
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 398, 2012 Ç.A. V. KitaevPARAMETRIC PAINLEV�E EQUATIONSAbstrat. The parametri Painlev�e equations are those ODEswhose general solutions an be presented in the parametri formin terms of the Painlev�e funtions. Most of these ODEs do not pos-sess the Painlev�e property. By onsidering similarity solutions ofthe short pulse equation and its deoupled generalization we derivea non-trivial example of the parametri Painlev�e equation relatedwith the third Painlev�e equation. We also disuss some analytiproperties of this equation desribing the struture of movable sin-gularities. 1. IntrodutionMany ODEs an be solved expliitly in a parametri form in terms ofelementary or speial funtions. Many suh examples an be found in thehandbook [9℄. Sine the Painlev�e funtions gain now the status of speialfuntions it is reasonable to have some knowledge about the parametriPainlev�e equations, those equations whose general solutions an be pre-sented in a parametri form in terms of the Painlev�e funtions.In this note, I would like to present one nontrivial example of the para-metri Painlev�e equation whih is related with the similarity solutions ofthe so-alled short pulse equation (SPE) [1℄, known also as the ubi Ra-belo equation desribing the pseudospherial surfaes [11℄,uxt = u+ 16(u3)xx; (1)where, u = u(x; t) and the subsripts denote di�erentiation with respetto the orresponding variables. We also onsider a parametri Painlev�eequation related with a natural generalization of equation (1). This exam-ple related with the parametrization of the solutions by the third Painlev�efuntion P3. Although the orresponding parametri Painlev�e equationis in some sense equivalent to P3 it has absolutely di�erent analyti andKey words and phrases: the Painlev�e equations, isomonodromy deformations, Laxpair, short pulse equation. 145



146 A. V. KITAEVtransformation properties and represent an interesting example of the non-Painlev�e equation whose moving singularities of regular type an be stud-ied in a greater detail omparing to the other ODEs without the hiddenPainlev�e struture.It seems that all suh parametri Painlev�e equations ould be relatedwith the isomonodromy deformations of ODEs with rational oeÆients,where the deformation parameter is introdued in a \wrong way."We knowthat the anonial (natural) hoie of the deformation parameters is: posi-tions of poles (of the rational oeÆients) and parameters de�ning formalasymptoti expansions of the general solutions in proper neighborhoods ofthe poles. Sometimes it might be needed to onsider isomonodromy defor-mations with respet to parameters hosen in a di�erent (\wrong") way,beause it is ditated by the original setting of the problem. Clearly, in thisase one an make a hange of variables from a given set of parametersto the anonial one and arrive at the standard situation. This hange ofvariables is nothing but the parametrization of the system desribing theisomonodromy deformations in terms of the \wrong" parameter(s) intothe anonial (\Painlev�e") ones. The purpose of this note is to onsideran interesting example of suh transformation. On this way we arrive ata non-Painlev�e type ODE and a hange of variables that maps it to thethird Painlev�e equation. This hange of variables is not obvious to �nd byother diret methods, so that the fat of a relation between the ODEs arenot easy to guess.One interesting partiular lass of the parametri Painlev�e equations isonsidered by Fokas and Yang [3℄. As far as I an judge from [3℄ the originalidea of Yang was to reast the Painlev�e transendents as the funtions oftheir Hamiltonians, in this ase the \old time" onsidered now as the fun-tion of the anonial variables and Hamiltonian, where the latter treatedas the \new time", plays the role of the Hamiltonian for new parameter-ized Painlev�e equations. Sine we know that the Painlev�e Hamiltonianssatisfy nonlinear ODEs, Yang's idea an be viewed as a \one-variable"hodograph-type transformation of the latter ODEs for Hamiltonians withthe further substitution of the result to the Painlev�e equations. This ap-proah beomes more fruitful when onsidering generalization of the abovementioned idea for the Garnier systems.At the same time, our general point of view suggests to onsider equa-tions obtained by Fokas and Yang as a very speial ase of the parametri



