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ON A CANONICAL EXTENSION OF KORN’S FIRST
AND POINCARE’S INEQUALITY TO H(CURL)

ABsTrACT. We prove a Korn-type inequality in }?I(Curl;Q,R?’X?’)
for tensor fields P mapping 2 to R3*3. More precisely, let Q C R3
be a bounded domain with connected Lipschitz boundary 0€2. Then,
there exists a constant ¢ > 0 such that

CHP||L2(Q,R3X3) < HsymPHLZ(QyR3X3) + ||CUI‘1P”L2(97R3><3) (01)

o
holds for all tensor fields P € H(Curl; Q,R3%3), i.e., all
P € H(Curl; Q,R3%3)

with vanishing tangential trace on 0X2. Here, rotation and tangen-
tial trace are defined row-wise. For compatible P (i.e., P = Vu),
Curl P = 0, where v € H1(Q,R3) a vector field having components
Up, for which Vv, are normal at 9, the estimate (0.1) is reduced
to a non-standard variant of the Korn’s first inequality:

cHVqu(Q,Rsm) < HSYIHVUH@(Q,RSN) :

For skew-symmetric P (sym P = 0) the estimate (0.1) generates a
non-standard version of the Poincaré. Therefore, the estimateis a
generalization of two classical inequalities of Poincaré and Korn.

§1. INTRODUCTION: INFINITESIMAL GRADIENT PLASTICITY

The motivation for our new estimate is a formulation of infinitesimal
gradient plasticity [2]. Our model is taken from Neff et al. [9]. Let Q C R3
be a bounded domain. The goal is to find the displacement u : [0, 00) X —
R3 and the possibly non-symmetric plastic distortion tensor P : [0, 00) X
Q — R3¥*3 such that in [0, 00) x

Dive =f, o =2usym(Vu— P)+ Atr(Vu — P)id, (L.1)
Pec®d(¥), % =0—2usymP — pL?Curl Curl P, (1.2)
hold. The system is completed by the boundary conditions
u(t,z) =0, v(z)x P(t,z) =0 VY (t,z) €[0,00) x 0N (1.3)
Key words and phrases: Korn’s inequality, gradient plasticity, theory of Maxwell’s
equations, Helmholtz’ decomposition, Poincaré/Friedrichs type estimate.
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and the initial condition P(0,z) = 0 for all x € Q. The underlying thermo-
dynamic potential including the plastic gradients in form of the dislocation
density tensor Curl P is

[ nlsym(vu - PP
Q

A
+ §| tr(Vu — P)|? — f - u + p|sym P|* + ng| Curl P|%.

Here, u, A\ are the elastic Lamé moduli and ¢ is the symmetric Cauchy
stress tensor. The system is driven by nonzero body forces denoted by f.
The exterior normal to the boundary 912 is denoted by v and the plastic
distortion P is required to satisfy row-wise the homogeneous tangential
boundary condition which means that the boundary 02 is a perfect con-
ductor regarding the plastic distortion. *

Moreover, ® : R3%3 — R3*3 ig the monotone, multivalued flow-function
with ®(0) = 0 and ®(R353) C R¥3. In general, ¥ is not symmetric
even if P is symmetric. Thus, the plastic inhomogeneity is responsible for
the plastic spin (the possible non-symmetry of P). The mathematically
suitable space for symmetric plastic distortion P is the classical space
H(curl; ©2) for each row of P [2,13]. This case appears when choosing @ :
R3><3 — R3><3.

Sym

In the large scale limit L. — 0 we recover a classical elasto-plasticity
model with local kinematic hardening and symmetric plastic strain ep :=
sym P, since then P € R2X3.

Uniqueness of classical solutions for rate-independent and rate-depen-
dent formulations of this model is shown in [9]. The more difficult existence
question for the rate-independent model in terms of a weak reformulation
is addressed in [9]. First numerical results for a simplified rate-independent
irrotational formulation (no plastic spin, i.e., symmetric plastic distortion
P) are presented in [13], cf [19]. In [3] the model has been extended to
rate-independent isotropic hardening based on the concept of a dissipation
function defined in terms of the equivalent plastic strain. From a modeling
point of view, it is strongly preferable to again have only the symmetric
(rate) part of the plastic distortion P appear in the dissipation potential.

The existence and uniqueness can be settled by recasting the model as
a variational inequality, if it is possible to define a bilinear form which

LThis homogeneous tangential boundary condition on P is consistent with v xVu =0
on 02 which follows from u = 0 on 0.
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is coercive with respect to appropriate spaces. This program has been

achieved for other variants of the model in [3]. It had to remain basically

open for the above system (1.1)—(1.3). In this case, the appropriate space
[e]

for the plastic distortion P is the completion Hgym(Curl; Q) of the linear
space

{P € C®(Q,R***) : P, normal at 9Q, n = 1,2,3}

with respect to the norm || - ||, where P, are the columns of P! and
2 2 2
1217 = lsym P2 () + [Curl Pli2(q) -

Despite first appearance, this quadratic form indeed defines a norm on
[e]

Hsym (Curl; Q) since for skew-symmetric tensors the operator Curl con-
trols all derivatives, i.e., the full gradient. This was already mentioned

o]

in [9]. Thus Hgym (Curl; Q) is a Hilbert-space. However, it is not clear that
this space admits a (linear and bounded) tangential trace operator. Since
only [sym P[ 2, appears in [|P]], it is also not clear at all, if the skew-
symmetric part of P is controlled. Therefore, the crucial embedding

Hgym (Curl; Q) C L*(Q)

might fail. As a consequence of our main result of this paper we obtain
that nevertheless

Iflsym(Curl; ) = Ic-)I(Curl; )

holds with equivalent norms in case the domain 2 has a connected Lips-
chitz boundary.

