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FAN, SPLINT, AND BRANCHING RULES 163algebra g. We show that (under ertain onditions desribed in setion 3)splint is a natural tool to study redution properties of g-modules withrespet to a subalgebra a ,→ g. Using this tool we obtain the main result {the one-to-one orrespondene between weight multipliities in irreduiblemodules of splint and branhing oeÆients for a redued module L�
g↓a

.2. Injetions and splintsConsider a simple Lie algebra g and its regular subalgebra a ,→ g suhthat a is a redutive subalgebra a ⊂ g with orrelated root spaes: h∗a ⊂ h∗g.Let as be a semisimple summand of a, this means that a = as ⊕ u(1) ⊕
u(1) ⊕ : : : . We shall onsider as to be a proper regular subalgebra and ato be the maximal subalgebra with as �xed that is the rank r of a is equalto that of g.The following notations are used:r, (ras) { the rank of g (resp:; as);� (�a) { the root system;�+ (resp:; �+

a ) { the positive root system (of g and a, respetively);S, (Sa) { the system of simple roots (of g and a, respetively);�i, (�(a)j) { the ith (resp., jth) simple root for g (resp:; a);i = 0; : : : ; r, (j = 0; : : : ; raS );!i , (!(a)j) { the ith (resp., jth) fundamental weight for g (resp:; a);i = 0; : : : ; r, (j = 0; : : : ; raS );W , (Wa) { the orresponding Weyl group;C, (Ca) { the fundamental Weyl hamber;C , (Ca

) { the losure of the fundamental Weyl hamber;� (w) := (−1)length(w);�, (�a) { the Weyl vetor;L�, (L�a) { the integrable module of g with the highest weight �;(resp., integrable a-module with the highest weight �);
N�, (N �

a ) { the weight diagram of L� (resp., L�a);P (resp., Pa) { the weight lattie;P+ (resp., P+
a ) { the dominant weight lattie;

E (resp., Ea) { the formal algebra;m(�)� , (m(�)� ) { the multipliity of the weight � ∈ P ;(resp:; ∈ Pa) in the module L�, (resp., � ∈ L�a);h (L�)(resp., h (L�a)) { the formal harater of L� (resp., L�a);



164 V. D. LYAKHOVSKY, A. A. NAZAROVh (L�) = ∑w∈W �(w)ew◦(�+�)−�
∏�∈�+(1−e−�) { the Weyl formula;R := ∏�∈�+ (1− e−�)(resp., Ra := ∏�∈�+

a

(1− e−�)) { the Weyl denominator.Let L� be ompletely reduible with respet to a,L�
g↓a

= ⊕�∈P+
a

b(�)� L�a:�ah (L�) = ∑�∈P+
a

b(�)� h (L�a) : (1)For the modules we are interested in the Weyl formula for h (L�) an bewritten in terms of singular elements [5℄	(�) := ∑w∈W �(w)ew(�+�)−�;namely, h (L�) = 	(�)	(0) = 	(�)R : (2)The same is true for submodules h (L�a) in (1)h (L�a) = 	(�)
a	(0)
a

= 	(�)
aRa

;with 	(�)
a := ∑w∈Wa

�(w)ew(�+�a
)−�

a :Applying formula (2) to the branhing rule (1) we get a relation on-neting the singular elements 	(�) and 	(�)
a :

∑w∈W �(w)ew(�+�)−�
∏�∈�+(1− e−�) = ∑�∈P+

a

b(�)� ∑w∈Wa

�(w)ew(�+�a)−�a

∏�∈�+
a

(1− e−�) ;	(�)R = ∑�∈P+
a

b(�)� 	(�)
aRa

: (3)



FAN, SPLINT, AND BRANCHING RULES 165In [3℄, it was proven that singular branhing oeÆients k(�)� orrespond-ing to the injetion a ,→ g are subjet to the set of reurrent relations:k(�)� = − 1s(0) ( ∑u∈W=W⊥

�(u) dim(L�a⊥
(u)

a⊥

) Æ�−0;�ã(u(�+�)−�)+ ∑∈�ã→g

s ( + 0) k(�)�+) : (4)where a⊥ is the subalgebra determined by the roots of g orthogonal toroots of a and W⊥ is a Weyl group of a⊥�a⊥
:= {� ∈ �g|∀h ∈ ha;� (h) = 0} ; (5)