PARAMETRIC PAINLEV�E EQUATIONS 147Painlev�e equations. One an obtain many other parametri Painlev�e equa-tions even with funtional parameters related with a given Painlev�e equa-tion that has nothing to do with the original Hamiltonian interpretationgiven in [3℄. On the other hand equations obtained in [3℄ have the simpleform and might have some remarkable analyti properties, so they mightbe interesting objets for further studies.In our paper, we onsider a parametri Painlev�e equation related withthe third Painlev�e equation. In [3℄, examples related with P3 is not onsi-dered. Our starting point is a relation of our parameterized Painlev�e equa-tion with the similarity solutions of SPE (1), however, some Hamiltonianstrutures also appear in our parameterizations.Let us agree about the notation. Primes as usual are used to denotedi�erentiation of the funtions of one argument. Di�erentiations of thefuntions of several arguments are denoted by orresponding literal sub-sript (without the primes). The numeral subsripts means labels thatserve to distinguish similar but di�erent objets. For this purpose we usealso \hats" ant tildes. All the square roots of the same quantity have anarbitrary but the same branh.2. The short pulse and sine-Gordon equationsIn this setion, we olleted some basi known fats from the theoryof SPE whih we need for our onstrution of the parametri Painlev�eequation.The zero urvature representation for Equation (1) was found by A. Sa-kovih and S. Sakovih [10℄:��x = U ; ��t = V  ; (2)U = �( 1 uxux −1) ; V = �u22 ( 1 uxux −1)+ u2 (0 −11 0 )+ �34�; (3)where � is the spetral parameter and �3 = ( 1 00 −1 ) is the Pauli matrix.This Lax pair immediately suggests an expliit invertible map relatingequation (1) with the sine-Gordon equation,vXT = sin v: (4)This fat was established by A. Sakovih and S. Sakovih in [10℄, see also[11℄. Sine the authors of these works used diret methods, we reall therelation between equations (1) and (4) by presenting an expliit mapping



148 A. V. KITAEVof the Wadati{Konno{Ihiawa type [12℄ pair (2), (3) to the (AKNS-type)zero urvature representation for the sine-Gordon equation [13℄,��X	 = ( � −vX=2vX=2 −� )	; ��T 	 = 14� (os v sin vsin v − os v)	; (5)Looking at the large � asymptotis of the matries U and V (seeEqs. (3)) it is immediate to notie that the eigenvalues of the matries
( 1 uxux −1) and u22 ( 1 uxux −1) (6)should satisfy the following ompatibility ondition��t√1 + u2x = ��x (u22 √1 + u2x) : (7)Equation (7) is nothing but Eq. (1) written in the form of a onservationlaw. This onservation law suggests that we an de�ne new variables Xand T , the reiproal variables, by the following one-forms:dX =√1 + u2xdx+ u22 √1 + u2xdt; (8)dT = −dt: (9)The reiproal onservation law (e.g., see [14℄) for (7) reads,��T 1√1 + u2x = ��X u22 ; (10)where the funtions u and ux are treated as the funtions of X and T .In terms of the original variables x and t, Eq. (10) is equivalent to theoriginal SPE (1), however, as we see below, it also produes a useful relationbetween equations (1) and (4). Now using variables X and T we de�nethe following expliit gauge transformation between solutions of the Laxpairs (2), (3), and (5): (x; t) = R	(X;T );R = √1 +√1 + u2x√2√1 + u2x 


1 − ux1+√1+u2xux1+√1+u2x 1 

 ; (11)



