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A. V. Kitaev

PARAMETRIC PAINLEVE EQUATIONS

ABSTRACT. The parametric Painlevé equations are those ODEs
whose general solutions can be presented in the parametric form
in terms of the Painlevé functions. Most of these ODEs do not pos-
sess the Painlevé property. By considering similarity solutions of
the short pulse equation and its decoupled generalization we derive
a non-trivial example of the parametric Painlevé equation related
with the third Painlevé equation. We also discuss some analytic
properties of this equation describing the structure of movable sin-
gularities.

1. INTRODUCTION

Many ODEs can be solved explicitly in a parametric form in terms of
elementary or special functions. Many such examples can be found in the
handbook [9]. Since the Painlevé functions gain now the status of special
functions it is reasonable to have some knowledge about the parametric
Painlevé equations, those equations whose general solutions can be pre-
sented in a parametric form in terms of the Painlevé functions.

In this note, I would like to present one nontrivial example of the para-
metric Painlevé equation which is related with the similarity solutions of
the so-called short pulse equation (SPE) [1], known also as the cubic Ra-
belo equation describing the pseudospherical surfaces [11],

Lo s

uzt:u—i—g(u )m, (1)
where, u = u(z,t) and the subscripts denote differentiation with respect
to the corresponding variables. We also consider a parametric Painlevé
equation related with a natural generalization of equation (1). This exam-
ple related with the parametrization of the solutions by the third Painlevé
function P;. Although the corresponding parametric Painlevé equation
is in some sense equivalent to P; it has absolutely different analytic and

Key words and phrases: the Painlevé equations, isomonodromy deformations, Lax
pair, short pulse equation.
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transformation properties and represent an interesting example of the non-
Painlevé equation whose moving singularities of regular type can be stud-
ied in a greater detail comparing to the other ODEs without the hidden
Painlevé structure.

It seems that all such parametric Painlevé equations could be related
with the isomonodromy deformations of ODEs with rational coefficients,
where the deformation parameter is introduced in a “wrong way.” We know
that the canonical (natural) choice of the deformation parameters is: posi-
tions of poles (of the rational coefficients) and parameters defining formal
asymptotic expansions of the general solutions in proper neighborhoods of
the poles. Sometimes it might be needed to consider isomonodromy defor-
mations with respect to parameters chosen in a different (“wrong”) way,
because it is dictated by the original setting of the problem. Clearly, in this
case one can make a change of variables from a given set of parameters
to the canonical one and arrive at the standard situation. This change of
variables is nothing but the parametrization of the system describing the
isomonodromy deformations in terms of the “wrong” parameter(s) into
the canonical (“Painlevé”) ones. The purpose of this note is to consider
an interesting example of such transformation. On this way we arrive at
a non-Painlevé type ODE and a change of variables that maps it to the
third Painlevé equation. This change of variables is not obvious to find by
other direct methods, so that the fact of a relation between the ODEs are
not easy to guess.

One interesting particular class of the parametric Painlevé equations is
considered by Fokas and Yang [3]. As far as I can judge from [3] the original
idea of Yang was to recast the Painlevé transcendents as the functions of
their Hamiltonians, in this case the “old time” considered now as the func-
tion of the canonical variables and Hamiltonian, where the latter treated
as the “new time”, plays the role of the Hamiltonian for new parameter-
ized Painlevé equations. Since we know that the Painlevé Hamiltonians
satisfy nonlinear ODEs, Yang’s idea can be viewed as a “one-variable”
hodograph-type transformation of the latter ODEs for Hamiltonians with
the further substitution of the result to the Painlevé equations. This ap-
proach becomes more fruitful when considering generalization of the above
mentioned idea for the Garnier systems.

At the same time, our general point of view suggests to consider equa-
tions obtained by Fokas and Yang as a very special case of the parametric
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Painlevé equations. One can obtain many other parametric Painlevé equa-
tions even with functional parameters related with a given Painlevé equa-
tion that has nothing to do with the original Hamiltonian interpretation
given in [3]. On the other hand equations obtained in [3] have the simple
form and might have some remarkable analytic properties, so they might
be interesting objects for further studies.