ã⊥ := a⊥ ⊕ h⊥ ã := a ⊕ h⊥ (6)and � is the projetion operator. Inside the main Weyl hamber Ca singularbranhing oeÆients oinide with branhing oeÆients: b(�)� = k(�)� ∀� ∈Ca. When an injetion is maximal the projetion beomes trivial and therelation (4) is simpli�ed:k(�)� = −
1s (0) (∑u∈W �(u)Æ�−0;u(�+�)−� + ∑∈�a→g

s ( + 0) k(�)�+ : (7)The reursion is goverened by the set �a→g alled the injetion fan. Thelatter is de�ned by the arrier set {�}
a→g

for the oeÆient funtion s(�)
{�}

a→g
:= {� ∈ Pa|s(�) 6= 0}appearing in the expansion

∏�∈�+\�+
a

(1− e−�) = −
∑∈Pa

s()e− ; (8)Now we remind two de�nitions introdued in [1℄De�nition 2.1. Suppose �0 and � are root systems with orrespondingweight latties P0 and P . Then � is an \embedding."� : { �0 ,→ �;P0 ,→ P (9)if(a) it injets �0 in �, and



166 V. D. LYAKHOVSKY, A. A. NAZAROV(b) ats homomorphially with respet to the vetor groups in P0 and P :�() = �(�) + �(�)for any triple �; �;  ∈ P0 suh that  = �+ �.� indues an injetion of formal algebras : E0 ,→ E and for the image
Ei = Im� (E0) one an onsider its inverse �−1 : Ei −→ E0.Notie that one must distinguish two lasses of embeddings: when thesalar produt (de�ned by the Killing form) in the root spae P0 is invariantwith respet to � and when it is not �-invariant. The �rst embedding isalled \metri," the seond { \nonmetri."De�nition 2.2. A root system � "splinters" as (�1;�2) if there are twoembeddings �1 : �1 ,→ � and �2 : �2 ,→ �, where (a) � is the disjointunion of the images of �1 and �2 and (b) neither the rank of �1 nor therank of �2 exeeds the rank of �.It is equivalent to say that (�1;�2) is a \splint" of � and we shalldenote this by � ≈ (�1;�2). Eah omponent �1 and �2 is a \stem" ofthe splint (�1;�2).To study relations between injetion fan tehnique and splint let usonsider the ase when one of the stems �1 = �a is a root subsystem.Splint � ≈ (�1;�2) is alled "injetive" if �1 = �a, is a root subsystemin � orresponding to a regular redutive subalgebra a ,→ g.In ase of injetive splint the seond stem �s := �2 = � \�a an betranslated into a produt (8) and it de�nes an injetion fan �a,→g. Denoteby �s0 the oimage of the seond embedding � : �s0 → �g. The followingonjeture follows.Conjeture 2.3. Eah injetive splint � ≈ (�a;�s) de�nes an injetionfan with the arrier {�}

a→g
�xed by the produt

∏�∈�+
s

(1− e−�) = −
∑∈P s()e− (10)In ase of injetive splint we say that subalgebra a ,→ g splinters �(and all a the "splinting subalgebra" of g). In [1℄ splints are lassi�ed (seeAppendix there) and the �rst three types of them are injetive.



FAN, SPLINT, AND BRANCHING RULES 1673. How stems define multipliity funtionsIn this setion, we study properties of injetive splints � ≈ (�a;�s). Itwill be demonstrated that under ertain onditions to �nd branhing oef-�ients for a splinting injetion a ,→ g means to �nd weight multipliitiesof an irreduible s-module L�s with �xed highest weight �. Notie that smust not be a subalgebra of g.Let us return to relation (3) and multiply both sides by Ra:1∏�∈�+
s

(1− e−�)	(�)
g = ∑�∈P+

a

b(�)� 	(�)
a : (11)Here the �rst fator on the l.h.s. is the inverse of the fan �a→g. Considerthe highest weight module L�s . The embedding � : �s 0 −→ �g sends thesingular element 	(�)

s into 	(�)
g . Applying the inverse morphism �−1 tothe produt ( ∏�∈�+

s

(1− e−�))−1 �(	(�)
s

) one gets the harater of themodule L�s ,�−1 1∏�∈�+
s

(1− e−�)�(	(�)
s

)

