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t. Splint of root system for simple Lie algebra appears nat-urally in studies of (regular) embeddings of redu
tive subalgebras.Splint 
an be used to 
onstru
t bran
hing rules. We demonstratethat splint properties implementation drasti
ally simplify 
al
ula-tions of bran
hing 
oeÆ
ients.1. Introdu
tionEmbedding � of a root system �1 into a root system � is a bije
tivemap of roots of �1 to a (proper) subset of � that 
ommutes with ve
tor
omposition law in �1 and �.� : �1 −→ �� ◦ (�+ �) = � ◦ �+ � ◦ �; �; � ∈ �1Note that the image Im(�) must not inherit the root system propertiesex
ept the addition rules equivalent to the addition rules in �1 (for pre-images). Two embeddings �1 and �2 
an splinter � when the latter 
anbe presented as a disjoint union of images Im(�1) and Im(�2). The termsplint was introdu
ed by D. Ri
hter in [1℄ where the 
lassi�
ation of splintsfor simple Lie algebras was obtained. There was also mentioned that splintmust have tight 
onne
tions with the inje
tion fan 
onstru
tion. The fan� ⊂ � was introdu
ed in [2℄ as a subset of root system des
ribing re
urrentproperties of bran
hing 
oeÆ
ients for maximal embeddings. Inje
tion fanis an eÆ
ient tool to study bran
hing rules. Later this 
onstru
tion wasgeneralized to non-maximal embeddings and in�nite-dimensional Lie alge-bras in [3, 4℄.In the present paper, we study 
onne
tions between splint and inje
-tion fan for regular embedding of redu
tive subalgebras a in simple LieKey words and phrases: Lie algebras, representation theory, root systems, bran
hingrules.The work was supported in part by the RFFI grant N 12-01-00207. A.A.N. thanks theChebyshev Laboratory (Department of Mathemati
s and Me
hani
s, Saint-PetersburgState University) for support under the grant 11.G34.31.0026 of the Government ofRussian Federation. 162



FAN, SPLINT, AND BRANCHING RULES 163algebra g. We show that (under 
ertain 
onditions des
ribed in se
tion 3)splint is a natural tool to study redu
tion properties of g-modules withrespe
t to a subalgebra a ,→ g. Using this tool we obtain the main result {the one-to-one 
orresponden
e between weight multipli
ities in irredu
iblemodules of splint and bran
hing 
oeÆ
ients for a redu
ed module L�
g↓a

.2. Inje
tions and splintsConsider a simple Lie algebra g and its regular subalgebra a ,→ g su
hthat a is a redu
tive subalgebra a ⊂ g with 
orrelated root spa
es: h∗a ⊂ h∗g.Let as be a semisimple summand of a, this means that a = as ⊕ u(1) ⊕
u(1) ⊕ : : : . We shall 
onsider as to be a proper regular subalgebra and ato be the maximal subalgebra with as �xed that is the rank r of a is equalto that of g.The following notations are used:r, (ras) { the rank of g (resp:; as);� (�a) { the root system;�+ (resp:; �+

a ) { the positive root system (of g and a, respe
tively);S, (Sa) { the system of simple roots (of g and a, respe
tively);�i, (�(a)j) { the ith (resp., jth) simple root for g (resp:; a);i = 0; : : : ; r, (j = 0; : : : ; raS );!i , (!(a)j) { the ith (resp., jth) fundamental weight for g (resp:; a);i = 0; : : : ; r, (j = 0; : : : ; raS );W , (Wa) { the 
orresponding Weyl group;C, (Ca) { the fundamental Weyl 
hamber;C , (Ca

) { the 
losure of the fundamental Weyl 
hamber;� (w) := (−1)length(w);�, (�a) { the Weyl ve
tor;L�, (L�a) { the integrable module of g with the highest weight �;(resp., integrable a-module with the highest weight �);
N�, (N �

a ) { the weight diagram of L� (resp., L�a);P (resp., Pa) { the weight latti
e;P+ (resp., P+
a ) { the dominant weight latti
e;