PARAMETRIC PAINLEV�E EQUATIONS 149where the funtion v(X;T ) in system (5) is given by the following equa-tions:sin v = ux√1 + u2x ; os v = − 1√1 + u2x ; vX = − uxx(√1 + u2x )3 : (12)To invert this transformation one has to �nd the funtion u(x; t) in terms ofv(X;T ). For this purpose, it is onvenient to exploit the reiproal law (10)and substitute in the right-hand side the seond equation in (12) to �nd,sin v vT = uuX (13)Taking into aount thatuX = ux �x�X = ux√1 + u2x = sin vEq. (13) an be rewritten u(x; t) = vT (X;T ):The same equation an be reprodued via a more umbersome alulationby di�erentiating the �rst equation in (12) with respet to T .3. Similarity redutionIt is easy to �nd similarity redution of (1),u(x; t) = w(z)=t; z = xt; (14)where the funtion w(z) is the general solution of the following ODE,zw′′ = w + 16(w3)′′: (15)Introduing a new dependent variable w1 ≡ w1(z) by the equation w =√6w1′′ one rewrites equation (15) in the following form,(w′′1 )3 − zw′′1 + 2w′1 + w1 = 0; (16)where the onstants of integration are omitted beause they an be re-moved by a linear (with respet to z) shift of w1, whih does not e�eton w.Resolving equation (15) with respet to w′′ we �ndw′′ = 2w(w′2 + 1)2z − w2 : (17)



150 A. V. KITAEVIntroduing variable w2 = w2=(2z) we rewrite the latter equation in thefollowing formw′′2 = ( 12w2 + 11− w2)w′22+ 3w2 − 11− w2 · w′2z + 2w2z(1− w2) + w2(w2 + 1)2z2(1− w2) : (18)As follows from the analysis presented in Chap. XIV of the Ine book [4℄Eqs. (17) and (18) annot be transformed by the help of the frational-linear transformations of the dependent variables to any of the membersof the list of 50 equations of the Painlev�e type presented in that hapter,so that they do not possess the Painlev�e property. Below in this setionwe disuss the \non-Painlev�e" struture of these equations.There are three speial solutions of equation (15) in terms of the ele-mentary funtions: w ≡ 0 and w = ±iz+C1, where C1 ∈ C is a parameter:its general solution is a transendental funtion expressible in terms of thegeneral solution of the speial ase of the third Painlev�e equation in thetrigonometri form, ZV ′′ + V ′ = sinV: (19)This statement follows from the fat that the transformation relating equa-tions (1) and (4) desribed in Se. 1 enjoys the similarity redution: morepreisely, in the similarity ase (14), not only Eq. (9) but also Eq. (8) anbe integrated expliitly: to see this one an onsider di�erential dZ and af-ter straightforward manipulations with the help of Eqs. (8) and (9) arriveat the following equation,dZ +√1 + w′2 dz = dtt (Z −
(w(z)2=2− z)√1 + w′(z)2) :Thus, sine the left-hand side of this equation depends only on z, Z, one�nds the following �rst integral and orresponding di�erential equation:Z = (w(z)2=2− z)√1 + w′(z)2; Z = XT; (20)dZ = −

√1 + w′(z)2 dz: (21)Sure, equation (21) follows from equation (20) with the help of equa-tion (15). Therefore the similarity solutions (14) are mapped (modulo so-lutions of the equation (w′)2 +1 = 0) to the similarity solution v(X;T ) of



PARAMETRIC PAINLEV�E EQUATIONS 151equation (4), v(X;T ) ≡ V (Z); Z = XT;whih solves equation (19).Applying the similarity redution (14) in Eqs. (12) one �nds, with thehelp of Eq. (15), a \parametri" representation of general solution V (Z)of Eq. (19) in terms of general solution, w(z) of Eq. (15):sinV (Z) = w′(z)√1 + w′(z)2 ; osV (Z) = − 1√1 + w′(z)2 ; (22)V ′(Z) = w(z)(z − w2(z)=2)√1 + w′(z)2 ; (23)where Z is given by Eq. (20).Sine the general solution of Eq. (19) is onsidered now as a well-established speial funtion it is reasonable to invert formulas (22), (23),and (20) to �nd the funtion w(z) in terms of V (Z):w = −ZV ′(Z) ≡ −p; (24)z = Z osV (Z) + (ZV ′(Z))2 =2 ≡ �H(p; q; �); (25)where H(p; q; �) = p22� + os q (26)is the time-dependent Hamiltonian of equation (19) with the followingde�nition of the anonial variables:� ≡ Z; q ≡ V = V (Z); p ≡ ZV ′(Z): (27)Equations (24){(27) represents our funtion w(z) in terms of the Hamil-tonian variables of the third Painlev�e equation (19), so it looks similar tothe objets onsidered in the work [3℄, though not exatly: our independentvariable has the additional fator � .As it was mentioned above the funtion w(z) does not have the Painlev�eproperty. The parametri representation (24), (25) allows one to studymore preisely the \non-Painlev�e struture" of the funtion w(z) with thehelp of the known asymptoti results for the funtion V (Z). We need somepreliminary de�nitions to formulate the result. On the omplex z-planede�ne the parabola,� := {z ∈ C : 2ℜz + 1 = (ℑz)2}: (28)