 = 1∏�∈�+

s0(1− e−�)	(�)
s = h (L�s ) : (12)Our task is to �nd the singular element 	(�)

s for the module L�s as a om-ponent in 	(�)
g and to prove that L�s is uniquely de�ned by L�g and that thebranhing oeÆients b(�)� on the r.h.s. of (11) oinide with multipliitiesm(�)� of the orresponding weights in N �

s .For a highest weight irreduible module L�g the singular element 	(�)
gis an element of E orresponding to the shifted Weyl-orbit of the weight(�+ �) ∈ P+ with the sign funtion � (w). It is onvenient to use alsounshifted singular elements �(�) := 	(�)e�: (13)In these terms the relation (11) looks likee�g−�a

∏�∈�+
s

(1− e−�)�(�)
g = ∑�∈P+

a

b(�)� �(�)
a : (14)



168 V. D. LYAKHOVSKY, A. A. NAZAROVThe orbit related to �(�)
g is ompletely de�ned by the set of edges{�i}i=1;:::;r adjusted to the end of the highest weight vetor � + �. For� =∑mi!i these edges are�i = − (mi + 1)�i; i = 1; : : : ; r: (15)Eah formal exponent e�+�+�i in �(�)

g bears the sign oeÆient � = (−).The de�ning property of �(�)
g is as follows. Consider any pair of edges�i; �j and the orresponding weights � + �, � + � + �i and � + � + �j .Apply the reetion s�i (or s�j ),s�i ◦ (�+ �)(�+ �+ �i)(�+ �+ �j) =  (�+ �+ �i)(�+ �)(�+ �+ �i − (mj + 1)s�i ◦ �j) (16)Property 3.1. The edge �i;j of �(�)

g starting at the weight (�+ �+ �i)along the root −s�i ◦�j has the same length in (s�i ◦�j) as �j has in �j .(The same is true for the edge �j;i, its length in (s�j ◦ �i) is equal to thelength of �i in �i.)In �(�)
g the elements e(�+�+�i−(mj+1)s�i◦�j) and e(�+�+�j−(mi+1)s�j ◦�i)have the sign oeÆient � = (+).Remember that only three types of splints are injetive and thus arenaturally onneted with branhing. Below we reprodue the part of thesplints table from [1℄ orresponding to injetive splints:type � �a �s(i) G2 A2 A2F4 D4 D4(ii) Br(r ≥ 2) Dr ⊕rA1(∗) Cr(r ≥ 3) ⊕rA1 Dr(iii) Ar(r ≥ 2) Ar−1 ⊕ u (1) ⊕rA1B2 A1 ⊕ u (1) A2Eah row in the table gives a splint (�a;�s) of the simple root system�. In the �rst two types both �a and �s are embedded metrially. Stemsin the �rst type splints are equivalent and in the seond are not. In thethird type splints only �a is embedded metrially. The summands u (1)are added to keep ra = r. This does not hange the priniple propertiesof branhing but makes it possible to use the multipliities of s-moduleswithout further projeting their weights. The seond injetive splint of



FAN, SPLINT, AND BRANCHING RULES 169type (ii) (marked by a star) does not generate a unique auxiliary s-moduleand in this ase branhing is related to splint in a more ompliated form.We will not study this ase here.Splints indue a deomposition of the set S = Sc ∪Sd with Sc = S ∩Saand Sd = S ∩Ss. It is easy to hek that for any injetive splint the subsetSd is nonempty. It follows that in the set {�i}i=1;:::;r one an always �ndsimple roots �k ∈ �s and that the orbit orresponding to �(�)
g ontainsthe edges �k = − (mk + 1)�k (17)attahed to the weight � + �. As far as �a is a root system and for anypair of simple roots from Sc the property 3.1 is ful�lled, the element �(�)

