3auCKu HayIHBIX
cemuHapos [IOMU
Tom 397, 2011 .

M. Fuchs, G. Zhang

ON ENTIRE SOLUTIONS OF THE EQUATIONS
FOR THE DISPLACEMENT FIELDS IN THE
DEFORMATION THEORY OF PLASTICITY WITH

LOGARITHMIC HARDENING

ABSTRACT. Let u : R? — R? denote an entire solution of the ho-
mogeneous Euler-Lagrange equation associated to the energy used
in the deformation theory of plasticity with logarithmic hardening.
If |u(x)| is of slower growth than |z| as || — oo, then u must be

constant. Moreover we show that u is affine if either sup [Vu| < co
R2
or limsup |z|!u(z)| < co.
|@|—o0

In their paper [5], Frehse and Seregin propose to approximate the Henc-
ky model used in perfect plasticity (cf. [4, 11] or [12]) by a variational
problem formulated in terms of the displacement fields, in which the energy
density G(e(u)) is of quadratic growth with respect to the trace of e(u) and
of Llog L-growth with respect to the deviator ¥ (u) = e(u) — (divu)1
of e(u). Here u is a displacement field defined on some region in R”, e(u)
denotes the symmetric part of the Jacobian matrix of v and 1 is the unit
matrix. Modulo physical constants we have in the case of logarithmic hard-
ening

1 .
G(e) = h(|€P]) + 3 (trace ¢)* (1)
for symmetric (n x n)-matrices e, where
h(t) =tln(l+1t), t=0. (2)

Frehse and Seregin discuss solvability of the associated boundary value
problems in suitable weak spaces and prove smoothness of local solutions
at least in the case that n = 2. Later Seregin and the first author (see [7])
established partial regularity in the 3D case.

Key words and phrases: plasticity, logarithmic hardening, deformation theory, entire
solutions.
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A related problem arises in the study of certain models describing the flow
of generalized Newtonian fluids, for which the stress-strain relation takes
the form

TP = DH(e). (3)
If we let

H(e) = h]) (4)
with h defined in equation (2), then (3) is the constitutive law for the
so-called Prandtl-Eyring fluid, which has been the subject of the paper
[7] and also of the monograph [8]. Very recently the authors discussed the
behaviour of entire solutions of this fluid model at least in the stationary
case for two spatial variables and proved Liouville-type results (see [9]).
The purpose of the present paper now is the investigation of planar entire
solutions in the setting of plasticity with logarithmic hardening.

Definition 1. A field u : R? — R? of class C' is an entire local minimizer
of the energy

1o, 9] = / Gle(v)) da (5)
Q

with density G defined according to Eqs. (1) and (2) if for any bounded
domain Q C R? and all fields v : Q — R? such that spt(u —v) is compactly

contained in Q it holds
Iu, Q] < Ifv, Q).

Remark 1. The smoothness assumption concerning w in Definition 1 is

justified by the results in [5].

Remark 2. If u is an entire local I-minimizer, then it holds
/DH({—:D(u)) el (p) dz + /divudivnpdm =0 (6)
Q Q

for any domain Q C R? and all fields ¢ € C}(Q;R?). In equation (6)
the symbol “:” is the scalar product of matrices and H is introduced in

Eq. (4).
Now we can state our main results:
Theorem 1. Let u : R? — R? denote an entire local I-minimizer (cf.

Eq. (5)) in the sense of Definition 1. If u satisfies the asymptotic condition

lim Ju()] =0, (7

|| —oo ||
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then the displacement field u is a constant vector. In particular, the bound-
edness of the field implies its constancy.

The next theorem concerns entire solutions satisfying a global Lipschitz
condition.

Theorem 2. Consider an entire local I-minimizer u : R? — R2 in the
sense of Definition 1. If we know that |Vu| € L>®(R?), then u must be

affine.

Finally we relax the global boundedness of the gradient by imposing a
growth condition on wu:

Theorem 3. If the entire local I-minimizer u : R*> — R? satisfies
limsup |z| ! u(z)| < oo, then u must be affine.

|| —o0

Remark 3. It would be interesting to know what can be said about entire
solutions in the 3D-case. Due to the lack of regularity (cf. [7, 8]) one either
has to deal with weak local minimizers or the smoothness of u has to be
imposed as a severe extra condition. In the latter case we think that for

n = 3 condition (7) has to be replaced by ‘ l‘im L\/‘x_)‘l = 0 in order to
obtain the constancy of u, and this conclusion probably also holds in the
case that lim sup ‘”(—\/‘I—)I < 0o (compare the proof of Theorem 3).