In our paper, we consider a parametric Painlevé equation related with
the third Painlevé equation. In [3], examples related with Ps is not consi-
dered. Our starting point is a relation of our parameterized Painlevé equa-
tion with the similarity solutions of SPE (1), however, some Hamiltonian
structures also appear in our parameterizations.

Let us agree about the notation. Primes as usual are used to denote
differentiation of the functions of one argument. Differentiations of the
functions of several arguments are denoted by corresponding literal sub-
script (without the primes). The numeral subscripts means labels that
serve to distinguish similar but different objects. For this purpose we use
also “hats” ant tildes. All the square roots of the same quantity have an
arbitrary but the same branch.

2. THE SHORT PULSE AND SINE-GGORDON EQUATIONS

In this section, we collected some basic known facts from the theory
of SPE which we need for our construction of the parametric Painlevé
equation.

The zero curvature representation for Equation (1) was found by A. Sa-
kovich and S. Sakovich [10]:

0 0

_ 1 uy N (1w, v (0 —1 o3
U_)\(uz 1), V_T(um 1)+§(1 0)+ﬁ, (3)

where A is the spectral parameter and o3 = ((1) _01) is the Pauli matrix.
This Lax pair immediately suggests an explicit invertible map relating
equation (1) with the sine-Gordon equation,

Vyp = sino. (4)

This fact was established by A. Sakovich and S. Sakovich in [10], see also
[11]. Since the authors of these works used direct methods, we recall the
relation between equations (1) and (4) by presenting an explicit mapping
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of the Wadati-Konno—Ichicawa type [12] pair (2), (3) to the (AKNS-type)
zero curvature representation for the sine-Gordon equation [13],

o0 [ A —uv./2 0 1 (cosv sinv
ax Y= <UX/2 D)% 7 = o e —coso) D O
Looking at the large A asymptotics of the matrices U and V (see
Egs. (3)) it is immediate to notice that the eigenvalues of the matrices

1 u, u? (1 Uy
(uw _1) and 7({@ _1> (6)

should satisfy the following compatibility condition
o} 0 [u?
N 22 (2N 2
VT = g ( 2 +“x) @

Equation (7) is nothing but Eq. (1) written in the form of a conservation
law. This conservation law suggests that we can define new variables X
and T, the reciprocal variables, by the following one-forms:

2
dX = /T + u2dz + %\/l—i—ugdt, (8)

dT = —dt. 9)
The reciprocal conservation law (e.g., see [14]) for (7) reads,

0 1 0 u?
8T1/1+u£ B 0X 2°
where the functions v and u, are treated as the functions of X and T.
In terms of the original variables x and ¢, Eq. (10) is equivalent to the
original SPE (1), however, as we see below, it also produces a useful relation
between equations (1) and (4). Now using variables X and T we define

the following explicit gauge transformation between solutions of the Lax
pairs (2), (3), and (5):

(10)

P(z,t) = RU(X,T),

- _ Uy
poViEVirw ] /12 (11)
- U ’
v/ 21+ u2 14+4/1+u2 1
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where the function v(X,T) in system (5) is given by the following equa-
tions:

1
e COSV = ————=, v, SR N

T+u2 VI+u2 (Vi+uz)®
To invert this transformation one has to find the function u(z, t) in terms of
v(X,T). For this purpose, it is convenient to exploit the reciprocal law (10)
and substitute in the right-hand side the second equation in (12) to find,

sinv =

sinvov, = uu, (13)
Taking into account that

ox Uy
= UI_ =

¥ ox  J/1+u2

Eq. (13) can be rewritten

U =sinv

u(z,t) = v (X, T).

The same equation can be reproduced via a more cumbersome calculation
by differentiating the first equation in (12) with respect to 7.

