements whose

weWs C
weights we shall attribute to C'y. The same elements with the opposite signs
are to be referred to the neighboring Weyl chambers of C’C(ll) (the latter
are connected with the main one via simple reflections s,, so the signes
—e (w) |wew, are natural for them). In fact one can repeat the procedure

and find additional singular weights in any Weyl chamber Cém) and in
them additional singular weights always have the signs opposite to that in
)

their nearest neighbors. Thus without changing the element <I>E;”
present it as a sum

one can

0 = 3 e wo (epu\pﬁﬂs) (21)

weWq

where the weight i = > mywk

condition is fulfilled (i.e. ¢ (fbﬁf‘)) c C,) the decomposition (21) provides

was defined above. As far as the second

-1

the possibility to apply the factor < IT - e‘ﬁ)> to each summand
geat

of the singular element @g” ) separately because the sets of weights from

different Weyl summands do not intersect. Taking into account the isomor-

phism ¢ one can see that in the main Weyl chamber C, the set of weights

-1

generated by the factor < IT - e‘ﬁ)> is isomorphic to the weight
peAt

diagram N{' of the s-module L5. Now one can restrict relation (14) to C,

and obtain the main result:
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Property 3.2.
efs

ngAj(l —e P

Any weight with nonzero multiplicity in the r. h. s. is equal to one of
the highest weights in the decomposition. The multiplicity M(‘;)~ of the

weight U € /\/5’7 defines the branching coefficient b,(,“) for the highest weight
v=(u— (- 0):

(q,mpﬁ) = M(ﬁs)ae(uwﬁ(ﬁf?)) =) e (22)

TENE vePF

i
Mieyp-

b

2 —
(n—0(p—7)) —
4. EXAMPLES

Example 4.1. Consider the Lie algebra As = sl(3) and branching of its

irreducible module L[j’f] with respect to the reductive subalgebra A; ®u(1).

The root system A, = A4 g, (1) contains the simple root a; = e; — ez of

As. The singular element \IILB’Q] is decomposed into a sum of splint images of
singular elements of A; ® A;-modules. Branching coefficients bE”Z}
with weight multiplicities of LE%Al—module (see Fig. 1).

coincide

Example 4.2. For the Lie algebra B = so(5) branching of its irreducible
module L2 into modules of a reductive subalgebra A; @ u(1) with the
root system spanned by the first simple root ay; = e; — e3 of Bs. Singular
element of \11[5;2] is decomposed into the sum of splint images of singular
elements of As-modules and branching coefficients coincide with weight

multiplicities of As-module (see Fig. 2).

Example 4.3. Lie algebra G5 has a regular subalgebra As with root sys-

tem A, = A4, containing the G2 long roots. Consider branching of an irre-
ducible module Lg’f] into the Ay-modules. Singular element ¥g, (L2) is
decomposed into the sum of splint images of singular elements W 4, (L[>?])
and the corresp}onding branching coefficients coincide with weight multi-

plicities of LE;’;Q -module (see Fig. 3).

5. CONCLUSIONS

It is explicitly demonstrated that splint presents a very effective tool to
find branching coefficients. In particular the injective splints that have the

property ¢ (<I>§°>) C Céo) provide the possibility to reduce branching rules
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,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1. Weyl group orbit (dotted) producing singular el-

ement of Lg’f} and its decomposition into the sum of

splint images of singular elements of modules Lf% A

(dashed). Weight multiplicities of Lf% 4, -module coin-

cide with branching coefficients for the reduction
(3,2]
AglAl@u(l)'

calculations for the highest weight modules to a determination of weight
multiplicities for a module with the same Dynkin labels referred to the Lie
algebra s. This algebra s must not be a subalgebra in the initial g , it has
the same rank rs = r , but in obviously less “complicated” than g — only
a subset of the initial root system is involved in the second stem A;.

It is significant that for the injections D, < B, and A,_1 ® u (1) —
A, the splint technique shows transparently Gelfand—Tzeytlin rules for
branching: the reduction is multiplicity free (all nonzero branching coeffi-
cients are equal to 1). Here it is an immediate consequence of the structure
of the second stem being a direct sum of A; algebras and the fact that the
corresponding module L¥ is irreducible.

The authors are grateful to Prof. David Richter for his important notes.

