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t. The parametri
 Painlev�e equations are those ODEswhose general solutions 
an be presented in the parametri
 formin terms of the Painlev�e fun
tions. Most of these ODEs do not pos-sess the Painlev�e property. By 
onsidering similarity solutions ofthe short pulse equation and its de
oupled generalization we derivea non-trivial example of the parametri
 Painlev�e equation relatedwith the third Painlev�e equation. We also dis
uss some analyti
properties of this equation des
ribing the stru
ture of movable sin-gularities. 1. Introdu
tionMany ODEs 
an be solved expli
itly in a parametri
 form in terms ofelementary or spe
ial fun
tions. Many su
h examples 
an be found in thehandbook [9℄. Sin
e the Painlev�e fun
tions gain now the status of spe
ialfun
tions it is reasonable to have some knowledge about the parametri
Painlev�e equations, those equations whose general solutions 
an be pre-sented in a parametri
 form in terms of the Painlev�e fun
tions.In this note, I would like to present one nontrivial example of the para-metri
 Painlev�e equation whi
h is related with the similarity solutions ofthe so-
alled short pulse equation (SPE) [1℄, known also as the 
ubi
 Ra-belo equation des
ribing the pseudospheri
al surfa
es [11℄,uxt = u+ 16(u3)xx; (1)where, u = u(x; t) and the subs
ripts denote di�erentiation with respe
tto the 
orresponding variables. We also 
onsider a parametri
 Painlev�eequation related with a natural generalization of equation (1). This exam-ple related with the parametrization of the solutions by the third Painlev�efun
tion P3. Although the 
orresponding parametri
 Painlev�e equationis in some sense equivalent to P3 it has absolutely di�erent analyti
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146 A. V. KITAEVtransformation properties and represent an interesting example of the non-Painlev�e equation whose moving singularities of regular type 
an be stud-ied in a greater detail 
omparing to the other ODEs without the hiddenPainlev�e stru
ture.It seems that all su
h parametri
 Painlev�e equations 
ould be relatedwith the isomonodromy deformations of ODEs with rational 
oeÆ
ients,where the deformation parameter is introdu
ed in a \wrong way."We knowthat the 
anoni
al (natural) 
hoi
e of the deformation parameters is: posi-tions of poles (of the rational 
oeÆ
ients) and parameters de�ning formalasymptoti
 expansions of the general solutions in proper neighborhoods ofthe poles. Sometimes it might be needed to 
onsider isomonodromy defor-mations with respe
t to parameters 
hosen in a di�erent (\wrong") way,be
ause it is di
tated by the original setting of the problem. Clearly, in this
ase one 
an make a 
hange of variables from a given set of parametersto the 
anoni
al one and arrive at the standard situation. This 
hange ofvariables is nothing but the parametrization of the system des
ribing theisomonodromy deformations in terms of the \wrong" parameter(s) intothe 
anoni
al (\Painlev�e") ones. The purpose of this note is to 
onsideran interesting example of su
h transformation. On this way we arrive ata non-Painlev�e type ODE and a 
hange of variables that maps it to thethird Painlev�e equation. This 
hange of variables is not obvious to �nd byother dire
t methods, so that the fa
t of a relation between the ODEs arenot easy to guess.One interesting parti
ular 
lass of the parametri
 Painlev�e equations is
onsidered by Fokas and Yang [3℄. As far as I 
an judge from [3℄ the originalidea of Yang was to re
ast the Painlev�e trans
endents as the fun
tions oftheir Hamiltonians, in this 
ase the \old time" 
onsidered now as the fun
-tion of the 
anoni
al variables and Hamiltonian, where the latter treatedas the \new time", plays the role of the Hamiltonian for new parameter-ized Painlev�e equations. Sin
e we know that the Painlev�e Hamiltonianssatisfy nonlinear ODEs, Yang's idea 
an be viewed as a \one-variable"hodograph-type transformation of the latter ODEs for Hamiltonians withthe further substitution of the result to the Painlev�e equations. This ap-proa
h be
omes more fruitful when 
onsidering generalization of the abovementioned idea for the Garnier systems.At the same time, our general point of view suggests to 
onsider equa-tions obtained by Fokas and Yang as a very spe
ial 
ase of the parametri