152 A. V. KITAEVThe ompletion of the parabola to the omplex plane is the union of twodomains:
C \� = P ∪NP ;where the domain NP ontains the positive semi-axis. It seems (the on-jeture) that the domain P either does not ontain movable singular pointsof w(z) rather than poles: so it an be alled the Painlev�e domain. The setthe regular singular points of w(z) are moving in the losure, NP ∪ �, ofthe domain NP , whih an be alled the non-Painlev�e domain. To provethis statement we reall that the funtion V (Z) apart of the poles movingin the ylinder C \ {0}, has a regular singular point at 0 and an irregularsingular point at ∞. The transformation (25) preserve the point at in�nityand \make a direted (along the positive semi-axis) explosion" of the ori-gin. The latter statement means that solutions with branhing at Z = 0,with the leading behavior V ≍ � lnZ, |ℑ�| ≤ 1 is mapped to the solutionw(z) with the branhing point at z = �2=2, whih \moves" in the domain

NP ∪ �. At the same time, the transformation (24) does not hange thetype of the singular point.4. Isomonodromy deformationsIt is known [2℄, that the similarity solutions of integrable PDEs an betreated as solutions of the isomonodromy lass [5℄. This means that one anharaterize these solutions by attahing to their Lax pair an additionallinear PDE that ontains a di�erentiation with respet to the spetralparameter. In partiular, the similarity solutions onsidered in Se. 3 anbe haraterized by the following equation� � = x x − t t; (29)where  is the isomonodromy solution of the Lax pair (2), with only twosingular point at � = 0 and � = ∞. Equation (29) implies that the funtion , modulo a salar fator, an be presented as a funtion of the similarityvariables, � and z, whih are the �rst integrals of the following system ofthe �rst order PDEs:d�� = dtt = dxx ⇒ � = �=t; z = xt:Now denoting � = �(�; z) =  (�; x; t) for the isomonodromy funtion (29) and using the Lax pair (2) we arrive at the following Fuhs{Garnier



PARAMETRIC PAINLEV�E EQUATIONS 153pair [7℄: dd�� = Â�; ddz� = Û�; (30)Â =− Z√1 + w′2 ( 1 w′w′ −1)− w2� (0 −11 0 )− �34�2 ; Û = �( 1 w′w′ −1) ;where we use the notation introdued in (14) and (20).The ompatibility ondition for the Fuhs{Garnier pair implies that wsolves Eq. (15). To establish a relation of the funtion w(z) in this approahwith the third Painlev�e funtion we an map the Fuhs{Garnier pair (30)to the orresponding Fuhs{Garnier pair for the third Painlev�e equation inAppendix C of [6℄. Instead of presenting this transformation we onsidera slight generalization of our deformation problem:d�d� = (A+ B� + C�2)� ≡ A�; d�dy = �A1�; (31)where A;A1; B; C ∈ sl2(C), and y is a parameter, whih is assumed to bean analyti funtion of the matrix elements of A; A1; B; C. The fat thatall oeÆient matries in system (31) are traeless is not a restrition inour ase, sine from the ompatibility ondition one dedue that�ytrB = �ytrC = 0 and �ytrA = trA1;so that this requirement an be ful�lled via a transformation of � by asalar fator. A further study of the ompatibility ondition for system (31)shows that A = fA1, where f is an arbitrary (analyti) funtion of y and,possibly some of the matrix elements of A; A1; B; C, whih are alsoassumed to be analyti funtions of y. Sine our variable y is not �xed yetwe an rede�ne (normalize) it as followsy → ỹ; fdy = dỹ; (32)whih means that without \loss of generality" we an assume that f = 1and keep the same notation. After that we an parameterize our sys-tem (31) as follows:A = A1 = (a(y) b′(y)′(y) −a(y)) ; B = 2�( � −b(y)(y) −� ) ; C = ��3;