E (resp., Ea) { the formal algebra;m(�)� , (m(�)� ) { the multipli
ity of the weight � ∈ P ;(resp:; ∈ Pa) in the module L�, (resp., � ∈ L�a);
h (L�)(resp., 
h (L�a)) { the formal 
hara
ter of L� (resp., L�a);
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h (L�) = ∑w∈W �(w)ew◦(�+�)−�
∏�∈�+(1−e−�) { the Weyl formula;R := ∏�∈�+ (1− e−�)(resp., Ra := ∏�∈�+

a

(1− e−�)) { the Weyl denominator.Let L� be 
ompletely redu
ible with respe
t to a,L�
g↓a

= ⊕�∈P+
a

b(�)� L�a:�a
h (L�) = ∑�∈P+
a

b(�)� 
h (L�a) : (1)For the modules we are interested in the Weyl formula for 
h (L�) 
an bewritten in terms of singular elements [5℄	(�) := ∑w∈W �(w)ew(�+�)−�;namely, 
h (L�) = 	(�)	(0) = 	(�)R : (2)The same is true for submodules 
h (L�a) in (1)
h (L�a) = 	(�)
a	(0)
a

= 	(�)
aRa

;with 	(�)
a := ∑w∈Wa

�(w)ew(�+�a
)−�

a :Applying formula (2) to the bran
hing rule (1) we get a relation 
on-ne
ting the singular elements 	(�) and 	(�)
a :

∑w∈W �(w)ew(�+�)−�
∏�∈�+(1− e−�) = ∑�∈P+

a

b(�)� ∑w∈Wa

�(w)ew(�+�a)−�a

∏�∈�+
a

(1− e−�) ;	(�)R = ∑�∈P+
a

b(�)� 	(�)
aRa

: (3)



FAN, SPLINT, AND BRANCHING RULES 165In [3℄, it was proven that singular bran
hing 
oeÆ
ients k(�)� 
orrespond-ing to the inje
tion a ,→ g are subje
t to the set of re
urrent relations:k(�)� = − 1s(
0) ( ∑u∈W=W⊥

�(u) dim(L�a⊥
(u)

a⊥

) Æ�−
0;�ã(u(�+�)−�)+ ∑
∈�ã→g

s (
 + 
0) k(�)�+
) : (4)where a⊥ is the subalgebra determined by the roots of g orthogonal toroots of a and W⊥ is a Weyl group of a⊥�a⊥
:= {� ∈ �g|∀h ∈ ha;� (h) = 0} ; (5)

ã⊥ := a⊥ ⊕ h⊥ ã := a ⊕ h⊥ (6)and � is the proje
tion operator. Inside the main Weyl 
hamber Ca singularbran
hing 
oeÆ
ients 
oin
ide with bran
hing 
oeÆ
ients: b(�)� = k(�)� ∀� ∈Ca. When an inje
tion is maximal the proje
tion be
omes trivial and therelation (4) is simpli�ed:k(�)� = −
1s (
0) (∑u∈W �(u)Æ�−
0;u(�+�)−� + ∑
∈�a→g

s (
 + 
0) k(�)�+
 : (7)The re
ursion is goverened by the set �a→g 
alled the inje
tion fan. Thelatter is de�ned by the 
arrier set {�}
a→g

for the 
oeÆ
ient fun
tion s(�)
{�}

a→g
:= {� ∈ Pa|s(�) 6= 0}appearing in the expansion

∏�∈�+\�+
a

(1− e−�) = −
∑
∈Pa

s(
)e−
 ; (8)Now we remind two de�nitions introdu
ed in [1℄De�nition 2.1. Suppose �0 and � are root systems with 
orrespondingweight latti
es P0 and P . Then � is an \embedding."� : { �0 ,→ �;P0 ,→ P (9)if(a) it inje
ts �0 in �, and