PARAMETRIC PAINLEV�E EQUATIONS 147Painlev�e equations. One 
an obtain many other parametri
 Painlev�e equa-tions even with fun
tional parameters related with a given Painlev�e equa-tion that has nothing to do with the original Hamiltonian interpretationgiven in [3℄. On the other hand equations obtained in [3℄ have the simpleform and might have some remarkable analyti
 properties, so they mightbe interesting obje
ts for further studies.In our paper, we 
onsider a parametri
 Painlev�e equation related withthe third Painlev�e equation. In [3℄, examples related with P3 is not 
onsi-dered. Our starting point is a relation of our parameterized Painlev�e equa-tion with the similarity solutions of SPE (1), however, some Hamiltonianstru
tures also appear in our parameterizations.Let us agree about the notation. Primes as usual are used to denotedi�erentiation of the fun
tions of one argument. Di�erentiations of thefun
tions of several arguments are denoted by 
orresponding literal sub-s
ript (without the primes). The numeral subs
ripts means labels thatserve to distinguish similar but di�erent obje
ts. For this purpose we usealso \hats" ant tildes. All the square roots of the same quantity have anarbitrary but the same bran
h.2. The short pulse and sine-Gordon equationsIn this se
tion, we 
olle
ted some basi
 known fa
ts from the theoryof SPE whi
h we need for our 
onstru
tion of the parametri
 Painlev�eequation.The zero 
urvature representation for Equation (1) was found by A. Sa-kovi
h and S. Sakovi
h [10℄:��x = U ; ��t = V  ; (2)U = �( 1 uxux −1) ; V = �u22 ( 1 uxux −1)+ u2 (0 −11 0 )+ �34�; (3)where � is the spe
tral parameter and �3 = ( 1 00 −1 ) is the Pauli matrix.This Lax pair immediately suggests an expli
it invertible map relatingequation (1) with the sine-Gordon equation,vXT = sin v: (4)This fa
t was established by A. Sakovi
h and S. Sakovi
h in [10℄, see also[11℄. Sin
e the authors of these works used dire
t methods, we re
all therelation between equations (1) and (4) by presenting an expli
it mapping



148 A. V. KITAEVof the Wadati{Konno{I
hi
awa type [12℄ pair (2), (3) to the (AKNS-type)zero 
urvature representation for the sine-Gordon equation [13℄,��X	 = ( � −vX=2vX=2 −� )	; ��T 	 = 14� (
os v sin vsin v − 
os v)	; (5)Looking at the large � asymptoti
s of the matri
es U and V (seeEqs. (3)) it is immediate to noti
e that the eigenvalues of the matri
es
( 1 uxux −1) and u22 ( 1 uxux −1) (6)should satisfy the following 
ompatibility 
ondition��t√1 + u2x = ��x (u22 √1 + u2x) : (7)Equation (7) is nothing but Eq. (1) written in the form of a 
onservationlaw. This 
onservation law suggests that we 
an de�ne new variables Xand T , the re
ipro
al variables, by the following one-forms:dX =√1 + u2xdx+ u22 √1 + u2xdt; (8)dT = −dt: (9)The re
ipro
al 
onservation law (e.g., see [14℄) for (7) reads,��T 1√1 + u2x = ��X u22 ; (10)where the fun
tions u and ux are treated as the fun
tions of X and T .In terms of the original variables x and t, Eq. (10) is equivalent to theoriginal SPE (1), however, as we see below, it also produ
es a useful relationbetween equations (1) and (4). Now using variables X and T we de�nethe following expli
it gauge transformation between solutions of the Laxpairs (2), (3), and (5): (x; t) = R	(X;T );R = √1 +√1 + u2x√2√1 + u2x 


1 − ux1+√1+u2xux1+√1+u2x 1 

 ; (11)