For the proof of Theorem 1 we need two auxiliary results:

Lemma 1. (Korn-type inequality) For fields v : R? — R? with compact
support it holds

/|Vv|2d:c < 2/|8D(v)|2dx. (8)
R2 R2

Korn-type inequalities involving ¢” have been established by Reshetnyak
[13] in a much more general setting. Recently Dain rediscovered these
estimates in the L2-setting (see [3]), and the first author together with
Bildhauer proved variants in the context of Orlicz—Sobolev spaces (cf. [6]).

The next lemma is essentially due to Giaquinta and Modica (com-
pare Lemma 0.5 in [10]), in the formulation given below it corresponds
to Lemma 3.1 in [9].

Lemma 2. Let f, fi, ..., f¢ denote non-negative functions from the space
L%OC(R2) and suppose that we are given exponents ai,...,a¢ > 0. Then
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we can find a number o > 0 depending on a1,...,a; as follows: if for
d € (0,00) it is possible to calculate a constant c(8) > 0 such that the
inequality

¢
/ fdor <6 / fdz+c(8)) R / fjda
Qr(2) Qar(2) =t Qar(2)
holds for any choice of Qr(2) := {x € R? : |z; — z;| < R, i = 1,2}, then
there is a constant ¢ > 0 with the property

¢
/ fdz < CZR*O‘J‘ / fjdx
Qr(2) =t Qar(2)
again for all squares Qgr(z).

Remark 4. Of course Lemma 2 extends to R™, n > 3, replacing squares

by cubes, and it is easy to see that estimate (8) remains valid in higher
dimensions.

Now we pass to the proof of Theorem 1 proceeding in several steps.
Step 1. A growth estimate for the energy

We fix a square Q2r (o) and choose n € Cg(Q2r(z0)) such that 7 =1 on
Qr(20),0 <1 < 1,|Vn| < ¢/R. Then we apply equation (6) by selecting
© =n?*u. We get with H defined in (4)

/ n*DH (e¥(u)) : e (u) dz + / n? (div u)? dr 9)
Q2r(%0) Q2r (o)
=-2 / nDH (P (w)) : (Vn @ u)? dz — 2 / ndivuVn - ude
Q2r(zo) Q2r(z0)

<c| [ (L@ Valluldz+ [ ol diva[Vllul dz
Q2r(z0) Q2r(z0)
Using Young’s inequality we obtain for any d > 0
B (|e” (u)])

2
EIO IR

nh’ (e (W)]) [Vallul < on* (| (w)]) 7 (w)| + 674 [Vl

0l div |[Vallul < 69 (divu)? + 671Vl |uf®.
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Inserting these estimates in inequality (9) and observing that @ < 2, we

deduce after appropriate choice of § and recalling the properties of n

/G(s(u)) A = / [H(ED(U))+%(divu)2 do
Qr(zo) Qr(zo) (10)

< cR7? lu|? dz .
Q2r(20)—Qg(z0)

In particular, if we choose ¢ = 0 and abbreviate
O(R) := sup {|w|_1|u(x)| cxeR?— @R} ,
then (10) implies

/ G (e(w)) dz < cR2O(R)? (11)
Qr

with E}im O(R) = 0 according to our hypothesis (7).

Step 2. Discussion of the second derivatives

Returning to equation (6) and performing an integration by parts we get
fora=1,2and ¢ € C&(Q%R(xo))

0= / D’H (z—:D(u)) (sD(aau), z—:D(np)) dz
)

Q%R(wo

+ / div(0qu) div p dz.
Q3 p(o)

In Eq. (12), we choose ¢ = n?dyu (from now on summation with respect
to a = 1,2), where 7 is as in Step 1 with 2R replaced by %R. From (12) we
easily obtain by applying the Cauchy-Schwarz inequality to the quantity

D2H (P (w)) (1e° (9a), (Vi @ 04u)")
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and appropriate use of Young’s inequality (observing the boundedness of
|D*H (" (u))])

/ D?H (9ae” (1), 8ae® (u)) n? d
Qg r(zo)

+ / 72|V (div u)|? dr < ¢ / |Vn|?|Vul|? dz ,
Q%R(ﬂvo) Q%R(ﬂvo)

hence by the properties of 5

/ D*H (£° (w) (£° (0au), " (04u)) de (13)
Qr(wo)
+ / |V(divuw)|* de < cR™? / |Vul? dz,
Qnlao) Qo)

and inequality (13) holds for all squares Qpr(zo). Note that (13) implies
that entire local minimizers having finite Dirichlet integral must be affine.
This follows by letting R — oo and observing that on the right-hand side
of (13) the domain of integration can be replaced by @3 (o) — @r(zo).
In order to control [ |Vu|? dz we choose ¥ € C}(Q2r(xo)) such that
Qg g(wo)