166 V. D. LYAKHOVSKY, A. A. NAZAROV(b) a
ts homomorphi
ally with respe
t to the ve
tor groups in P0 and P :�(
) = �(�) + �(�)for any triple �; �; 
 ∈ P0 su
h that 
 = �+ �.� indu
es an inje
tion of formal algebras : E0 ,→ E and for the image
Ei = Im� (E0) one 
an 
onsider its inverse �−1 : Ei −→ E0.Noti
e that one must distinguish two 
lasses of embeddings: when thes
alar produ
t (de�ned by the Killing form) in the root spa
e P0 is invariantwith respe
t to � and when it is not �-invariant. The �rst embedding is
alled \metri
," the se
ond { \nonmetri
."De�nition 2.2. A root system � "splinters" as (�1;�2) if there are twoembeddings �1 : �1 ,→ � and �2 : �2 ,→ �, where (a) � is the disjointunion of the images of �1 and �2 and (b) neither the rank of �1 nor therank of �2 ex
eeds the rank of �.It is equivalent to say that (�1;�2) is a \splint" of � and we shalldenote this by � ≈ (�1;�2). Ea
h 
omponent �1 and �2 is a \stem" ofthe splint (�1;�2).To study relations between inje
tion fan te
hnique and splint let us
onsider the 
ase when one of the stems �1 = �a is a root subsystem.Splint � ≈ (�1;�2) is 
alled "inje
tive" if �1 = �a, is a root subsystemin � 
orresponding to a regular redu
tive subalgebra a ,→ g.In 
ase of inje
tive splint the se
ond stem �s := �2 = � \�a 
an betranslated into a produ
t (8) and it de�nes an inje
tion fan �a,→g. Denoteby �s0 the 
oimage of the se
ond embedding � : �s0 → �g. The following
onje
ture follows.Conje
ture 2.3. Ea
h inje
tive splint � ≈ (�a;�s) de�nes an inje
tionfan with the 
arrier {�}

a→g
�xed by the produ
t

∏�∈�+
s

(1− e−�) = −
∑
∈P s(
)e−
 (10)In 
ase of inje
tive splint we say that subalgebra a ,→ g splinters �(and 
all a the "splinting subalgebra" of g). In [1℄ splints are 
lassi�ed (seeAppendix there) and the �rst three types of them are inje
tive.



FAN, SPLINT, AND BRANCHING RULES 1673. How stems define multipli
ity fun
tionsIn this se
tion, we study properties of inje
tive splints � ≈ (�a;�s). Itwill be demonstrated that under 
ertain 
onditions to �nd bran
hing 
oef-�
ients for a splinting inje
tion a ,→ g means to �nd weight multipli
itiesof an irredu
ible s-module L�s with �xed highest weight �. Noti
e that smust not be a subalgebra of g.Let us return to relation (3) and multiply both sides by Ra:1∏�∈�+
s

(1− e−�)	(�)
g = ∑�∈P+

a

b(�)� 	(�)
a : (11)Here the �rst fa
tor on the l.h.s. is the inverse of the fan �a→g. Considerthe highest weight module L�s . The embedding � : �s 0 −→ �g sends thesingular element 	(�)

s into 	(�)
g . Applying the inverse morphism �−1 tothe produ
t ( ∏�∈�+

s

(1− e−�))−1 �(	(�)
s

) one gets the 
hara
ter of themodule L�s ,�−1 1∏�∈�+
s

(1− e−�)�(	(�)
s

)

 = 1∏�∈�+

s0(1− e−�)	(�)
s = 
h (L�s ) : (12)Our task is to �nd the singular element 	(�)

s for the module L�s as a 
om-ponent in 	(�)
g and to prove that L�s is uniquely de�ned by L�g and that thebran
hing 
oeÆ
ients b(�)� on the r.h.s. of (11) 
oin
ide with multipli
itiesm(�)� of the 
orresponding weights in N �

s .For a highest weight irredu
ible module L�g the singular element 	(�)
gis an element of E 
orresponding to the shifted Weyl-orbit of the weight(�+ �) ∈ P+ with the sign fun
tion � (w). It is 
onvenient to use alsounshifted singular elements �(�) := 	(�)e�: (13)In these terms the relation (11) looks likee�g−�a

∏�∈�+
s

(1− e−�)�(�)
g = ∑�∈P+

a

b(�)� �(�)
a : (14)