PARAMETRIC PAINLEV�E EQUATIONS 149where the fun
tion v(X;T ) in system (5) is given by the following equa-tions:sin v = ux√1 + u2x ; 
os v = − 1√1 + u2x ; vX = − uxx(√1 + u2x )3 : (12)To invert this transformation one has to �nd the fun
tion u(x; t) in terms ofv(X;T ). For this purpose, it is 
onvenient to exploit the re
ipro
al law (10)and substitute in the right-hand side the se
ond equation in (12) to �nd,sin v vT = uuX (13)Taking into a

ount thatuX = ux �x�X = ux√1 + u2x = sin vEq. (13) 
an be rewritten u(x; t) = vT (X;T ):The same equation 
an be reprodu
ed via a more 
umbersome 
al
ulationby di�erentiating the �rst equation in (12) with respe
t to T .3. Similarity redu
tionIt is easy to �nd similarity redu
tion of (1),u(x; t) = w(z)=t; z = xt; (14)where the fun
tion w(z) is the general solution of the following ODE,zw′′ = w + 16(w3)′′: (15)Introdu
ing a new dependent variable w1 ≡ w1(z) by the equation w =√6w1′′ one rewrites equation (15) in the following form,(w′′1 )3 − zw′′1 + 2w′1 + w1 = 0; (16)where the 
onstants of integration are omitted be
ause they 
an be re-moved by a linear (with respe
t to z) shift of w1, whi
h does not e�e
ton w.Resolving equation (15) with respe
t to w′′ we �ndw′′ = 2w(w′2 + 1)2z − w2 : (17)



150 A. V. KITAEVIntrodu
ing variable w2 = w2=(2z) we rewrite the latter equation in thefollowing formw′′2 = ( 12w2 + 11− w2)w′22+ 3w2 − 11− w2 · w′2z + 2w2z(1− w2) + w2(w2 + 1)2z2(1− w2) : (18)As follows from the analysis presented in Chap. XIV of the In
e book [4℄Eqs. (17) and (18) 
annot be transformed by the help of the fra
tional-linear transformations of the dependent variables to any of the membersof the list of 50 equations of the Painlev�e type presented in that 
hapter,so that they do not possess the Painlev�e property. Below in this se
tionwe dis
uss the \non-Painlev�e" stru
ture of these equations.There are three spe
ial solutions of equation (15) in terms of the ele-mentary fun
tions: w ≡ 0 and w = ±iz+C1, where C1 ∈ C is a parameter:its general solution is a trans
endental fun
tion expressible in terms of thegeneral solution of the spe
ial 
ase of the third Painlev�e equation in thetrigonometri
 form, ZV ′′ + V ′ = sinV: (19)This statement follows from the fa
t that the transformation relating equa-tions (1) and (4) des
ribed in Se
. 1 enjoys the similarity redu
tion: morepre
isely, in the similarity 
ase (14), not only Eq. (9) but also Eq. (8) 
anbe integrated expli
itly: to see this one 
an 
onsider di�erential dZ and af-ter straightforward manipulations with the help of Eqs. (8) and (9) arriveat the following equation,dZ +√1 + w′2 dz = dtt (Z −
(w(z)2=2− z)√1 + w′(z)2) :Thus, sin
e the left-hand side of this equation depends only on z, Z, one�nds the following �rst integral and 
orresponding di�erential equation:Z = (w(z)2=2− z)√1 + w′(z)2; Z = XT; (20)dZ = −

√1 + w′(z)2 dz: (21)Sure, equation (21) follows from equation (20) with the help of equa-tion (15). Therefore the similarity solutions (14) are mapped (modulo so-lutions of the equation (w′)2 +1 = 0) to the similarity solution v(X;T ) of



PARAMETRIC PAINLEV�E EQUATIONS 151equation (4), v(X;T ) ≡ V (Z); Z = XT;whi
h solves equation (19).Applying the similarity redu
tion (14) in Eqs. (12) one �nds, with thehelp of Eq. (15), a \parametri
" representation of general solution V (Z)of Eq. (19) in terms of general solution, w(z) of Eq. (15):sinV (Z) = w′(z)√1 + w′(z)2 ; 
osV (Z) = − 1√1 + w′(z)2 ; (22)V ′(Z) = w(z)(z − w2(z)=2)√1 + w′(z)2 ; (23)where Z is given by Eq. (20).Sin
e the general solution of Eq. (19) is 
onsidered now as a well-established spe
ial fun
tion it is reasonable to invert formulas (22), (23),and (20) to �nd the fun
tion w(z) in terms of V (Z):w = −ZV ′(Z) ≡ −p; (24)z = Z 
osV (Z) + (ZV ′(Z))2 =2 ≡ �H(p; q; �); (25)where H(p; q; �) = p22� + 
os q (26)is the time-dependent Hamiltonian of equation (19) with the followingde�nition of the 
anoni
al variables:� ≡ Z; q ≡ V = V (Z); p ≡ ZV ′(Z): (27)Equations (24){(27) represents our fun
tion w(z) in terms of the Hamil-tonian variables of the third Painlev�e equation (19), so it looks similar tothe obje
ts 
onsidered in the work [3℄, though not exa
tly: our independentvariable has the additional fa
tor � .As it was mentioned above the fun
tion w(z) does not have the Painlev�eproperty. The parametri
 representation (24), (25) allows one to studymore pre
isely the \non-Painlev�e stru
ture" of the fun
tion w(z) with thehelp of the known asymptoti
 results for the fun
tion V (Z). We need somepreliminary de�nitions to formulate the result. On the 
omplex z-planede�ne the parabola,� := {z ∈ C : 2ℜz + 1 = (ℑz)2}: (28)