154 A. V. KITAEVwhere �; � ∈ C are parameters and the funtions a(y), b(y), and (y) solvethe system of ODEs: a′ = a+ 2�(b)′; (33)b′′ = (1− 4��)b′ − 4�ab; (34)′′ = (1 + 4��)′ − 4�a: (35)Our purpose now is to show that on one hand system (33){(35) an beintegrated in terms of the omplete third Painlev�e equation (P3) and onthe other hand it an be viewed as a generalization of Eq. (15). For thispurpose it is onvenient to notie that the generating funtion for the �rstintegrals for system (33){(35) reads,�y A2 = {A; A} ≡ AA+AA: (36)Taking into aount de�nition of A, see (31), we an rewrite Eq. (36) asfollows:�y A2 = 2A2; �y {B;A} = {B;A}; �y({C;A}+B2) = {C;A}: (37)In terms of the funtions a(y), b(y), (y), the �rst two relations in (37)generate the following �rst integrals:
√a2 + b′′ = ey; (38)2�a+ b′ − b′ = −2�ey; (39)while the last relation in system (37) is equivalent to Eq. (33).We begin with a generalization of Eq. (17). De�ne variable z̃, dz̃ = ady,and integrate Eq. (33), ã = z̃ + 2� b̃̃; (40)where ã(z̃) = a(y); b̃(z̃) = b(y); and ̃(z̃) = (y): (41)Now we an rewrite system (34), (35) in terms of the tilde-variables asfollows:

(z̃ + 2� b̃̃) b̃′′ = −2�(2� + (̃b̃)′) b̃′ − 4� b̃; (42)
(z̃ + 2� b̃̃) ̃′′ = −2�(−2� + (̃b̃)′)̃′ − 4� ̃: (43)Note that if � = � = 0, then Eq. (39) implies that ̃ = C̃b̃, where C̃ ∈ Cis a parameter. Now we put C̃ = 1, � = −1=4, and z̃ = z, b̃ = ̃ = w(z)



PARAMETRIC PAINLEV�E EQUATIONS 155and arrive at Eq. (17). In the ase b̃ ≡ 0 or ̃ ≡ 0, the system redues tothe Bessel equation.To ope with the general ase we rewrite Eqs. (38) and (39) in tilde-variables as follows: ey = (z̃ + 2� b̃ ̃)√1 + b̃ ′ ̃ ′; (44)̃ ′ b̃− b̃ ′ ̃ = −2�√1 + b̃ ′ ̃ ′ + 2�: (45)Equations (40), (41), and (44) provide us with the parametri represen-tation of solution of system (33), (34), and (35) in terms of solution of the\tilde"-system (42), (43).Integration of the system (42), (43) an be redued to a seond orderODE, whih generalizes equation (17), in the following way. De�ne thepolar oordinates b̃ ≡ w̃(z̃)ei�̃(z̃); ̃ ≡ w̃(z̃)e−i�̃(z̃): (46)As follows from Eq. (45), the funtion �̃ = �̃(z̃) an be obtained via inte-gration of the following relation
−i�̃ ′ = �w̃ − �√(w̃2 + �2) (1 + w̃′ 2)− �2w̃ (w̃2 + �2) ;where any branh of the square root an be taken and the funtion w̃ =w̃(z̃) is the general solution of the seond order ODE,