3. SIMILARITY REDUCTION
It is easy to find similarity reduction of (1),
u(z,t) =w(z)/t, z=uxt, (14)
where the function w(z) is the general solution of the following ODE,
2w =w + é(w3)”. (15)
Introducing a new dependent variable wi; = w1 (z) by the equation w =
V6w," one rewrites equation (15) in the following form,
(w))? — 2wl + 2w} +w; =0, (16)

where the constants of integration are omitted because they can be re-
moved by a linear (with respect to z) shift of wq, which does not effect
on w.

Resolving equation (15) with respect to w” we find

W — 2w(w’2 +1)

1
2z — w? (17)
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Introducing variable ws = w?/(22) we rewrite the latter equation in the
following form

1 1 2
n_ | _- /
W2 = <2w2+1—w2>w2

3ws — 1 wh 2ws wo(wy + 1)
1—wy 2z 2(1—ws) 222(1 —ws)’

(18)

As follows from the analysis presented in Chap. XIV of the Ince book [4]
Egs. (17) and (18) cannot be transformed by the help of the fractional-
linear transformations of the dependent variables to any of the members
of the list of 50 equations of the Painlevé type presented in that chapter,
so that they do not possess the Painlevé property. Below in this section
we discuss the “non-Painlevé” structure of these equations.

There are three special solutions of equation (15) in terms of the ele-
mentary functions: w = 0 and w = +iz+ C;, where C; € C is a parameter:
its general solution is a transcendental function expressible in terms of the
general solution of the special case of the third Painlevé equation in the
trigonometric form,

ZV" + V' =sinV. (19)

This statement follows from the fact that the transformation relating equa-
tions (1) and (4) described in Sec. 1 enjoys the similarity reduction: more
precisely, in the similarity case (14), not only Eq. (9) but also Eq. (8) can
be integrated explicitly: to see this one can consider differential dZ and af-
ter straightforward manipulations with the help of Eqgs. (8) and (9) arrive
at the following equation,

dZ + V14 w?dz = % <Z— (w(z)?/2 - 2) 1+w’(z)2>.

Thus, since the left-hand side of this equation depends only on z, Z, one
finds the following first integral and corresponding differential equation:

Z = (w(2)?/2 - 2)\/1+w'(2)®, Z=XT, (20)
dZ = —\/1+w'(2) dz. (21)

Sure, equation (21) follows from equation (20) with the help of equa-
tion (15). Therefore the similarity solutions (14) are mapped (modulo so-
lutions of the equation (w’)? 4+ 1 = 0) to the similarity solution v(X,T) of
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equation (4),
X, TY=V(2), Z=XT,
which solves equation (19).

Applying the similarity reduction (14) in Egs. (12) one finds, with the
help of Eq. (15), a “parametric” representation of general solution V(Z)
of Eq. (19) in terms of general solution, w(z) of Eq. (15):

!
1
sinv(z) = —2 ) osv(z) = —, (22)
1+ w'(2)* 14w (2)?
V(z) = i) . (23)
(z —w?(2)/2) /1 4+ w'(2)°

where Z is given by Eq. (20).

Since the general solution of Eq. (19) is considered now as a well-
established special function it is reasonable to invert formulas (22), (23),
and (20) to find the function w(z) in terms of V(Z):

w=—-ZV'(Z) = —p, (24)
2= ZcosV(Z)+ (Z2V'(Z2))? J2 = TH(p,q,T), (25)

where ,
H(p,q,7) = 12)_7 + cosq (26)

is the time-dependent Hamiltonian of equation (19) with the following
definition of the canonical variables:

r=7Z, q=V=V(2), p=2V'(Z). (27)

Equations (24)—(27) represents our function w(z) in terms of the Hamil-
tonian variables of the third Painlevé equation (19), so it looks similar to
the objects considered in the work [3], though not exactly: our independent
variable has the additional factor 7.