168 V. D. LYAKHOVSKY, A. A. NAZAROVThe orbit related to �(�)
g is 
ompletely de�ned by the set of edges{�i}i=1;:::;r adjusted to the end of the highest weight ve
tor � + �. For� =∑mi!i these edges are�i = − (mi + 1)�i; i = 1; : : : ; r: (15)Ea
h formal exponent e�+�+�i in �(�)

g bears the sign 
oeÆ
ient � = (−).The de�ning property of �(�)
g is as follows. Consider any pair of edges�i; �j and the 
orresponding weights � + �, � + � + �i and � + � + �j .Apply the re
e
tion s�i (or s�j ),s�i ◦ (�+ �)(�+ �+ �i)(�+ �+ �j) =  (�+ �+ �i)(�+ �)(�+ �+ �i − (mj + 1)s�i ◦ �j) (16)Property 3.1. The edge �i;j of �(�)

g starting at the weight (�+ �+ �i)along the root −s�i ◦�j has the same length in (s�i ◦�j) as �j has in �j .(The same is true for the edge �j;i, its length in (s�j ◦ �i) is equal to thelength of �i in �i.)In �(�)
g the elements e(�+�+�i−(mj+1)s�i◦�j) and e(�+�+�j−(mi+1)s�j ◦�i)have the sign 
oeÆ
ient � = (+).Remember that only three types of splints are inje
tive and thus arenaturally 
onne
ted with bran
hing. Below we reprodu
e the part of thesplints table from [1℄ 
orresponding to inje
tive splints:type � �a �s(i) G2 A2 A2F4 D4 D4(ii) Br(r ≥ 2) Dr ⊕rA1(∗) Cr(r ≥ 3) ⊕rA1 Dr(iii) Ar(r ≥ 2) Ar−1 ⊕ u (1) ⊕rA1B2 A1 ⊕ u (1) A2Ea
h row in the table gives a splint (�a;�s) of the simple root system�. In the �rst two types both �a and �s are embedded metri
ally. Stemsin the �rst type splints are equivalent and in the se
ond are not. In thethird type splints only �a is embedded metri
ally. The summands u (1)are added to keep ra = r. This does not 
hange the prin
iple propertiesof bran
hing but makes it possible to use the multipli
ities of s-moduleswithout further proje
ting their weights. The se
ond inje
tive splint of



FAN, SPLINT, AND BRANCHING RULES 169type (ii) (marked by a star) does not generate a unique auxiliary s-moduleand in this 
ase bran
hing is related to splint in a more 
ompli
ated form.We will not study this 
ase here.Splints indu
e a de
omposition of the set S = Sc ∪Sd with Sc = S ∩Saand Sd = S ∩Ss. It is easy to 
he
k that for any inje
tive splint the subsetSd is nonempty. It follows that in the set {�i}i=1;:::;r one 
an always �ndsimple roots �k ∈ �s and that the orbit 
orresponding to �(�)
g 
ontainsthe edges �k = − (mk + 1)�k (17)atta
hed to the weight � + �. As far as �a is a root system and for anypair of simple roots from Sc the property 3.1 is ful�lled, the element �(�)

gbeing a singular element for a set of a-modules. Consider �l ∈ �s whose
oimage in �s0 is simple. In Appendix it is shown that for any su
h �lthere exists a root �l ∈ Sc su
h that �l = �l + �k. It is easily seen thatthe 
orresponding edge interse
ts the boundary plane of the fundamental
hamber Ca orthogonal to the root �l,s�l (�+ �− p�l) = s�l (�+ �)− ps�l�l = �+ �− p�l; (18)�+ �− s�l (�+ �) = (ml + 1)�l = (ml + 1)�l − (ml + 1)�k= p�l − ps�l�l: (19)It follows that p = (ml + 1) and s�l�l = �k. Now apply the operator s�kand �nd that the edge along the root s�k�l atta
hed at the weight s�k(�+�) is also equal to −ps�k�l. This means that for the triple of roots �k; �land s�k�l in �s the edges �k = − (mk + 1)�k, �l = − (ml + 1)�l and�kl = − (ml + 1) s�k�l demonstrate the property 3.1. One 
an 
ontinuethis pro
edure further in the 2-dimensional subspa
e �xed by the roots �kand �l and �nd the set of formal exponents that being supplied with the
orresponding sign fa
tors 
ompose the 
oimage of the singular element ofa module for the subalgebra in s (this subalgebra has rank r = 2).The same 
an be proven for any positive root �l ∈ � that is simplein �s0 and 
orrespondingly for any r = 2 subalgebra in s. The lattermeans that to "�nd" a singular element of s-module in �(�)
g it is ne
essaryto in
orporate in it additional formal elements {−e�+�−(ml+1)�l |�l ∈ Sc