0<¥ <1, ¥=1o0nQ:x(w) and [V¥| < ¢/R. From estimate (8) in
Lemma 1, we obtain

/ Vul do < c / IV (W) 2 da + / VU2l de

Q%R(wo) Q2r (o) Q2r (o)
< ¢ / 12 (Wu)|? du + / VU2l da
|Q2r (7o) Q2r (o)
< ¢ / W2(eP ()2 do + B2 / luf? da
|Q2r (7o) Q2r (o)
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or by the support properties of ¥

/ |Vul|? d

Qg (o)
(14)
<c / 2P (u)?dr + R / lu|? dx
Qan(20) Qan(20)~Qg (o)

In order to proceed we observe

py_ L oul  oul 1 B
gi;(u) = 5 \ B + 9z, 2(dlvu)(S,j,

hence by the symmetry of e” (u) and the fact that e])(u)d;; = 0

/ U2\l (u)|? dx
Q2r(z0)
1 o [ (Oul 0w . .
= 5 / v {(6xj + 5%‘) (div u)6w}z—:ij (u) dz
Q2r(z0)

— / 0; (‘Ifzeg(u)) W dz .

Q2r (o)

This yields

/ U2l (u)? dx

Q2r(20)

<e / V02| ()| da + / W2 (VL () u] da
Q2r(0) Q2r(x0)
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Vel (u)?

1 D —
<elrt [ wlet@ids+s [T

Q2r (o) Q2r(20)

4571 / ul? (1+ [P (w)]) de
Q2r(z0)
Let w := D*H (eP(u)) (828 (u), 80P (u)). If we combine (13), (14) and

the inequalities from above, we obtain for any 0 > 0 and all squares Q (o)

/wdm+ / |V (divu)|? dz (15)

Qr(zo) Qr(zo)

< c¢|R™ / lu|? dz + R™26 / wdz
Q2r(20) Q2r(%0)

+ R / |u||eP (u)| dx + R72671 / |u|? (1 + |5D(u)|) dx
Q2r(zo0) Q2r(0)
Replacing 6 by ¢’ R? an application of Lemma 2 yields

/wdm—l— / |V (div u)|? dz
Qr(wo) Qr(zo)

<c|R™* / |u|? dx + R™® / lul|e? (u)| dz (15)
Q2r (o) Q2r (o)

dR [P (14 ) do
Q2r(z0)

Let o = 0 and R > 1. From our hypothesis (7) we obtain |u(x)| < ¢R on
Q2r- Therefore (15’) implies

/wdaz+/|V(divu)|2d:U<c

Qr Qr

R*R*+R? |5D(u)|da:]. (16)
/
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Clearly we have (Q* := Q2 N [[eP(w)| 2 1],Q™ :=...)

/k |m—/k |m+/k w)| da
2

< (/1dm>1/2</|a u)|? d:c> +ﬁ/H(gD(u)) dx
O+

<(ﬂ(/H@%w)mym+£§/H@%w)m,

Q2r Qz2r

and if we use (10), we find

/ leP (u)| dz < cR?. (17)

This shows that the right-hand side of (16) stays bounded as R — oo,
which means

/wdm + / |V(divu)* dz < oo . (18)
R2 R2
Step 3. Conclusion

We claim that the integral in (18) vanishes. In order to prove this we
choose zp = 0 and return to inequality (13) recalling that in place of (13)
we actually have

/ |V (divu) |*dz + /wdm <cR™? / |Vu|?*dz .

Qr Qr Q%R —Qr

Let ¥ € C3(Q2r _QR/Z) such that 0 < ¥ <1land ¥ =1on@sp — Qg
together with |V¥| < ¢/R. Observing

/ |Vul*dr < ¢ / |V (Tu)*dr + R~ / lu|? dz

Q%R—QR Q2r—QR/2 Q2r~Qr/2
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we obtain a variant of (14), in which now the term [ 2[eP (u)|? da

Q2R7§R/2

occurs on the right-hand side. Proceeding as before we get in place of (15)

/wd:c+/|V(divu)|2dx

Qr Qr

< c¢|R™ / |u|? de+R™26 / wdz
QZR_ER/z QZR_QR/2

(19)

RS / lul[€P (u)] dz+ R-26~1 / uf? (1 + [P (w)]) de

Q2r—Qrys Q2r—Qry2
Let 0 := 3~ R?. Inequality (19) then yields

. 1
/wd:c+/|V(divu)|zdx< 3 / wdz
Qr

QR Q2R*§R/2

+c |©%(R/2) + O(R/2)R > / 1P (u)| da
Q2r

+0%(R/2)R™* / (1+ [P (u)]) dz| ,
Q2r

(20)

and if we use (17) and (18) together with the hypothesis that R}im O(R) =

0, estimate (20) implies after passing to the limit R — oo that w as well as
V(divu) must vanish, thus Ve(u) = 0. But then it holds VZu = 0, which
means that v is affine and thereby constant on account of our assumption

(7). This completes the proof of Theorem 1.