152 A. V. KITAEVThe 
ompletion of the parabola to the 
omplex plane is the union of twodomains:
C \� = P ∪NP ;where the domain NP 
ontains the positive semi-axis. It seems (the 
on-je
ture) that the domain P either does not 
ontain movable singular pointsof w(z) rather than poles: so it 
an be 
alled the Painlev�e domain. The setthe regular singular points of w(z) are moving in the 
losure, NP ∪ �, ofthe domain NP , whi
h 
an be 
alled the non-Painlev�e domain. To provethis statement we re
all that the fun
tion V (Z) apart of the poles movingin the 
ylinder C \ {0}, has a regular singular point at 0 and an irregularsingular point at ∞. The transformation (25) preserve the point at in�nityand \make a dire
ted (along the positive semi-axis) explosion" of the ori-gin. The latter statement means that solutions with bran
hing at Z = 0,with the leading behavior V ≍ � lnZ, |ℑ�| ≤ 1 is mapped to the solutionw(z) with the bran
hing point at z = �2=2, whi
h \moves" in the domain

NP ∪ �. At the same time, the transformation (24) does not 
hange thetype of the singular point.4. Isomonodromy deformationsIt is known [2℄, that the similarity solutions of integrable PDEs 
an betreated as solutions of the isomonodromy 
lass [5℄. This means that one 
an
hara
terize these solutions by atta
hing to their Lax pair an additionallinear PDE that 
ontains a di�erentiation with respe
t to the spe
tralparameter. In parti
ular, the similarity solutions 
onsidered in Se
. 3 
anbe 
hara
terized by the following equation� � = x x − t t; (29)where  is the isomonodromy solution of the Lax pair (2), with only twosingular point at � = 0 and � = ∞. Equation (29) implies that the fun
tion , modulo a s
alar fa
tor, 
an be presented as a fun
tion of the similarityvariables, � and z, whi
h are the �rst integrals of the following system ofthe �rst order PDEs:d�� = dtt = dxx ⇒ � = �=t; z = xt:Now denoting � = �(�; z) =  (�; x; t) for the isomonodromy fun
tion (29) and using the Lax pair (2) we arrive at the following Fu
hs{Garnier



PARAMETRIC PAINLEV�E EQUATIONS 153pair [7℄: dd�� = Â�; ddz� = Û�; (30)Â =− Z√1 + w′2 ( 1 w′w′ −1)− w2� (0 −11 0 )− �34�2 ; Û = �( 1 w′w′ −1) ;where we use the notation introdu
ed in (14) and (20).The 
ompatibility 
ondition for the Fu
hs{Garnier pair implies that wsolves Eq. (15). To establish a relation of the fun
tion w(z) in this approa
hwith the third Painlev�e fun
tion we 
an map the Fu
hs{Garnier pair (30)to the 
orresponding Fu
hs{Garnier pair for the third Painlev�e equation inAppendix C of [6℄. Instead of presenting this transformation we 
onsidera slight generalization of our deformation problem:d�d� = (A+ B� + C�2)� ≡ A�; d�dy = �A1�; (31)where A;A1; B; C ∈ sl2(C), and y is a parameter, whi
h is assumed to bean analyti
 fun
tion of the matrix elements of A; A1; B; C. The fa
t thatall 
oeÆ
ient matri
es in system (31) are tra
eless is not a restri
tion inour 
ase, sin
e from the 
ompatibility 
ondition one dedu
e that�ytrB = �ytrC = 0 and �ytrA = trA1;so that this requirement 
an be ful�lled via a transformation of � by as
alar fa
tor. A further study of the 
ompatibility 
ondition for system (31)shows that A = fA1, where f is an arbitrary (analyti
) fun
tion of y and,possibly some of the matrix elements of A; A1; B; C, whi
h are alsoassumed to be analyti
 fun
tions of y. Sin
e our variable y is not �xed yetwe 
an rede�ne (normalize) it as followsy → ỹ; fdy = dỹ; (32)whi
h means that without \loss of generality" we 
an assume that f = 1and keep the same notation. After that we 
an parameterize our sys-tem (31) as follows:A = A1 = (a(y) b′(y)
′(y) −a(y)) ; B = 2�( � −b(y)
(y) −� ) ; C = ��3;