} :This �xes the starting edges of the diagram �(�(�̃)
s

). As it follows fromthe re
onstru
tion pro
edure the highest weight �̃ is totally de�ned by the



170 V. D. LYAKHOVSKY, A. A. NAZAROVweight �, they have the same Dynkin numbers:� =∑mk!k =⇒ �̃ =∑mk!̃k: (20)The next step is to 
he
k whether the image �(�(�̃)
s

) belongs to �Ca andthe set �(�(�̃)
s

)
\ �(�)

g | �Ca

orresponds to the weights in the boundary �Ca(in
luding the subset {−e�+�−(ml+1)�l |�l ∈ Sc

}). Provided this 
onditionis ful�led let us return to relation (14). One 
an add to �(�)
g pairs offormal elements 
onstru
ted above with the opposite signs: � (w) ∣∣w∈Wsand −� (w) ∣∣w∈Ws

. Attribute the signs � (w) |w∈Ws
to the elements whoseweights we shall attribute to Ca. The same elements with the opposite signsare to be referred to the neighboring Weyl 
hambers of C(l)

a (the latterare 
onne
ted with the main one via simple re
e
tions s�l so the signes
−� (w) |w∈Ws

are natural for them). In fa
t one 
an repeat the pro
edureand �nd additional singular weights in any Weyl 
hamber C(m)
a and inthem additional singular weights always have the signs opposite to that intheir nearest neighbors. Thus without 
hanging the element �(�)
g one 
anpresent it as a sum �(�)

g = ∑w∈Wa

� (w)w ◦
(e�a	�̃+�s

) (21)where the weight �̃ = ∑mk!ks was de�ned above. As far as the se
ond
ondition is ful�lled (i.e. �(�(�̃)
s

)
⊂ �Ca) the de
omposition (21) providesthe possibility to apply the fa
tor ( ∏�∈�+

s

(1− e−�))−1 to ea
h summandof the singular element �(�)
g separately be
ause the sets of weights fromdi�erent Weyl summands do not interse
t. Taking into a

ount the isomor-phism � one 
an see that in the main Weyl 
hamber Ca the set of weightsgenerated by the fa
tor ( ∏�∈�+

s

(1− e−�))−1 is isomorphi
 to the weightdiagram N �̃
s of the s-module L�̃s . Now one 
an restri
t relation (14) to Caand obtain the main result:
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∏�∈�+
s

(1− e−�) (	�̃+�s

) = ∑�̃∈N �̃
s

M �̃(s)�̃e(�−�(�̃−�̃)) = ∑�∈P+
a

b(�)� e� : (22)Any weight with nonzero multipli
ity in the r. h. s. is equal to one ofthe highest weights in the de
omposition. The multipli
ity M �̃(s)�̃ of theweight �̃ ∈ N �̃
s de�nes the bran
hing 
oeÆ
ient b(�)� for the highest weight� = (�− � (�̃− �̃)): b(�)(�−�(�̃−�̃)) =M �̃(s)�̃ :4. ExamplesExample 4.1. Consider the Lie algebra A2 = sl(3) and bran
hing of itsirredu
ible module L[3;2℄A2 with respe
t to the redu
tive subalgebraA1⊕u(1).The root system �a = �A1⊕u(1) 
ontains the simple root �1 = e1 − e2 ofA2. The singular element 	[3;2℄