gbeing a singular element for a set of a-modules. Consider �l ∈ �s whoseoimage in �s0 is simple. In Appendix it is shown that for any suh �lthere exists a root �l ∈ Sc suh that �l = �l + �k. It is easily seen thatthe orresponding edge intersets the boundary plane of the fundamentalhamber Ca orthogonal to the root �l,s�l (�+ �− p�l) = s�l (�+ �)− ps�l�l = �+ �− p�l; (18)�+ �− s�l (�+ �) = (ml + 1)�l = (ml + 1)�l − (ml + 1)�k= p�l − ps�l�l: (19)It follows that p = (ml + 1) and s�l�l = �k. Now apply the operator s�kand �nd that the edge along the root s�k�l attahed at the weight s�k(�+�) is also equal to −ps�k�l. This means that for the triple of roots �k; �land s�k�l in �s the edges �k = − (mk + 1)�k, �l = − (ml + 1)�l and�kl = − (ml + 1) s�k�l demonstrate the property 3.1. One an ontinuethis proedure further in the 2-dimensional subspae �xed by the roots �kand �l and �nd the set of formal exponents that being supplied with theorresponding sign fators ompose the oimage of the singular element ofa module for the subalgebra in s (this subalgebra has rank r = 2).The same an be proven for any positive root �l ∈ � that is simplein �s0 and orrespondingly for any r = 2 subalgebra in s. The lattermeans that to "�nd" a singular element of s-module in �(�)
g it is neessaryto inorporate in it additional formal elements {−e�+�−(ml+1)�l |�l ∈ Sc

} :This �xes the starting edges of the diagram �(�(�̃)
s

). As it follows fromthe reonstrution proedure the highest weight �̃ is totally de�ned by the



170 V. D. LYAKHOVSKY, A. A. NAZAROVweight �, they have the same Dynkin numbers:� =∑mk!k =⇒ �̃ =∑mk!̃k: (20)The next step is to hek whether the image �(�(�̃)
s

) belongs to �Ca andthe set �(�(�̃)
s

)
\ �(�)

g | �Ca
orresponds to the weights in the boundary �Ca(inluding the subset {−e�+�−(ml+1)�l |�l ∈ Sc

}). Provided this onditionis ful�led let us return to relation (14). One an add to �(�)
g pairs offormal elements onstruted above with the opposite signs: � (w) ∣∣w∈Wsand −� (w) ∣∣w∈Ws

. Attribute the signs � (w) |w∈Ws
to the elements whoseweights we shall attribute to Ca. The same elements with the opposite signsare to be referred to the neighboring Weyl hambers of C(l)

a (the latterare onneted with the main one via simple reetions s�l so the signes
−� (w) |w∈Ws

are natural for them). In fat one an repeat the proedureand �nd additional singular weights in any Weyl hamber C(m)
a and inthem additional singular weights always have the signs opposite to that intheir nearest neighbors. Thus without hanging the element �(�)
g one anpresent it as a sum �(�)

g = ∑w∈Wa

� (w)w ◦
(e�a	�̃+�s

) (21)where the weight �̃ = ∑mk!ks was de�ned above. As far as the seondondition is ful�lled (i.e. �(�(�̃)
s

)
⊂ �Ca) the deomposition (21) providesthe possibility to apply the fator ( ∏�∈�+

s

(1− e−�))−1 to eah summandof the singular element �(�)
g separately beause the sets of weights fromdi�erent Weyl summands do not interset. Taking into aount the isomor-phism � one an see that in the main Weyl hamber Ca the set of weightsgenerated by the fator ( ∏�∈�+

s

(1− e−�))−1 is isomorphi to the weightdiagram N �̃
s of the s-module L�̃s . Now one an restrit relation (14) to Caand obtain the main result:



FAN, SPLINT, AND BRANCHING RULES 171Property 3.2.e�g

∏�∈�+
s

(1− e−�) (	�̃+�s

) = ∑�̃∈N �̃
s

M �̃(s)�̃e(�−�(�̃−�̃)) = ∑�∈P+
a

b(�)� e� : (22)Any weight with nonzero multipliity in the r. h. s. is equal to one ofthe highest weights in the deomposition. The multipliity M �̃(s)�̃ of theweight �̃ ∈ N �̃
s de�nes the branhing oeÆient b(�)� for the highest weight� = (�− � (�̃− �̃)): b(�)(�−�(�̃−�̃)) =M �̃(s)�̃ :4. ExamplesExample 4.1. Consider the Lie algebra A2 = sl(3) and branhing of itsirreduible module L[3;2℄A2 with respet to the redutive subalgebraA1⊕u(1).The root system �a = �A1⊕u(1) ontains the simple root �1 = e1 − e2 ofA2. The singular element 	[3;2℄