154 A. V. KITAEVwhere �; � ∈ C are parameters and the fun
tions a(y), b(y), and 
(y) solvethe system of ODEs: a′ = a+ 2�(b
)′; (33)b′′ = (1− 4��)b′ − 4�ab; (34)
′′ = (1 + 4��)
′ − 4�a
: (35)Our purpose now is to show that on one hand system (33){(35) 
an beintegrated in terms of the 
omplete third Painlev�e equation (P3) and onthe other hand it 
an be viewed as a generalization of Eq. (15). For thispurpose it is 
onvenient to noti
e that the generating fun
tion for the �rstintegrals for system (33){(35) reads,�y A2 = {A; A} ≡ AA+AA: (36)Taking into a

ount de�nition of A, see (31), we 
an rewrite Eq. (36) asfollows:�y A2 = 2A2; �y {B;A} = {B;A}; �y({C;A}+B2) = {C;A}: (37)In terms of the fun
tions a(y), b(y), 
(y), the �rst two relations in (37)generate the following �rst integrals:
√a2 + b′
′ = ey; (38)2�a+ 
b′ − b
′ = −2�ey; (39)while the last relation in system (37) is equivalent to Eq. (33).We begin with a generalization of Eq. (17). De�ne variable z̃, dz̃ = ady,and integrate Eq. (33), ã = z̃ + 2� b̃
̃; (40)where ã(z̃) = a(y); b̃(z̃) = b(y); and 
̃(z̃) = 
(y): (41)Now we 
an rewrite system (34), (35) in terms of the tilde-variables asfollows:

(z̃ + 2� b̃
̃) b̃′′ = −2�(2� + (̃b
̃)′) b̃′ − 4� b̃; (42)
(z̃ + 2� b̃
̃) 
̃′′ = −2�(−2� + (̃b
̃)′)
̃′ − 4� 
̃: (43)Note that if � = � = 0, then Eq. (39) implies that 
̃ = C̃b̃, where C̃ ∈ Cis a parameter. Now we put C̃ = 1, � = −1=4, and z̃ = z, b̃ = 
̃ = w(z)



PARAMETRIC PAINLEV�E EQUATIONS 155and arrive at Eq. (17). In the 
ase b̃ ≡ 0 or 
̃ ≡ 0, the system redu
es tothe Bessel equation.To 
ope with the general 
ase we rewrite Eqs. (38) and (39) in tilde-variables as follows: ey = (z̃ + 2� b̃ 
̃)√1 + b̃ ′ 
̃ ′; (44)
̃ ′ b̃− b̃ ′ 
̃ = −2�√1 + b̃ ′ 
̃ ′ + 2�: (45)Equations (40), (41), and (44) provide us with the parametri
 represen-tation of solution of system (33), (34), and (35) in terms of solution of the\tilde"-system (42), (43).Integration of the system (42), (43) 
an be redu
ed to a se
ond orderODE, whi
h generalizes equation (17), in the following way. De�ne thepolar 
oordinates b̃ ≡ w̃(z̃)ei�̃(z̃); 
̃ ≡ w̃(z̃)e−i�̃(z̃): (46)As follows from Eq. (45), the fun
tion �̃ = �̃(z̃) 
an be obtained via inte-gration of the following relation
−i�̃ ′ = �w̃ − �√(w̃2 + �2) (1 + w̃′ 2)− �2w̃ (w̃2 + �2) ;where any bran
h of the square root 
an be taken and the fun
tion w̃ =w̃(z̃) is the general solution of the se
ond order ODE,