For proving Theorem 2 we observe that boundedness of |Vu| implies the

estimate

lu(z)] < cR, x € Qar,
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provided R > 1. Using this information we again arrive at inequality (18),
and this estimate can be restated in the form (recall (1) and (2))

/ D2G (e(u)) (ae(u), uc(u)) dz < .

Note that this is also a direct consequence of estimate (13). Using |V?u| <
¢|Ve(u)| together with the boundedness of e(u) we get

/‘VZU‘Z dr < oo. (21)
R2
Similar to equation (12) it holds (a =1, 2)
o—/DG (), 2(9) do

and we may choose ¢ = n28au with n € C}(Q2r) such that n = 1 on Qg,
0<n<land|Vyl <c/R.We get

/ D2G (2 (u)) (Bue(u), Due(w)) n? da

I / DG (£(u)) (Buc(u), Vi @ dou) y da,
Q2:r—Qg
and the boundedness of £(u) yields (recall |VZu| < ¢|Ve(u)|)

/ |V2ul|? de < cR™! / |V2u||Vu| d
QR Q2R*§R

1/2 1/2
< ch( / ‘Vzuf d:v) ( / |Vul® dx) ;

Q2r—Qg Q2r—Qg
hence, by the boundedness of the gradient,

1/2
/ ‘Vzuf dzr < c( / ‘V2u|2 dm) . (22)

Qr Q2r—Qp

On account of (21) the right-hand side of (22) vanishes as R — oo, thus
V2u = 0, which proves Theorem 2. O
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Let us finally discuss the proof of Theorem 3. As remarked in the be-
ginning of the proof of Theorem 2 the growth condition imposed now on
w is still sufficient to get

/ D2G (£(w)) (Bne(u), D)) d < 00 (23)
R2

We return to equation (12) choosing o = 0, R > 1, and select 1 as done
after (12). The Cauchy—Schwarz inequality together with Holder’s estimate
implies (&, := Oau @ Vn?)

/D2G(a(u))(8aa(u),6a5(u)) do = /wdx-l- / IV (div w)[? de
Qr

Qr Qr

(1 wd:c)m( | DH(EPW) (€2,€) dm)m

Q%R*QR Q%RiQR
‘ 1/2 1/2
+< [ |V(divu)|? dw) < [ Va2Vl dw) } ,
Q%R_QR Q%R_QR
hence we find
/wdm+/ IV (divw)|* dz (24)
Qr Qr
1/2 ‘ 1/2
< cR_1< / |Vul|? dm) { / wdz+ / |V (div u)|” da:} ,
Q%R—QR Q%R_QR Q%R_QR

and with (23) and (24) our claim will follow by letting R — oo as soon as
we can show

/ |Vul? de < cR? (25)
Qr
for all R > 1. For proving (25) we recall that by (14) it holds

/ \Vul” dz < ¢ / ? |5D(u)|2 dx + R™? / |u|? dz (26)

Q@ 3R Q2r Q2r —Q% R
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with ¥ defined after (13), and from (26) in combination with our growth
assumption imposed on v we infer that it remains to bound the quantity
[ 9% P (u) ‘Z dz in terms of R?. Proceeding as done after inequality (14)

2R

we find
/qﬂ P ()| d:c<c{ / V02 |2 ()| dar + / \I'2|u||V5D(u)|dx}
Q2r Q2r

i s (] )
x < / lul? (1 + [P (u))) d$>1/2}_
Q2r

On Q2 it holds |u(z)| < ¢R, hence

/ 2 |8D(U,)‘2 dx (27)

c{ / P (u)] dm+R</ (1+ 2 w)) d$>1/2}7
Q2n

2R

where we also made use of (23) to bound the term involving Ve? (u). The
discussion following inequality (16) shows

/ |eP ()| da (28)
Q2r

1/2
< cR / H (z—:D(u)) dx + é H (sD(u)) dz,
Q2r

and if we go back to estimate (10) (being valid without any growth hy-
pothesis imposed on u) we find that now this inequality yields

/ H (z—:D(u)) dr < cR*. (29)

Q2r
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Finally, we combine the inequalities (28) and (29) with the result that

/ 1P (w)| de < cR?, (30)
Q2r

and we see that (27) and (30) imply the correct bound for

/ ? |5D(u)‘2 dz.
Q2r
Thus we have established (25) and the proof of Theorem 3 is complete. [J

Remark 5. We leave it to the reader to discuss Theorem 1, 2, and 3 for
nonlinear Hencky materials, which means that the energy density from
equation (1) is replaced by

W(e) =@ (le”]) + %(tr €)?

for a “general” N-function ® (compare, e.g. [1] for a definition). We refer
to the article [2], where one will find natural hypotheses to be imposed on
® under which one can expect a Liouville-type result.
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