a is deomposed into a sum of splint images ofsingular elements of A1⊕A1-modules. Branhing oeÆients b[3;2℄� oinidewith weight multipliities of L[3;2℄A1⊕A1 -module (see Fig. 1).Example 4.2. For the Lie algebra B2 = so(5) branhing of its irreduiblemodule L[3;2℄ into modules of a redutive subalgebra A1 ⊕ u(1) with theroot system spanned by the �rst simple root �1 = e1 − e2 of B2. Singularelement of 	[3;2℄B2 is deomposed into the sum of splint images of singularelements of A2-modules and branhing oeÆients oinide with weightmultipliities of A2-module (see Fig. 2).Example 4.3. Lie algebra G2 has a regular subalgebra A2 with root sys-tem �a = �A2 ontaining the G2 long roots. Consider branhing of an irre-duible module L[3;2℄G2 into the A2-modules. Singular element 	G2(L[3;2℄) isdeomposed into the sum of splint images of singular elements 	A2(L[3;2℄)and the orresponding branhing oeÆients oinide with weight multi-pliities of L[3;2℄A2 -module (see Fig. 3).5. ConlusionsIt is expliitly demonstrated that splint presents a very e�etive tool to�nd branhing oeÆients. In partiular the injetive splints that have theproperty �(�(0)
s

)
⊂ C(0)

a provide the possibility to redue branhing rules



172 V. D. LYAKHOVSKY, A. A. NAZAROV

Fig. 1. Weyl group orbit (dotted) produing singular el-ement of L[3;2℄A2 and its deomposition into the sum ofsplint images of singular elements of modules L[3;2℄A1⊕A1(dashed). Weight multipliities of L[3;2℄A1⊕A1-module oin-ide with branhing oeÆients for the redutionL[3;2℄A2↓A1⊕u(1).alulations for the highest weight modules to a determination of weightmultipliities for a module with the same Dynkin labels referred to the Liealgebra s. This algebra s must not be a subalgebra in the initial g , it hasthe same rank rs = r , but in obviously less \ompliated" than g { onlya subset of the initial root system is involved in the seond stem �s.It is signi�ant that for the injetions Dr ,→ Br and Ar−1 ⊕ u (1) ,→Ar the splint tehnique shows transparently Gelfand{Tzeytlin rules forbranhing: the redution is multipliity free (all nonzero branhing oeÆ-ients are equal to 1). Here it is an immediate onsequene of the strutureof the seond stem being a diret sum of A1 algebras and the fat that theorresponding module L�s is irreduible.The authors are grateful to Prof. David Rihter for his important notes.AppendixLet us demonstrate that for injetive splints of lassial Lie algebras thefollowing property is valid:
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Fig. 2. Weights of the B2-module L[3;2℄ are indiated bydots in the upper piture (their multipliities are also in-diated). Contour of the singular element is shown by dot-ted line. The lower piture presents the deomposition of	B2(L[3;2℄B2 )-singular element into the sum of splint imagesof singular elements 	A2(L[3;2℄) (dashed). Weight multi-pliities of L[3;2℄A2 -module oinide with branhing oeÆ-ients for the redution L[3;2℄B2↓A1⊕u(1).
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Fig. 3. Weyl group orbit (dotted) for the singular el-ement 	G2(L[3;2℄) and its deomposition into the sumof splint images of singular elements of A2-modules(dashed). Weight multipliities of L[3;2℄A2 -module oinidewith branhing oeÆients for the redution L[3;2℄G2↓A2 .Property 5.1. Let � ≈ (�a;�s) be an injetive splint with the deompo-sition of simple roots S = Sc ∪ Sd with Sc = S ∩ Sa and Sd = S ∩ Ss. Forany simple root � ∈ Ss there exists the pair of roots (�, �′) with � ∈ Sc,�′ ∈ Ss suh that � = � − �′.Thus for any simple root � ∈ Ss there exists the pair of roots (�, �′)with � ∈ Sc, �′ ∈ Ss suh that � = � − �′