(w̃′′ + 4�w̃ w̃′ 2 + 1z̃ + 2�w̃2 + �2(w̃′ 2 + 1)− �2w̃(w̃2 + �2) + 2�2w̃(w̃2 + �2)2 · z̃ − 2��2z̃ + 2�w̃2)2= 4�2�2(w̃2 + �2)4 ( z̃ − 2��2z̃ + 2�w̃2)2 ((w̃2 + �2)(w̃′ 2 + 1)− �2): (47)As we see if �� 6= 0, then Eq. (47) is quadrati
 with respe
t to the se
-ond derivative. Most probably there should be another way to redu
e sys-tem (42), (43) to the se
ond order ODE whi
h is linear with respe
t to these
ond derivative. At this stage, we 
onsider Eq. (47) as a generalizationof Eq. (17). In the 
ase �� = 0, Eq. (47) redu
es to the ODEs whi
h are



156 A. V. KITAEVlinear with respe
t to the se
ond derivative:� = 0 ⇒ w̃′′ = −4�w̃ w̃′ 2 + 1z̃ + 2�w̃2 − �2w̃3 · z̃ − 2�w̃2z̃ + 2�w̃2 ; (48)� = 0 ⇒ w̃′′ = −4�w̃ w̃′ 2 + 1z̃ + 2�w̃2 − �2̃w · w̃′ 2 + 1w̃2 + �2 : (49)Now we turn to the redu
tion of system (33){(35) to P3. The easiestway to �nd it is to map system (31) into the Fu
hs{Garnier pair for P3 viathe following transformation of�(y; �) → �̂(tp; �); ey = t2p4 ; � = 2�tp ;where � is a new spe
tral parameter and tp is the argument of P3; and than,after a proper res
aling with �, use a 
orresponding parametrization of theresulting system given either in [6℄ or in [8℄. In the latter referen
e insteadof P3 parametrization is given in terms of the degenerate (
on
uent) �fthPainlev�e equation (P′5). The latter equation is known to be (bi-rationally)equivalent to P3.Below we present parametrization in terms of P′5, without 
onsideringthe mapping � → �̂; instead we just dire
tly reprodu
e the result of [8℄in our 
urrent notation. Turning ba
k to the integrals (38) and (39) anddenoting ẑ = ey; â(ẑ) = a(y); b̂(ẑ) = b(y); 
̂(ẑ) = 
(y); (50)we 
an rewrite them in the new variables as followsâ = ẑ√1− b̂ ′
̂ ′; (51)
̂ ′b̂− b̂ ′
̂ = 2�√1− b̂ ′
̂ ′ + 2�: (52)The system (34), (35) takes the following form:ẑ b̂ ′′ = −4��b̂ ′ − 4�√1− b̂ ′ 
̂ ′ b̂; (53)ẑ 
̂ ′′ = 4��
̂ ′ − 4�√1− b̂ ′ 
̂ ′ 
̂: (54)In the 
ase b̂ ≡ 0 or 
̂ ≡ 0, the system redu
es to the Bessel equation. Ifb̂′ 
̂′ = 1 then solution is given in terms of the elementary fun
tions:b̂ ′ = b0ẑ−4��; 
̂ ′ = ẑ4��=b0;



PARAMETRIC PAINLEV�E EQUATIONS 157where b0 ∈ C is a parameter. Otherwise, the system is equivalent to thedegenerate (
on
uent) �fth Painlev�e equation. To see this we introdu
enew variables V̂ = V̂ (ẑ) and �̂ = �̂(ẑ):b̂ ′ ≡ 2√−V̂1− V̂ ei�̂; 
̂ ′ ≡ 2√−V̂1− V̂ e−i�̂; √1− b̂ ′
̂ ′ ≡ 1 + V̂1− V̂ :The fun
tions b̂ and 
̂ 
an be 
al
ulated as follows:b̂ = ei�̂√
−V̂ ( ẑ V̂ ′4�(1− V̂ ) + �+ �2 − �− �2 V̂) ;
̂ = e−i�̂

√
−V̂ ( ẑ V̂ ′4�(1− V̂ ) − �+ �2 + �− �2 V̂) :The fun
tion �̂ 
an be obtained via integration of the relation,iẑ �̂ ′ = �1− V̂V̂ (�+ � + (� − �)V̂ ) ;where V̂ is the general solution of the degenerate (
on
uent) �fth Painlev�eequation,̂V ′′ = ( 12V̂ + 1V̂ − 1) V̂ ′