APPENDIX

Let us demonstrate that for injective splints of classical Lie algebras the
following property is valid:



FAN, SPLINT, AND BRANCHING RULES

173

4 RN N LI ) B
1 1 1
. . . . .
1 2 3 2 1
2 . . . . . . ) 4
1 2 4 4 4 2 1
. . . . . . . . .
1 2 4 5 6 s 4 2 1
0t . . . . . . . . o i
1 3 4 6 6 6 4 3 1
. . . . . . . . .
1 2 4 5 6 s 4 2 1
ok . . . . . . . 4
1 2 4 4 4 2 1
Ly . . . . . i
1 2 3 2 1
_alb . . . 4
1 1 1
6L 4
. . P i . .
-6 -4 -2 0 2 4
T T = — T T
4 m— e —— g q
v 1 T
, I
. . .
e 1 2 2 1‘+
7 I
7
2 7 . . . . . T
e 1 2 3 2 11
, I
p 1 2 3 3 2 1
7 —1!
ofF 7 . . . . S -
i 1 2 2 2 1 S -1
|
|
I e o o e |
| 1 1 1 1 |
I // I
|
Cap ! L .
i .
, |
-1l 1,7 !
S ’
-1 Pt
| /
/
_al I / 1
I y
I -
i S
I s
| s
/
—6F ! / 4
N /
N .
S
Il Il \l Il -1 Il Il
-6 -4 -2 0 2 4

Fig. 2. Weights of the Bs-module L3l are indicated by
dots in the upper picture (their multiplicities are also in-
dicated). Contour of the singular element is shown by dot-
ted line. The lower picture presents the decomposition of
Vg, (Lgf])—singular element into the sum of splint images

of singular elements ¥ 4,(L*?) (dashed). Weight multi-

plicities of LE;Q]—module coincide with branching coeffi-

cients for the reduction L[;;?Al@u(l)-
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Fig. 3. Weyl group orbit (dotted) for the singular el-
ement ¥q, (L32) and its decomposition into the sum
of splint images of singular elements of As-modules

(dashed). Weight multiplicities of L[j’f]—module coincide

with branching coefficients for the reduction L[C%jl] Ay

Property 5.1. Let A ~ (Aq, As) be an injective splint with the decompo-
sition of simple roots S = S, U Sy with S =S NS, and Sy =S NSs. For
any simple root § € S there exists the pair of roots (o, §') with a € S,
B €8S, such thata = — 3.

Thus for any simple root 8 € S, there exists the pair of roots (a, §')
with a € S, 8/ € S; such that o = 3 — '
e Type (i). Ag, ~ (Aa,,A4,).
Here both stems are metric and the corresponding root systems are equiv-
alent. In Fig. 4, a part of the singular element @g); is presented. The
boundaries of C, are the dashed lines starting at the center of the sin-
gular element. It contains the edge Ao = —as = —f; and the roots
—fB1 = —Sa, 0 f3 and —f5 (B3 is indicated as ;). For the root 5; the
necessary pair is (ai,B2): a1 = B1 — B2. The A5 3 = 3 edge is equal to
! = f1 = Sa, © f3 and my index is aquired by the s-module that also
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Ps

Pa

07\ I I I I =\7

-2 -1 0 1 2 3 4

Fig. 4. Positive roots of G» and formation of singular el-

ement <1>§°> in the main Weyl chamber of a = A,.

inherit the second index ms. In this particular case they are m; = mo = 0.
The general case with the initial module L* and p = myw; + mows can
be treated in the same way: one finds an edge As = — (my + 1) 82 and put
Xj = —(my + 1) By, its end belongs to the boundary C,. The reflection
sp, sends 31 to B3 and the corresponding edge A3 3 = — (my + 1) B3 has
the length (m; + 1). Now consider A} (or A3 3) and Af 5 (or A 5 ;) edges
to find that they belong to the boundary C, and the Weyl symmetry
predicts that Af 3 = — (m2 +1) 83 (A5 3, = — (ma +1)41) . Finally the
edge A\ 35, = — (m1 + 1) B2 closes the polytope. Its vertices correspond to
weights of the singular element ) = S e (w) ew°Ftee) of the module
weW,
Lg’j) with i = myw1 +mows. Notice that in this case the sign factors can be
obtained directly in the initial weight system as far as the stem is metric.

[ Type (1) AF4 ~ (AD4,AD4).
Both stems are metric here and the corresponding root systems are
equivalent. The system Ap, of the subalgebra a =D, is formed by the
set {te; £+ ej}\i,j:l,...él it The simple roots S, are {e2 — e3,e3 — e} and

S, = {64,%(61 — e —e3 764)}. For a module L* with p = Y myuwy

)
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consider the edge A3 = — (m3 + 1)es = — (m3 + 1) 83. Compose an edge
AS = — (Mo + 1) B2. The necessary pair of roots is (as = e3 — e4, 83). The
intersection of A\§ with the as-boundary of Cy fixes its length to be A\§ =
— (m2 + 1) B2 and the length of the edge A3 , is equal to that of A3. Next
consider the edge AS = — (m2 4 1) 2 and the pair (ay = es — e3, 81 = ea).
The length of A] becomes equal to X\j = — (my + 1) 81. Proceed further
till the closure of the polytope. The edges looking along the roots of the
1

ay-type, ag = B4 = 5 (e1 — e2 — e3 — eq), are treated similarly and finally

the singular element a0 = S e (w) ewFtes) for the module L% with
weWs

o= mywy, is formed in Cj.