• Type (i). �G2 ≈ (�A2 ;�A2).Here both stems are metri and the orresponding root systems are equiv-alent. In Fig. 4, a part of the singular element �(0)G2 is presented. Theboundaries of Ca are the dashed lines starting at the enter of the sin-gular element. It ontains the edge �2 = −�2 = −�2 and the roots
−�1 = −s�2 ◦ �3 and −�3 (�3 is indiated as �l). For the root �1 theneessary pair is (�1; �2): �1 = �1 − �2. The �s2;3 = �3 edge is equal to�s1 = �1 = s�2 ◦ �3 and m1 index is aquired by the s-module that also
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Fig. 4. Positive roots of G2 and formation of singular el-ement �(0)
s in the main Weyl hamber of a = A2.inherit the seond index m2. In this partiular ase they are m1 = m2 = 0.The general ase with the initial module L� and � = m1!1 +m2!2 anbe treated in the same way: one �nds an edge �2 = − (m2 + 1)�2 and put�s1 = − (m1 + 1)�1, its end belongs to the boundary Ca. The reetions�2 sends �1 to �3 and the orresponding edge �s2;3 = − (m1 + 1)�3 hasthe length (m1 + 1). Now onsider �s1 (or �s2;3) and �s1;3 (or �s2;3;1) edgesto �nd that they belong to the boundary Ca and the Weyl symmetrypredits that �s1;3 = − (m2 + 1)�3 (�s2;3;1 = − (m2 + 1)�1) . Finally theedge �s1;3;2 = − (m1 + 1)�2 loses the polytope. Its verties orrespond toweights of the singular element �(�̃)

s = ∑w∈Ws

" (w) ew◦(�̃+�s) of the moduleL(�̃)
s with �̃ = m1!̃1+m2!̃2. Notie that in this ase the sign fators an beobtained diretly in the initial weight system as far as the stem is metri.

• Type (i). �F4 ≈ (�D4 ;�D4).Both stems are metri here and the orresponding root systems areequivalent. The system �D4 of the subalgebra a =D4 is formed by theset {±ei ± ej}|i;j=1;:::4; i 6=j : The simple roots Sc are {e2 − e3; e3 − e4} andSd = {e4; 12 (e1 − e2 − e3 − e4)}. For a module L� with � = ∑mk!k



176 V. D. LYAKHOVSKY, A. A. NAZAROVonsider the edge �3 = − (m3 + 1) e4 = − (m3 + 1)�3. Compose an edge�s2 = − (m̃2 + 1)�2. The neessary pair of roots is (�2 = e3 − e4; �3). Theintersetion of �s2 with the �2-boundary of Ca �xes its length to be �s2 =
− (m2 + 1)�2 and the length of the edge �s3;2 is equal to that of �s2. Nextonsider the edge �s2 = − (m2 + 1)�2 and the pair (�1 = e2 − e3; �1 = e2).The length of �s1 beomes equal to �s1 = − (m1 + 1)�1. Proeed furthertill the losure of the polytope. The edges looking along the roots of the�4-type, �4 = �4 = 12 (e1 − e2 − e3 − e4), are treated similarly and �nallythe singular element �(�̃)

s = ∑w∈Ws

" (w) ew◦(�̃+�s) for the module L(�̃)
s with�̃ =∑mk!̃k is formed in Ca.

• Type (ii). �Br ≈ (�Dr ;�⊕rA1).Both stems are metri. An injetion is �xed by the stem �Dr simpleroots Sa = {e1 − e2; e2 − e3; : : : ; er−1 − er; er−1 + er}. The seond stemorresponds to a diret sum of algebras A1 with the simple roots Ss =
{e1; e2; : : : ; er−1; er}. Consider the edge �r = − (mr + 1)�r (here �r = er)and �r−1 = − (m̃r−1 + 1)�r−1 attahed to it (here �r−1 = er−1). The or-responding pair is (�r−1 = er−1 − er; �r−1 = er−1). The intersetion on-dition �xes the seond edge to be �r−1 = − (mr−1 + 1)�r−1 , it is orthog-onal to �r so the opposite edge has the same length. The Dynkin indexmr−1 now refers also to the simple root �r−1. Next onsider the obtainededge �r−1 = − (mr−1 + 1)�r−1 and �r−2 = − (m̃r−2 + 1)�r−2 to �x theindex m̃r−2 = mr−2 and the edge �r−2 = − (mr−2 + 1)�r−2 and so ontill all the pairs of edges are properly �xed. Finally in CDr the element�(�̃)