2 − V̂ ′ẑ+ (V̂ − 1)2ẑ2 (2�2(�− �)2V̂ − 2�2(� + �)2V̂ )+ 8�̂z V̂ : (55)As long as the solution of the \hat"- or \tilde"-system is obtained one
an 
onstru
t the solution of system (33), (34), (35), by making use of theformulae (50), or (41) and (44), respe
tively. It is also immediate to getthe general solution of the \hat"-system in terms of the \tilde"-one. Sin
eequation (44) 
an be rewritten as follows,ẑ = (z̃ + 2�b̃ 
̃)√1 + b̃ ′ 
̃ ′: (56)We would like however express the solution of the \tilde"-system in termsof the \hat"-system, sin
e the general solution of the latter system is givenin terms of the Painlev�e fun
tions. For this purpose we have to invertrelation (56). To do it one proves the following identity,
√1 + b̃ ′ 
̃ ′ = − 1√1− b̂ ′ 
̂ ′

:



158 A. V. KITAEVUsing it one �nds z̃ = −ẑ√1− b̂ ′ 
̂ ′ − 2�b̂ 
̂: (57)The later equation 
an be rewritten in terms of the Hamiltonian fun
tionfor Eq. (55): z̃ = ẑ Ĥ (q̂ (ẑ); p̂ (ẑ); ẑ); (58)
Ĥ (p̂; q̂; ẑ) ≡ 2�p̂ 2̂z − 2�̂z (� 
oth q̂ + �= sinh q̂ )2 − 
osh q̂q̂ (ẑ) ≡ ln 1 +√V̂1−√V̂ ; p̂ (ẑ) ≡ ẑ V̂ ′4�√V̂ (1− V̂ ) = ẑ q̂ ′ (ẑ)4� ;where q̂ and p̂ are the 
anoni
al variables and variable ẑ is the time. TheHamiltonian fun
tion, Ĥ(ẑ), in the original variables reads,Ĥ(ẑ) ≡ Ĥ (q̂ (ẑ); p̂ (ẑ); ẑ) = ẑ V̂ ′

28�V̂ (1− V̂ )2
− �2ẑ V̂ (�+ � − (� − �)V̂ )2 − 1 + V̂1− V̂ : (59)To 
omplete parametrization of Eq. (47) in terms of P ′5 (55),w̃2 = −

( ẑ V̂ ′4�√V̂ (1− V̂ ))2 + 14V̂ (�+ � − (�− �)V̂ )2 : (60)So, Eqs. (58), (59), and (60) gives parametrization of the general solutionof Eq. (47) in terms of P ′5. Note that in fa
t system (46) de�ne fun
tionw̃ up to the sign. This results in the fa
t that all Eqs. (47), (48), and (49)
an be rewritten in a rational form with respe
t to w̃2.It is easy to derive a generalization of SPE (1) whose similarity solutionsare des
ribed by the parametri
 third Painlev�e equation (47). Consider a\de
oupled" analog of the Zakharov{Shabat pair (2), (3):��x ̃ = Ũ  ̃; ��t ̃ = Ṽ  ̃; (61)Ũ = �f̃ ( g̃ ũxṽx −g̃) ; Ṽ = �( g̃ ũxṽx −g̃)+ 12 (0 −ũṽ 0 )+ �34�: (62)
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ompatibility 
ondition for (61), (62) reads:��t g̃ = ��x (f̃ g̃ − ũṽ2 ) ;ũxt = (f̃ ũ)x + g̃ũ;ṽxt = (f̃ ṽ)x + g̃ṽ: (63)So, we get three equations for four fun
tions: f̃ , g̃, ũ, ṽ. One of thesefun
tions 
an be taken arbitrary, say, if we put g̃ ≡ 1, then f̃ = ũṽ=2 and(63) takes the form of the de
oupled SPE (1):ũxt = ũ+ 12(ũṽũx)x;ṽxt = ṽ + 12(ũṽṽx)x:The similarity redu
tion� ̃� = x ̃x − t ̃t + �2 �3 ̃;redu
es the Zakharov{Shabat pair (61), (62) to the Fu
hs{Garnier one ofthe type (31). The above similarity redu
tion of  ̃ 
an be rewritten interms of the fun
tions f̃ , g̃, ũ, and ṽ as follows:g̃(x; t) = ĝ(z); f̃(x; t) = t2f̂(z); z = xt;ũ(x; t) = t−1+�û(z); ṽ(x; t) = t−1−�v̂(z):5. Further RemarksIn this paper, we obtained a parametri
 P3 or P ′5 equation (47). Al-though this equation is, in some sense, equivalent to the 
orrespondingPainelev�e equation it has absolutely di�erent analyti
 and transformationproperties: The equation does not have Painlev�e property but the 
omplexplain 
an be divided into two domains in one of them \travel" regularsingularities of the type that P3 has at the origin, while in the 
omplimen-tary domain the parametri
 Painlev�e equation might even have Painlev�eproperty, or at least, possess traveling singularities of a simpler type. In
ase the existen
e of the Painlev�e type domain would be 
on�rmed thenone 
an pose in this domain the 
onne
tion problems.If we use formulae for the B�a
klund transformations for P ′5 from the [8℄,then we �nd that the a
tion of these transformations on the parametri