a is de
omposed into a sum of splint images ofsingular elements of A1⊕A1-modules. Bran
hing 
oeÆ
ients b[3;2℄� 
oin
idewith weight multipli
ities of L[3;2℄A1⊕A1 -module (see Fig. 1).Example 4.2. For the Lie algebra B2 = so(5) bran
hing of its irredu
iblemodule L[3;2℄ into modules of a redu
tive subalgebra A1 ⊕ u(1) with theroot system spanned by the �rst simple root �1 = e1 − e2 of B2. Singularelement of 	[3;2℄B2 is de
omposed into the sum of splint images of singularelements of A2-modules and bran
hing 
oeÆ
ients 
oin
ide with weightmultipli
ities of A2-module (see Fig. 2).Example 4.3. Lie algebra G2 has a regular subalgebra A2 with root sys-tem �a = �A2 
ontaining the G2 long roots. Consider bran
hing of an irre-du
ible module L[3;2℄G2 into the A2-modules. Singular element 	G2(L[3;2℄) isde
omposed into the sum of splint images of singular elements 	A2(L[3;2℄)and the 
orresponding bran
hing 
oeÆ
ients 
oin
ide with weight multi-pli
ities of L[3;2℄A2 -module (see Fig. 3).5. Con
lusionsIt is expli
itly demonstrated that splint presents a very e�e
tive tool to�nd bran
hing 
oeÆ
ients. In parti
ular the inje
tive splints that have theproperty �(�(0)
s

)
⊂ C(0)

a provide the possibility to redu
e bran
hing rules
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Fig. 1. Weyl group orbit (dotted) produ
ing singular el-ement of L[3;2℄A2 and its de
omposition into the sum ofsplint images of singular elements of modules L[3;2℄A1⊕A1(dashed). Weight multipli
ities of L[3;2℄A1⊕A1-module 
oin-
ide with bran
hing 
oeÆ
ients for the redu
tionL[3;2℄A2↓A1⊕u(1).
al
ulations for the highest weight modules to a determination of weightmultipli
ities for a module with the same Dynkin labels referred to the Liealgebra s. This algebra s must not be a subalgebra in the initial g , it hasthe same rank rs = r , but in obviously less \
ompli
ated" than g { onlya subset of the initial root system is involved in the se
ond stem �s.It is signi�
ant that for the inje
tions Dr ,→ Br and Ar−1 ⊕ u (1) ,→Ar the splint te
hnique shows transparently Gelfand{Tzeytlin rules forbran
hing: the redu
tion is multipli
ity free (all nonzero bran
hing 
oeÆ-
ients are equal to 1). Here it is an immediate 
onsequen
e of the stru
tureof the se
ond stem being a dire
t sum of A1 algebras and the fa
t that the
orresponding module L�s is irredu
ible.The authors are grateful to Prof. David Ri
hter for his important notes.AppendixLet us demonstrate that for inje
tive splints of 
lassi
al Lie algebras thefollowing property is valid:
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Fig. 2. Weights of the B2-module L[3;2℄ are indi
ated bydots in the upper pi
ture (their multipli
ities are also in-di
ated). Contour of the singular element is shown by dot-ted line. The lower pi
ture presents the de
omposition of	B2(L[3;2℄B2 )-singular element into the sum of splint imagesof singular elements 	A2(L[3;2℄) (dashed). Weight multi-pli
ities of L[3;2℄A2 -module 
oin
ide with bran
hing 
oeÆ-
ients for the redu
tion L[3;2℄B2↓A1⊕u(1).



174 V. D. LYAKHOVSKY, A. A. NAZAROV

Fig. 3. Weyl group orbit (dotted) for the singular el-ement 	G2(L[3;2℄) and its de
omposition into the sumof splint images of singular elements of A2-modules(dashed). Weight multipli
ities of L[3;2℄A2 -module 
oin
idewith bran
hing 
oeÆ
ients for the redu
tion L[3;2℄G2↓A2 .Property 5.1. Let � ≈ (�a;�s) be an inje
tive splint with the de
ompo-sition of simple roots S = Sc ∪ Sd with Sc = S ∩ Sa and Sd = S ∩ Ss. Forany simple root � ∈ Ss there exists the pair of roots (�, �′) with � ∈ Sc,�′ ∈ Ss su
h that � = � − �′.Thus for any simple root � ∈ Ss there exists the pair of roots (�, �′)with � ∈ Sc, �′ ∈ Ss su
h that � = � − �′