(w̃′′ + 4�w̃ w̃′ 2 + 1z̃ + 2�w̃2 + �2(w̃′ 2 + 1)− �2w̃(w̃2 + �2) + 2�2w̃(w̃2 + �2)2 · z̃ − 2��2z̃ + 2�w̃2)2= 4�2�2(w̃2 + �2)4 ( z̃ − 2��2z̃ + 2�w̃2)2 ((w̃2 + �2)(w̃′ 2 + 1)− �2): (47)As we see if �� 6= 0, then Eq. (47) is quadrati with respet to the se-ond derivative. Most probably there should be another way to redue sys-tem (42), (43) to the seond order ODE whih is linear with respet to theseond derivative. At this stage, we onsider Eq. (47) as a generalizationof Eq. (17). In the ase �� = 0, Eq. (47) redues to the ODEs whih are



156 A. V. KITAEVlinear with respet to the seond derivative:� = 0 ⇒ w̃′′ = −4�w̃ w̃′ 2 + 1z̃ + 2�w̃2 − �2w̃3 · z̃ − 2�w̃2z̃ + 2�w̃2 ; (48)� = 0 ⇒ w̃′′ = −4�w̃ w̃′ 2 + 1z̃ + 2�w̃2 − �2̃w · w̃′ 2 + 1w̃2 + �2 : (49)Now we turn to the redution of system (33){(35) to P3. The easiestway to �nd it is to map system (31) into the Fuhs{Garnier pair for P3 viathe following transformation of�(y; �) → �̂(tp; �); ey = t2p4 ; � = 2�tp ;where � is a new spetral parameter and tp is the argument of P3; and than,after a proper resaling with �, use a orresponding parametrization of theresulting system given either in [6℄ or in [8℄. In the latter referene insteadof P3 parametrization is given in terms of the degenerate (onuent) �fthPainlev�e equation (P′5). The latter equation is known to be (bi-rationally)equivalent to P3.Below we present parametrization in terms of P′5, without onsideringthe mapping � → �̂; instead we just diretly reprodue the result of [8℄in our urrent notation. Turning bak to the integrals (38) and (39) anddenoting ẑ = ey; â(ẑ) = a(y); b̂(ẑ) = b(y); ̂(ẑ) = (y); (50)we an rewrite them in the new variables as followsâ = ẑ√1− b̂ ′̂ ′; (51)̂ ′b̂− b̂ ′̂ = 2�√1− b̂ ′̂ ′ + 2�: (52)The system (34), (35) takes the following form:ẑ b̂ ′′ = −4��b̂ ′ − 4�√1− b̂ ′ ̂ ′ b̂; (53)ẑ ̂ ′′ = 4��̂ ′ − 4�√1− b̂ ′ ̂ ′ ̂: (54)In the ase b̂ ≡ 0 or ̂ ≡ 0, the system redues to the Bessel equation. Ifb̂′ ̂′ = 1 then solution is given in terms of the elementary funtions:b̂ ′ = b0ẑ−4��; ̂ ′ = ẑ4��=b0;



PARAMETRIC PAINLEV�E EQUATIONS 157where b0 ∈ C is a parameter. Otherwise, the system is equivalent to thedegenerate (onuent) �fth Painlev�e equation. To see this we introduenew variables V̂ = V̂ (ẑ) and �̂ = �̂(ẑ):b̂ ′ ≡ 2√−V̂1− V̂ ei�̂; ̂ ′ ≡ 2√−V̂1− V̂ e−i�̂; √1− b̂ ′̂ ′ ≡ 1 + V̂1− V̂ :The funtions b̂ and ̂ an be alulated as follows:b̂ = ei�̂√
−V̂ ( ẑ V̂ ′4�(1− V̂ ) + �+ �2 − �− �2 V̂) ;̂ = e−i�̂