160 A. V. KITAEVPainlev�e equations shifts both dependent and independent variables. Thisfeature was also mentioned for the parametri
 Painlev�e equations 
onsid-ered in [3℄. It would be interesting to 
he
k what types fun
tional-di�eren
eand fun
tional-di�erential equations satisfy \B�a
klund" iterations of theparametri
 Painlev�e fun
tions.>From our derivation we see that one 
an a
tually �nd in�nitely manyparametri
 Painlev�e equations asso
iated with the given Painlev�e equation;the ambiguity is hidden in the fun
tion f (see Eq. (32)) whi
h we put 1\without loss of generality." Although there are many parametri
 Painlev�eequations, whi
h is good sin
e it widen appli
ation of the Painlev�e fun
-tions, the problem of 
lassi�
ation of rational parameterizations for ratio-nal ODEs (rational parametri
 Painlev�e equations) might have an expli
itsolution. More pre
isely, the problem 
an be formulated as follows �nd allequations of the form y′′ = R(y; y′; z) or y′′2 = R(y; y′; z) where R is a ra-tional fun
tion of all its arguments with a nontrivial dependen
e on z, su
hthat the solution y = y(z) has the following parametri
 representation:y = R1(Y; Y ′; Z); z = R2(Y; Y ′; Z); (64)where R1 and R2 are the fun
tions of the same type as R, i.e., rational withrespe
t to all their arguments and the fun
tion Y (Z) is the fun
tion of thePainlev�e type. It is natural to 
all two su
h equations equivalent if theirgeneral solutions are related via birational transformations in the samesense as for the Painlev�e equations. To ex
lude from that de�nition thePainlev�e fun
tions and/or their inverses we 
an require that one or bothfun
tions Ri, i = 1; 2 should have a nontrivial dependen
e on Y or Y ′.We 
an de�ne a notion of equivalen
y of parameterizations: Say, if wehave another parametrization y = R̃1(Ỹ ; Ỹ ′; Z̃) and z = R̃2(Ỹ ; Ỹ ′; Z̃),where Ỹ (Z̃) is a solution of some Painlev�e equation than the latter para-metrization is equivalent to the one given by Eq. (64) if the fun
tionsY (Z) and Ỹ (Z̃) are related with a rational transformation Ỹ = r(Y; Y ′; Z),Z̃ = r0(Z) with some rational fun
tions r1 and r0.Our 
onsideration shows that some \stationary" singular points of theseequations 
an \blow up" produ
ing the non-Painlev�e domains. Co-exis-ten
e of the Painlev�e and non-Painlev�e domains 
ould be a 
hara
teristi
feature for a \dire
t" dete
tion of su
h equations: it 
an be 
alled a partialPainlev�e property. On the other hand some simpler examples of rationalparametri
 Painlev�e equations related with the �rst and se
ond Painlev�e



PARAMETRIC PAINLEV�E EQUATIONS 161equations show existen
e of regular singularities with the rational bran
h-ing moving in the whole 
omplex plain. Understanding of the analyti
alproperties of su
h fun
tions, in parti
ular, the 
onne
tion formulae, mightbe an interesting subje
t for further studies.Referen
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