As it was mentioned above the function w(z) does not have the Painlevé
property. The parametric representation (24), (25) allows one to study
more precisely the “non-Painlevé structure” of the function w(z) with the
help of the known asymptotic results for the function V(Z). We need some
preliminary definitions to formulate the result. On the complex z-plane
define the parabola,

Mi={zeC: 20z +1=(32)"}. (28)
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The completion of the parabola to the complex plane is the union of two
domains:

C\II=PUNP,

where the domain NP contains the positive semi-axis. It seems (the con-
jecture) that the domain P either does not contain movable singular points
of w(z) rather than poles: so it can be called the Painlevé domain. The set
the regular singular points of w(z) are moving in the closure, NP UTI, of
the domain AP, which can be called the non-Painlevé domain. To prove
this statement we recall that the function V(Z) apart of the poles moving
in the cylinder C\ {0}, has a regular singular point at 0 and an irregular
singular point at co. The transformation (25) preserve the point at infinity
and “make a directed (along the positive semi-axis) explosion” of the ori-
gin. The latter statement means that solutions with branching at Z = 0,
with the leading behavior V < oln Z, |So| < 1 is mapped to the solution
w(z) with the branching point at z = ¢>/2, which “moves” in the domain
NP UITIL At the same time, the transformation (24) does not change the
type of the singular point.

4. ISOMONODROMY DEFORMATIONS

It is known [2], that the similarity solutions of integrable PDEs can be
treated as solutions of the isomonodromy class [5]. This means that one can
characterize these solutions by attaching to their Lax pair an additional
linear PDE that contains a differentiation with respect to the spectral
parameter. In particular, the similarity solutions considered in Sec. 3 can
be characterized by the following equation

AUy = 2y — Yy, (29)

where ¢ is the isomonodromy solution of the Lax pair (2), with only two
singular point at A = 0 and A = co. Equation (29) implies that the function
1, modulo a scalar factor, can be presented as a function of the similarity
variables, ¢ and z, which are the first integrals of the following system of
the first order PDEs:

dx dt dzx

A t x - /t 2=z
Now denoting ¢ = ¢(u,z) = (A z,t) for the isomonodromy function
¥ (29) and using the Lax pair (2) we arrive at the following Fuchs-Garnier
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pair [7]:
d

—~ d ~
0= A9, —o=U9, (30)

il )56 D)3 0 %)
= m w -1 25 \1 0 42 = w  —1)°
where we use the notation introduced in (14) and (20).

The compatibility condition for the Fuchs—Garnier pair implies that w
solves Eq. (15). To establish a relation of the function w(z) in this approach
with the third Painlevé function we can map the Fuchs—Garnier pair (30)
to the corresponding Fuchs—Garnier pair for the third Painlevé equation in
Appendix C of [6]. Instead of presenting this transformation we consider
a slight generalization of our deformation problem:

d(l)_( B C

AP
—=(A+Z+ )= A0
o + =+ ) A,

— =249 1
dy 1%, (3)

A A2

where 4, Ay, B,C € sl,(C), and y is a parameter, which is assumed to be
an analytic function of the matrix elements of A, A;, B, C. The fact that
all coefficient matrices in system (31) are traceless is not a restriction in
our case, since from the compatibility condition one deduce that

Oytr B=0,trC =0 and OJytr A =trA,,

so that this requirement can be fulfilled via a transformation of ® by a
scalar factor. A further study of the compatibility condition for system (31)
shows that A = fA;, where f is an arbitrary (analytic) function of y and,
possibly some of the matrix elements of A, Ay, B, C, which are also
assumed to be analytic functions of . Since our variable y is not fixed yet
we can redefine (normalize) it as follows

y—y, fdy=dy, (32)

which means that without “loss of generality” we can assume that f =1
and keep the same notation. After that we can parameterize our sys-
tem (31) as follows:

A== L) merll ) oo
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where k, 8 € C are parameters and the functions a(y), b(y), and ¢(y) solve
the system of ODEs:

a' = a+ 2k(bc)’, (33)
b = (1 — 4kB)b — 4kab, (34)
¢’ = (1 +4kB)c — 4kac. (35)