• Type (i). �G2 ≈ (�A2 ;�A2).Here both stems are metri
 and the 
orresponding root systems are equiv-alent. In Fig. 4, a part of the singular element �(0)G2 is presented. Theboundaries of Ca are the dashed lines starting at the 
enter of the sin-gular element. It 
ontains the edge �2 = −�2 = −�2 and the roots
−�1 = −s�2 ◦ �3 and −�3 (�3 is indi
ated as �l). For the root �1 thene
essary pair is (�1; �2): �1 = �1 − �2. The �s2;3 = �3 edge is equal to�s1 = �1 = s�2 ◦ �3 and m1 index is aquired by the s-module that also
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Fig. 4. Positive roots of G2 and formation of singular el-ement �(0)
s in the main Weyl 
hamber of a = A2.inherit the se
ond index m2. In this parti
ular 
ase they are m1 = m2 = 0.The general 
ase with the initial module L� and � = m1!1 +m2!2 
anbe treated in the same way: one �nds an edge �2 = − (m2 + 1)�2 and put�s1 = − (m1 + 1)�1, its end belongs to the boundary Ca. The re
e
tions�2 sends �1 to �3 and the 
orresponding edge �s2;3 = − (m1 + 1)�3 hasthe length (m1 + 1). Now 
onsider �s1 (or �s2;3) and �s1;3 (or �s2;3;1) edgesto �nd that they belong to the boundary Ca and the Weyl symmetrypredi
ts that �s1;3 = − (m2 + 1)�3 (�s2;3;1 = − (m2 + 1)�1) . Finally theedge �s1;3;2 = − (m1 + 1)�2 
loses the polytope. Its verti
es 
orrespond toweights of the singular element �(�̃)

s = ∑w∈Ws

" (w) ew◦(�̃+�s) of the moduleL(�̃)
s with �̃ = m1!̃1+m2!̃2. Noti
e that in this 
ase the sign fa
tors 
an beobtained dire
tly in the initial weight system as far as the stem is metri
.

• Type (i). �F4 ≈ (�D4 ;�D4).Both stems are metri
 here and the 
orresponding root systems areequivalent. The system �D4 of the subalgebra a =D4 is formed by theset {±ei ± ej}|i;j=1;:::4; i 6=j : The simple roots Sc are {e2 − e3; e3 − e4} andSd = {e4; 12 (e1 − e2 − e3 − e4)}. For a module L� with � = ∑mk!k



176 V. D. LYAKHOVSKY, A. A. NAZAROV
onsider the edge �3 = − (m3 + 1) e4 = − (m3 + 1)�3. Compose an edge�s2 = − (m̃2 + 1)�2. The ne
essary pair of roots is (�2 = e3 − e4; �3). Theinterse
tion of �s2 with the �2-boundary of Ca �xes its length to be �s2 =
− (m2 + 1)�2 and the length of the edge �s3;2 is equal to that of �s2. Next
onsider the edge �s2 = − (m2 + 1)�2 and the pair (�1 = e2 − e3; �1 = e2).The length of �s1 be
omes equal to �s1 = − (m1 + 1)�1. Pro
eed furthertill the 
losure of the polytope. The edges looking along the roots of the�4-type, �4 = �4 = 12 (e1 − e2 − e3 − e4), are treated similarly and �nallythe singular element �(�̃)

s = ∑w∈Ws

" (w) ew◦(�̃+�s) for the module L(�̃)
s with�̃ =∑mk!̃k is formed in Ca.

• Type (ii). �Br ≈ (�Dr ;�⊕rA1).Both stems are metri
. An inje
tion is �xed by the stem �Dr simpleroots Sa = {e1 − e2; e2 − e3; : : : ; er−1 − er; er−1 + er}. The se
ond stem
orresponds to a dire
t sum of algebras A1 with the simple roots Ss =
{e1; e2; : : : ; er−1; er}. Consider the edge �r = − (mr + 1)�r (here �r = er)and �r−1 = − (m̃r−1 + 1)�r−1 atta
hed to it (here �r−1 = er−1). The 
or-responding pair is (�r−1 = er−1 − er; �r−1 = er−1). The interse
tion 
on-dition �xes the se
ond edge to be �r−1 = − (mr−1 + 1)�r−1 , it is orthog-onal to �r so the opposite edge has the same length. The Dynkin indexmr−1 now refers also to the simple root �r−1. Next 
onsider the obtainededge �r−1 = − (mr−1 + 1)�r−1 and �r−2 = − (m̃r−2 + 1)�r−2 to �x theindex m̃r−2 = mr−2 and the edge �r−2 = − (mr−2 + 1)�r−2 and so ontill all the pairs of edges are properly �xed. Finally in CDr the element�(�̃)

⊕rA1 = ∑w∈W⊕rA1 " (w) ew◦(�̃+ 12 ∑ ek) 
an be 
onstru
ted for the moduleL(�̃)
⊕rA1 with �̃ =∑mk 12ek.