√
−V̂ ( ẑ V̂ ′4�(1− V̂ ) − �+ �2 + �− �2 V̂) :The funtion �̂ an be obtained via integration of the relation,iẑ �̂ ′ = �1− V̂V̂ (�+ � + (� − �)V̂ ) ;where V̂ is the general solution of the degenerate (onuent) �fth Painlev�eequation,̂V ′′ = ( 12V̂ + 1V̂ − 1) V̂ ′

2 − V̂ ′ẑ+ (V̂ − 1)2ẑ2 (2�2(�− �)2V̂ − 2�2(� + �)2V̂ )+ 8�̂z V̂ : (55)As long as the solution of the \hat"- or \tilde"-system is obtained onean onstrut the solution of system (33), (34), (35), by making use of theformulae (50), or (41) and (44), respetively. It is also immediate to getthe general solution of the \hat"-system in terms of the \tilde"-one. Sineequation (44) an be rewritten as follows,ẑ = (z̃ + 2�b̃ ̃)√1 + b̃ ′ ̃ ′: (56)We would like however express the solution of the \tilde"-system in termsof the \hat"-system, sine the general solution of the latter system is givenin terms of the Painlev�e funtions. For this purpose we have to invertrelation (56). To do it one proves the following identity,
√1 + b̃ ′ ̃ ′ = − 1√1− b̂ ′ ̂ ′

:



158 A. V. KITAEVUsing it one �nds z̃ = −ẑ√1− b̂ ′ ̂ ′ − 2�b̂ ̂: (57)The later equation an be rewritten in terms of the Hamiltonian funtionfor Eq. (55): z̃ = ẑ Ĥ (q̂ (ẑ); p̂ (ẑ); ẑ); (58)
Ĥ (p̂; q̂; ẑ) ≡ 2�p̂ 2̂z − 2�̂z (� oth q̂ + �= sinh q̂ )2 − osh q̂q̂ (ẑ) ≡ ln 1 +√V̂1−√V̂ ; p̂ (ẑ) ≡ ẑ V̂ ′4�√V̂ (1− V̂ ) = ẑ q̂ ′ (ẑ)4� ;where q̂ and p̂ are the anonial variables and variable ẑ is the time. TheHamiltonian funtion, Ĥ(ẑ), in the original variables reads,Ĥ(ẑ) ≡ Ĥ (q̂ (ẑ); p̂ (ẑ); ẑ) = ẑ V̂ ′

28�V̂ (1− V̂ )2
− �2ẑ V̂ (�+ � − (� − �)V̂ )2 − 1 + V̂1− V̂ : (59)To omplete parametrization of Eq. (47) in terms of P ′5 (55),w̃2 = −

( ẑ V̂ ′4�√V̂ (1− V̂ ))2 + 14V̂ (�+ � − (�− �)V̂ )2 : (60)So, Eqs. (58), (59), and (60) gives parametrization of the general solutionof Eq. (47) in terms of P ′5. Note that in fat system (46) de�ne funtionw̃ up to the sign. This results in the fat that all Eqs. (47), (48), and (49)an be rewritten in a rational form with respet to w̃2.It is easy to derive a generalization of SPE (1) whose similarity solutionsare desribed by the parametri third Painlev�e equation (47). Consider a\deoupled" analog of the Zakharov{Shabat pair (2), (3):��x ̃ = Ũ  ̃; ��t ̃ = Ṽ  ̃; (61)Ũ = �f̃ ( g̃ ũxṽx −g̃) ; Ṽ = �( g̃ ũxṽx −g̃)+ 12 (0 −ũṽ 0 )+ �34�: (62)