Our purpose now is to show that on one hand system (33)—(35) can be
integrated in terms of the complete third Painlevé equation (P3) and on
the other hand it can be viewed as a generalization of Eq. (15). For this
purpose it is convenient to notice that the generating function for the first
integrals for system (33)—(35) reads,

Oy AP ={A A} = AA+AA (36)

Taking into account definition of A, see (31), we can rewrite Eq. (36) as
follows:

9, A2 =242 9,{B,A}={B,A}, 0,({C,A}+B?) ={C,A}. (37)

In terms of the functions a(y), b(y), c(y), the first two relations in (37)
generate the following first integrals:

Va2 +bd =¢€Y, (38)
28a + b’ — bc' = —2aeY, (39)
while the last relation in system (37) is equivalent to Eq. (33).
We begin with a generalization of Eq. (17). Define variable Z, dz = ady,
and integrate Eq. (33),
a=7%+2kbe, (40)
where
(@) =aly), b =by), and 3) = c(y). (41)
Now we can rewrite system (34), (35) in terms of the tilde-variables as

follows:

(z+ 2@5) b = 2k (25 + (ZE)') b — 4xb, (42)

(z+ 25’55) & = —2k(=28 + (b0))& — 4k & (43)

Note that if @« = § = 0, then Eq. (39) implies that ¢ = 55, where C € C

is a parameter. Now we put C =1, k = —1/4, and Z = 2z, b = ¢ = w(=z)
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and arrive at Eq. (17). In the case b = 0 or ¢ = 0, the system reduces to
the Bessel equation.

To cope with the general case we rewrite Eqs. (38) and (39) in tilde-
variables as follows:

eV = (Z+2kbo)\/1+b'¢, (44)

E'b—b'¢=—2a\/1+b'C +28. (45)

Equations (40), (41), and (44) provide us with the parametric represen-
tation of solution of system (33), (34), and (35) in terms of solution of the
“tilde”-system (42), (43).

Integration of the system (42), (43) can be reduced to a second order
ODE, which generalizes equation (17), in the following way. Define the
polar coordinates

b=a(2)e"?, = a(z)e ). (46)

As follows from Eq. (45), the function § = 6(%) can be obtained via inte-
gration of the following relation

= 515*04\/(152 +a?) (1+a'?) - B2

—i8 =
' @ (@ + o)

Y

where any branch of the square root can be taken and the function w =
w(Z) is the general solution of the second order ODE,

@2+1 2@ +1)— B> 282w 7 —2ka2\’
Z + 202 @(@2 + a?) (@2 +a2)2  Z + 2602

_ 4a?p? Z — 2K0°
T (@ + o)t \ 7 + 2602

<1Z” + dkw

) (@* + o®)(w'? + 1) — 7). (47)

As we see if aff # 0, then Eq. (47) is quadratic with respect to the sec-
ond derivative. Most probably there should be another way to reduce sys-
tem (42), (43) to the second order ODE which is linear with respect to the
second derivative. At this stage, we consider Eq. (47) as a generalization
of Eq. (17). In the case af = 0, Eq. (47) reduces to the ODEs which are
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linear with respect to the second derivative:

_ _ w41 B2 720
=0 = =4 =5 T =3 = & 5> 48
“ v "z +2kw? w? 7+ 2kw? (48)

w'?+1 o w'?+1

:0 = ~N:*4 ~~ 5 = ' = S ¢ 49
p v Mk @ @+ ad (49)
Now we turn to the reduction of system (33)—(35) to P3. The easiest
way to find it is to map system (31) into the Fuchs—Garnier pair for P5 via

the following transformation of

- t2
@(y,A)—)(b(tP,V), ey:Zp7 )‘:_7

where v is a new spectral parameter and ¢, is the argument of IP3; and than,
after a proper rescaling with &, use a corresponding parametrization of the
resulting system given either in [6] or in [8]. In the latter reference instead
of P3 parametrization is given in terms of the degenerate (confluent) fifth
Painlevé equation (IPf). The latter equation is known to be (bi-rationally)
equivalent to Ps.