⊕rA1 = ∑w∈W⊕rA1 " (w) ew◦(�̃+ 12 ∑ ek) an be onstruted for the moduleL(�̃)
⊕rA1 with �̃ =∑mk 12ek.

• �Cr ≈ (�⊕rA1 ;�Dr ).The situation in this ase is analogous to the previous one and theadditional edges are onstruted similarly. However in this ase the prop-erty �(�(0)
s

)
⊂

�C(0)
a is violated. The set �(�(0)

s

) ontains weights inseveral bordering Weyl hambers Ca. The deomposition (21) annot beperformed. The injetive splint �Cr ≈ (�⊕rA1 ;�Dr ) does not indue theproperty (22).
• Type (iii). �Ar ≈ (�Ar−1⊕u1 ;�⊕rA1).



FAN, SPLINT, AND BRANCHING RULES 177Here only the �rst stem is metri and it �xes the injetion with sim-ple roots Sa = {e1 − e2; e2 − e3; : : : ; er−1 − er}. The seond stem orre-sponding to a diret sum of r opies of A1 has the simple roots Ss =
{e1−er+1; e2−er+1; :::; er − er+1}. Consider the edge �r = − (mr + 1)�rwith �r = er−er+1 and �r−1 = − (m̃r−1 + 1)�r−1 with �r−1 = er−1−er+1attahed to it. Then the orresponding pair is (�r−1 = er−1 − er; �r−1 =er−1 − er+1). The intersetion with the boundary of CAr−1 orthogonal to�r−1 �xes the seond edge to be �r−1 = − (mr−1 + 1)�r−1. The Dynkinindex mr−1 is to be used for the fundamental weight !r−1: The ree-tion s�r sends �r−1 = − (mr−1 + 1)�r−1 to �r;r−1 = − (mr−1 + 1)�r−1:Next onsider the obtained edge �r−1 = − (mr−1 + 1)�r−1 and �r−2 =
− (m̃r−2 + 1)�r−2 with �r−2 = er−2 − er+1 to obtain the index m̃r−2 =mr−2 and the edge �r−2 = − (mr−2 + 1)�r−2 and so on till all the pairsof edges are properly �xed. Finally in CDr the element�(�̃)

⊕rA1 = ∑w∈W⊕rA1 " (w) ew◦(�̃+�̃)an be onstruted for the module L(�̃)
⊕rA1 with �̃ =∑mk�k: The simplestase �A2 ≈ (�A1⊕u1 ;�A1⊕A1) is presented in Example 4.1 and Figure 1.

• Type (iii). �B2 ≈ (�A1 ;�A2).This splint is illustrated in Example 4.2 and Figure 2, SA1 = {e1 − e2},SA2 = {e1; e2}. The edge ��2 = ��2 = − (m2 + 1)�2 is followed by ��1 =
− (m̃1 + 1)�1. Consider the pair (�1 = e1 − e2; �1 = e1). The end of theedge ��1 must indiate a weight invariant under the reexion s�1 . Its lengthis thus �xed: ��1 = − (m1 + 1)�1. In the oimage of the seond stem, thatis in the root system �A2 , the reetion s�2 sends ��1 = − (m1 + 1)�1 to�2;3, thus the latter edge has the same length in �3 = e1 + e3, we have�2;3 = − (m1 + 1)�3 with �3 = e1 + e3. The irreduible s-module hasthe highest weight �̃ = m1!̃1 + m2!̃2. In Figure 2 we see the details ofthese relations in a partiular ase where L[3;2℄B2 is redued to a subalgebraA1⊕u (1) and the orresponding highest weights (with their multipliities)form the diagram N

[3;2℄A2 . Referenes1. D. A. Rihter, Splints of lassial root systems. Arxiv preprint arXiv:0807.0640(2008), 0807.0640,
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