PARAMETRIC PAINLEV�E EQUATIONS 159The ompatibility ondition for (61), (62) reads:��t g̃ = ��x (f̃ g̃ − ũṽ2 ) ;ũxt = (f̃ ũ)x + g̃ũ;ṽxt = (f̃ ṽ)x + g̃ṽ: (63)So, we get three equations for four funtions: f̃ , g̃, ũ, ṽ. One of thesefuntions an be taken arbitrary, say, if we put g̃ ≡ 1, then f̃ = ũṽ=2 and(63) takes the form of the deoupled SPE (1):ũxt = ũ+ 12(ũṽũx)x;ṽxt = ṽ + 12(ũṽṽx)x:The similarity redution� ̃� = x ̃x − t ̃t + �2 �3 ̃;redues the Zakharov{Shabat pair (61), (62) to the Fuhs{Garnier one ofthe type (31). The above similarity redution of  ̃ an be rewritten interms of the funtions f̃ , g̃, ũ, and ṽ as follows:g̃(x; t) = ĝ(z); f̃(x; t) = t2f̂(z); z = xt;ũ(x; t) = t−1+�û(z); ṽ(x; t) = t−1−�v̂(z):5. Further RemarksIn this paper, we obtained a parametri P3 or P ′5 equation (47). Al-though this equation is, in some sense, equivalent to the orrespondingPainelev�e equation it has absolutely di�erent analyti and transformationproperties: The equation does not have Painlev�e property but the omplexplain an be divided into two domains in one of them \travel" regularsingularities of the type that P3 has at the origin, while in the omplimen-tary domain the parametri Painlev�e equation might even have Painlev�eproperty, or at least, possess traveling singularities of a simpler type. Inase the existene of the Painlev�e type domain would be on�rmed thenone an pose in this domain the onnetion problems.If we use formulae for the B�aklund transformations for P ′5 from the [8℄,then we �nd that the ation of these transformations on the parametri



160 A. V. KITAEVPainlev�e equations shifts both dependent and independent variables. Thisfeature was also mentioned for the parametri Painlev�e equations onsid-ered in [3℄. It would be interesting to hek what types funtional-di�ereneand funtional-di�erential equations satisfy \B�aklund" iterations of theparametri Painlev�e funtions.>From our derivation we see that one an atually �nd in�nitely manyparametri Painlev�e equations assoiated with the given Painlev�e equation;the ambiguity is hidden in the funtion f (see Eq. (32)) whih we put 1\without loss of generality." Although there are many parametri Painlev�eequations, whih is good sine it widen appliation of the Painlev�e fun-tions, the problem of lassi�ation of rational parameterizations for ratio-nal ODEs (rational parametri Painlev�e equations) might have an expliitsolution. More preisely, the problem an be formulated as follows �nd allequations of the form y′′ = R(y; y′; z) or y′′2 = R(y; y′; z) where R is a ra-tional funtion of all its arguments with a nontrivial dependene on z, suhthat the solution y = y(z) has the following parametri representation:y = R1(Y; Y ′; Z); z = R2(Y; Y ′; Z); (64)where R1 and R2 are the funtions of the same type as R, i.e., rational withrespet to all their arguments and the funtion Y (Z) is the funtion of thePainlev�e type. It is natural to all two suh equations equivalent if theirgeneral solutions are related via birational transformations in the samesense as for the Painlev�e equations. To exlude from that de�nition thePainlev�e funtions and/or their inverses we an require that one or bothfuntions Ri, i = 1; 2 should have a nontrivial dependene on Y or Y ′.We an de�ne a notion of equivaleny of parameterizations: Say, if wehave another parametrization y = R̃1(Ỹ ; Ỹ ′; Z̃) and z = R̃2(Ỹ ; Ỹ ′; Z̃),where Ỹ (Z̃) is a solution of some Painlev�e equation than the latter para-metrization is equivalent to the one given by Eq. (64) if the funtionsY (Z) and Ỹ (Z̃) are related with a rational transformation Ỹ = r(Y; Y ′; Z),Z̃ = r0(Z) with some rational funtions r1 and r0.Our onsideration shows that some \stationary" singular points of theseequations an \blow up" produing the non-Painlev�e domains. Co-exis-tene of the Painlev�e and non-Painlev�e domains ould be a harateristifeature for a \diret" detetion of suh equations: it an be alled a partialPainlev�e property. On the other hand some simpler examples of rationalparametri Painlev�e equations related with the �rst and seond Painlev�e
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