Below we present parametrization in terms of P}, without considering
the mapping ® — ®; instead we just directly reproduce the result of [8]
in our current notation. Turning back to the integrals (38) and (39) and
denoting

o~

z=¢" a(@) =aly), b(E) =0y, <) =cly), (50)

we can rewrite them in the new variables as follows

a=2\/1-b'e, (51)

b —b'c=28\/1-b'¢" + 20 (52)
The system (34), (35) takes the following form:

20" = —4kBb' — 4k\/1 -’ E'D, (53)
2¢" = 4kBe’ —4k\/1—b'E'C. (54)

In the case b= 0 or ¢ = 0, the system reduces to the Bessel equation. If
b'¢ =1 then solution is given in terms of the elementary functions:

”b‘/ — b02—4n67 o= A4n,8/b0’
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where by € C is a parameter. Otherwise, the system is equivalent to the
degenerate (confluent) fifth Painlevé equation. To see this we introduce
new variables V =V (2) and § = 0(2):

o NV 5 20/ -V = 1+V
b = Avem, ¢ = AVe’”, 1-b'e' = +‘A/.
1-V 1-V 1-V

The functions b and € can be calculated as follows:

7o eif < v/ _’_Oz—i-ﬁaﬁr/)’

V-1 \4s(1=V) 2 2

—if =17 -
S _ zVAioz+ﬁ+a BV

V=V \4s(1-V) 2 2

The function @ can be obtained via integration of the relation,

N 1—

i70' = & ?v (a+8+@-8)7),

where V' is the general solution of the degenerate (confluent) fifth Painlevé
equation,

2 2
p_2rlat By ) + 355 (5s)
z

As long as the solution of the “hat”- or “tilde”-system is obtained one
can construct the solution of system (33), (34), (35), by making use of the
formulae (50), or (41) and (44), respectively. It is also immediate to get
the general solution of the “hat”-system in terms of the “tilde”-one. Since
equation (44) can be rewritten as follows,

Z=(Z+2kbo)\/1+b'c". (56)
We would like however express the solution of the “tilde”-system in terms
of the “hat”-system, since the general solution of the latter system is given

in terms of the Painlevé functions. For this purpose we have to invert
relation (56). To do it one proves the following identity,

~ 1
YA R —

1-b'¢e’
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Using it one finds

T=-—2\/1-b'¢’ — 2kbe. (57)

The later equation can be rewritten in terms of the Hamiltonian function
for Eq. (55):
Z=2H(@(2),P(2), 2), (58)

~ P2 2k

H(p. 7. %) = 2075 —
LV
1-VV’ WV -V) 4

where ¢ and p are the canonical variables and variable 2 is the time. The
Hamiltonian function, H (%), in the original variables reads,

= (B cothq + a/ sinh qA)2 —coshq

§()=In

~ 2
~ ~ zV'
HZ) =H(@?3),p(3),2) = ———
O=Ha@P®. 9= o=
K N2 1+ V
———(a+B-(a-BV) - —=. (59
oo (a4 B (@=pV) — = (59)

To complete parametrization of Eq. (47) in terms of P; (55),

~ 2
ey ‘
@ = <%> +LA(04+6—(04—6)17)2. (60)
4eVV (1 =V) 4V
So, Egs. (58), (59), and (60) gives parametrization of the general solution
of Eq. (47) in terms of P{. Note that in fact system (46) define function
w up to the sign. This results in the fact that all Eqgs. (47), (48), and (49)
can be rewritten in a rational form with respect to w?.

It is easy to derive a generalization of SPE (1) whose similarity solutions
are described by the parametric third Painlevé equation (47). Consider a
“decoupled” analog of the Zakharov—Shabat pair (2), (3):

0~ ~~ 0~ ~~

T A G o) 1/0 -@\ o
U:)\f(,gi ,g), V:A(g’z ,g)Jrg(5 0)+ﬁ. (62)
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The compatibility condition for (61), (62) reads:
0. 0 (- uwv
&9 = o (f g9- 7) )
iy = (i) + G,
Tt = (F0)s + G0

(63)

So, we get three equations for four functions: f, g, u, v. One of these

functions can be taken arbitrary, say, if we put g = 1, then f = wv/2 and
(63) takes the form of the decoupled SPE (1):

- -1
Uy = U+ §(uvum)m,

Upt = U + E(uvvm)m.