• �Cr ≈ (�⊕rA1 ;�Dr ).The situation in this 
ase is analogous to the previous one and theadditional edges are 
onstru
ted similarly. However in this 
ase the prop-erty �(�(0)
s

)
⊂

�C(0)
a is violated. The set �(�(0)

s

) 
ontains weights inseveral bordering Weyl 
hambers Ca. The de
omposition (21) 
annot beperformed. The inje
tive splint �Cr ≈ (�⊕rA1 ;�Dr ) does not indu
e theproperty (22).
• Type (iii). �Ar ≈ (�Ar−1⊕u1 ;�⊕rA1).
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 and it �xes the inje
tion with sim-ple roots Sa = {e1 − e2; e2 − e3; : : : ; er−1 − er}. The se
ond stem 
orre-sponding to a dire
t sum of r 
opies of A1 has the simple roots Ss =
{e1−er+1; e2−er+1; :::; er − er+1}. Consider the edge �r = − (mr + 1)�rwith �r = er−er+1 and �r−1 = − (m̃r−1 + 1)�r−1 with �r−1 = er−1−er+1atta
hed to it. Then the 
orresponding pair is (�r−1 = er−1 − er; �r−1 =er−1 − er+1). The interse
tion with the boundary of CAr−1 orthogonal to�r−1 �xes the se
ond edge to be �r−1 = − (mr−1 + 1)�r−1. The Dynkinindex mr−1 is to be used for the fundamental weight !r−1: The re
e
-tion s�r sends �r−1 = − (mr−1 + 1)�r−1 to �r;r−1 = − (mr−1 + 1)�r−1:Next 
onsider the obtained edge �r−1 = − (mr−1 + 1)�r−1 and �r−2 =
− (m̃r−2 + 1)�r−2 with �r−2 = er−2 − er+1 to obtain the index m̃r−2 =mr−2 and the edge �r−2 = − (mr−2 + 1)�r−2 and so on till all the pairsof edges are properly �xed. Finally in CDr the element�(�̃)

⊕rA1 = ∑w∈W⊕rA1 " (w) ew◦(�̃+�̃)
an be 
onstru
ted for the module L(�̃)
⊕rA1 with �̃ =∑mk�k: The simplest
ase �A2 ≈ (�A1⊕u1 ;�A1⊕A1) is presented in Example 4.1 and Figure 1.

• Type (iii). �B2 ≈ (�A1 ;�A2).This splint is illustrated in Example 4.2 and Figure 2, SA1 = {e1 − e2},SA2 = {e1; e2}. The edge ��2 = ��2 = − (m2 + 1)�2 is followed by ��1 =
− (m̃1 + 1)�1. Consider the pair (�1 = e1 − e2; �1 = e1). The end of theedge ��1 must indi
ate a weight invariant under the re
exion s�1 . Its lengthis thus �xed: ��1 = − (m1 + 1)�1. In the 
oimage of the se
ond stem, thatis in the root system �A2 , the re
e
tion s�2 sends ��1 = − (m1 + 1)�1 to�2;3, thus the latter edge has the same length in �3 = e1 + e3, we have�2;3 = − (m1 + 1)�3 with �3 = e1 + e3. The irredu
ible s-module hasthe highest weight �̃ = m1!̃1 + m2!̃2. In Figure 2 we see the details ofthese relations in a parti
ular 
ase where L[3;2℄B2 is redu
ed to a subalgebraA1⊕u (1) and the 
orresponding highest weights (with their multipli
ities)form the diagram N

[3;2℄A2 . Referen
es1. D. A. Ri
hter, Splints of 
lassi
al root systems. Arxiv preprint arXiv:0807.0640(2008), 0807.0640,
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