e Type (ii). Ap,. = (Ap,,Agra,)-

Both stems are metric. An injection is fixed by the stem Ap, simple
roots Sq = {e1 —ea,ea —e3,...,6,-1 —€p,€,—1 + €, }. The second stem
corresponds to a direct sum of algebras A; with the simple roots S, =
{e1,ea,...,e._1,e.}. Consider the edge A\, = — (m, + 1) 3, (here 5, =e;)
and A\,_1 = — (m,—1 + 1) 8,—1 attached to it (here 8,_1 = e,_1). The cor-
responding pair is (@,—1 = e,_1 — €, B,—1 = €,_1). The intersection con-
dition fixes the second edge to be A,—1 = — (m,—1 + 1) 8,1 , it is orthog-
onal to f3, so the opposite edge has the same length. The Dynkin index
m,_1 now refers also to the simple root §,_1. Next consider the obtained
edge \p—1 = — (Myp—1 + 1) By and N2 = — (My—2 + 1) Br—2 to fix the

index Mmy_s = m,_s and the edge A\._o = — (my_2 + 1)_BT_2 and so on

till all the pairs of edges are properly fixed. Finally in Cp, the element

@gr)Al = Y e(w) ew(At2 2 et) can be constructed for the module
weWEB’"A1

LééLT)Al with g = ka%ek.

[ ACT ~ (A@TAI’ADT)-
The situation in this case is analogous to the previous one and the
additional edges are constructed similarly. However in this case the prop-
erty ¢ (@ﬁo)) C CC(‘O) is violated. The set ¢ <I>§O) contains weights in

several bordering Weyl chambers C,. The decomposition (21) cannot be
performed. The injective splint Ac, ~ (Agra,,Ap,) does not induce the
property (22).

e Type (111) AAr ~ (AArfl@'Ud?A@rAl)'
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Here only the first stem is metric and it fixes the injection with sim-

ple roots Sy = {e1 —ea,e2 —e3,...,e,_1 —e,}. The second stem corre-
sponding to a direct sum of r copies of A; has the simple roots Ss =
{e1—€rt1,62—€r41, .oy € — €41 }. Consider the edge A\, = — (m, + 1) 5,
with 57’ = €r—€ryq1 and A,y = — (T?L,,,,l + ]-) 57’71 with 57’71 =€r—17€r41

attached to it. Then the corresponding pair is (a,.—1 = €,_1 — €5, Bp_1 =
er—1 — er41). The intersection with the boundary of 5,4,_1 orthogonal to
a—1 fixes the second edge to be A._1 = — (my—1 + 1) B,—1. The Dynkin
index m,_y is to be used for the fundamental weight w,_;. The reflec-
tion sg, sends A\,_1 = — (mp_1 + 1) Br_1 t0 Appo1 = — (Mp_1 + 1) Br_1.
Next consider the obtained edge A,—1 = — (m,—1 +1)8,—1 and A\,_o =
— (Myp—g 4+ 1) Br_o with 8,_2 = €,_9 — e,41 to obtain the index m,_o =
my—_o and the edge Ao = — (m,—_2 + 1) B,_2 and so on till all the pairs
of edges are properly fixed. Finally in C'p, the element

@é;i)Al = Z e(w)e

weWgra,

wo(i+p)

can be constructed for the module Lg3A1 with z = >~ myS. The simplest

case A, ~ (A4 ouy> A4, @4,) is presented in Example 4.1 and Figure 1.

e Type (iii). Ap, ~ (Aa,,A4,).

This splint is illustrated in Example 4.2 and Figure 2, S4, = {e1 — ea},
Sa, = {e1,e2}. The edge Ao, = Ag, = — (ma + 1) f3 is followed by Ag, =
— (m1 + 1) B1. Consider the pair (a3 = e; — es,081 = e1). The end of the
edge A3, must indicate a weight invariant under the reflexion s, . Its length
is thus fixed: A\g, = — (my + 1) £1. In the coimage of the second stem, that
is in the root system A 4,, the reflection sg, sends Ag, = — (m1 + 1) 51 to
A2,3, thus the latter edge has the same length in 3 = e; + e3, we have
Aoz = —(m1 +1)f8; with 83 = e; + e3. The irreducible s-module has
the highest weight @ = miw; + mows. In Figure 2 we see the details of
these relations in a particular case where L[gf1 is reduced to a subalgebra
A1 @u (1) and the corresponding highest weights (with their multiplicities)
form the diagram /\/'Ef].
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