The similarity reduction

My =t — 1+ D3,

reduces the Zakharov—Shabat pair (61), (62) to the Fuchs-Garnier one of
the type (31). The above similarity reduction of i can be rewritten in
terms of the functions f, g, u, and v as follows:

§la,t) =§(2), flz,t)=1f(z), z=uat
u(z,t) =t~ 1T00(2), U(x,t) =t 100(2).

5. FURTHER REMARKS

In this paper, we obtained a parametric P; or P; equation (47). Al-
though this equation is, in some sense, equivalent to the corresponding
Painelevé equation it has absolutely different analytic and transformation
properties: The equation does not have Painlevé property but the complex
plain can be divided into two domains in one of them “travel” regular
singularities of the type that Ps; has at the origin, while in the complimen-
tary domain the parametric Painlevé equation might even have Painlevé
property, or at least, possess traveling singularities of a simpler type. In
case the existence of the Painlevé type domain would be confirmed then
one can pose in this domain the connection problems.

If we use formulae for the Bécklund transformations for P! from the [8],
then we find that the action of these transformations on the parametric
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Painlevé equations shifts both dependent and independent variables. This
feature was also mentioned for the parametric Painlevé equations consid-
ered in [3]. It would be interesting to check what types functional-difference
and functional-differential equations satisfy “Béacklund” iterations of the
parametric Painlevé functions.

JFrom our derivation we see that one can actually find infinitely many
parametric Painlevé equations associated with the given Painlevé equation;
the ambiguity is hidden in the function f (see Eq. (32)) which we put 1
“without loss of generality.” Although there are many parametric Painlevé
equations, which is good since it widen application of the Painlevé func-
tions, the problem of classification of rational parameterizations for ratio-
nal ODEs (rational parametric Painlevé equations) might have an explicit
solution. More precisely, the problem can be formulated as follows find all
equations of the form 4" = R(y,y’,z) or y 2 = R(y,y’, z) where R is a ra-
tional function of all its arguments with a nontrivial dependence on z, such
that the solution y = y(z) has the following parametric representation:

y:Rl(Y,Y/,Z), Z:RQ(Y,Y/,Z), (64)

where R; and R, are the functions of the same type as R, i.e., rational with
respect to all their arguments and the function Y (Z) is the function of the
Painlevé type. It is natural to call two such equations equivalent if their
general solutions are related via birational transformations in the same
sense as for the Painlevé equations. To exclude from that definition the
Painlevé functions and/or their inverses we can require that one or both
functions R;, ¢ = 1,2 should have a nontrivial dependence on Y or Y.
We can define a notion of equivalency of parameterizations: Say, if we
have another parametrization y = Ry(Y,Y’,Z) and z = R2(Y,Y’, Z),
where 17(2 ) is a solution of some Painlevé equation than the latter para-
metrization is equivalent to the one given by Eq. (64) if the functions
Y(Z) and Y (Z) are related with a rational transformation Y = r(Y,Y’, Z),

Z = ro(Z) with some rational functions r; and ro.

Our consideration shows that some “stationary” singular points of these
equations can “blow up” producing the non-Painlevé domains. Co-exis-
tence of the Painlevé and non-Painlevé domains could be a characteristic
feature for a “direct” detection of such equations: it can be called a partial
Painlevé property. On the other hand some simpler examples of rational
parametric Painlevé equations related with the first and second Painlevé
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equations show existence of regular singularities with the rational branch-
ing moving in the whole complex plain. Understanding of the analytical
properties of such functions, in particular, the connection formulae, might
be an interesting subject for further studies.
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