The result of this paper has been announced in [10,11] and a forthcoming
paper [12] will be devoted to the case Q C RV.

For the proof of our main result (0.1) we combine techniques from
electro-magnetic and elastic theory, namely the Helmholtz decomposition,
the Maxwell compactness property and Korn’s first inequality. Their basic
variants are well known results which can be found in many books, e.g.,
in [6] and the literature cited there. More sophisticated and related ver-
sions are presented, e.g., in [14,16-18,23] for Maxwell’s equations and [1,8]
for Korn’s inequality.

The paper at hand is organized as follows: After this preliminary motiva-
tion we introduce our notations, definitions and provide some background
results. In section 3 we give the proof of our main estimate. In the last
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section 4 we establish a connection to a related result by Garroni et al. [4]
for the two-dimensional case.

§2. DEFINITIONS AND PRELIMINARIES

Let 2 be a bounded domain in R? with connected Lipschitz continuous
boundary I' := 0f).

2.1. Functions and vector fields. The usual Lebesgue spaces of square
integrable functions, vector or tensor fields on Q with values in R, R® or
R3*3 respectively, will be denoted by L? (©). Moreover, we introduce the
standard Sobolev spaces

H(grad; Q) = {u € L*() : gradu € L*(Q)},
T 1 R P
H(curl; Q) = {v € L*(Q) : curlv € L*(Q)},
"v”|2—|(curl;Q) = ||U||f2(9) + ||Curlv||ﬁ2(9) )
H(div; Q) = {v € L3(Q) : divv € L*(Q)},
1o i = [0y + Iiv ol
H(grad; ) is often denoted by H!(€). Furthermore, we define their closed

subspaces H(grad; ), H(curl; ) as completition under the respective norms

o
of the scalar resp. vector valued space C*(2) of compactly supported and
smooth test functions resp. vector fields. In the latter Sobolev spaces the
usual homogeneous scalar resp. tangential boundary conditions

ulp=0, vxvpr=0

are generalized, where v denotes the outer unit normal at I'. We note in
passing that v x v|p = 0 is equivalent to 7 - v|p = 0 for all tangential
directions 7 at I', which means that v is normal at I'. Furthermore, we
need the spaces of irrotational or solenoidal vector fields

H(curlp; ) := {v € H(curl; ) : curlv = 0},
Ifl(curlo;Q) ={ve Ifl(curl; Q) : curlv =0},
H(divg; ) := {v € H(div; Q) : divv =0},
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where the index 0 indicates vanishing curl or div, respectively. All these

spaces are Hilbert spaces. E.g., in classical terms we have v € H(curlp; 2),
if and only if

curlv =0, v xwvlp=0.
For an introduction of these spaces see [6, p. 11-12, 148] or [5, p. 26]. The
most important tool for our analysis is the compact embedding

o

H(curl; Q) N H(div; Q) < L*(®),

which is often referred as ‘Maxwell compactness property’, see [6, p. 158]
and [16,18,21,23,24]. A first immediate consequence is that the space of
so called ‘harmonic Dirichlet fields’

H(Q) := H(curly; ) N H(dive; Q)
is finite dimensional. A vector field v belonging to H ({2) means in classical
terms that
curlv =0, dive=0, vxuvlp=0.
The dimension of H () equals the second Betti number of (2, see [6, p. 159]

and [15, Theorem 1]. Since we assume the boundary I' to be connected,
there are no Dirichlet fields besides zero, i.e.,

H(Q) = {0}.

This condition on the domain 2 resp. its boundary I is satisfied e.g. for a
ball or a torus.

By a usual indirect argument we achieve another immediate conse-
quence, see [6, p. 158, Theorem 8.9] or [5, Lemma 3.4]:

Lemma 1. (Maxwell Estimate for Vector Fields) There exists a positive

constant c,,, such that for all vector fields v € H(curl; Q) N H(div; Q)
. 1/2
ol < em(leurlvlz gy + [divolfeg) )/

By definition of the weak divergence, the projection theorem and Rel-
lich’s selection theorem [6, p. 14] we have from [6, p. 148, Theorem 8.3]
or [22, Lemma 3.5], [7, Theorem 3.45]

Lemma 2. (Helmholtz Decomposition for Vector Fields) We have the or-
thogonal decomposition

L2(Q) = grad H(grad; ) @ H(dive; Q).
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2.2. Tensor fields. We extend our calculus to (3 x 3)-tensor (matrix)
fields. For vector fields v with components in H(grad; ) and tensor fields
T with rows in H(curl; ) resp. H(div; ), i.e.,

v=|va|, wvp€ H(grad;N),

T = [Ty T> T3], T, € H(curl; ) resp. H(div; Q)

we define
gradtvl curl’Ty div Ty
Gradv := |grad'vs | = J, = Vo, Curl T := |curl'Ty |, DivT := |divTy |,
gradtvg curltT3 div T3

where J, denotes the Jacobian of v and ? the transpose. We note that
v and DivT are vector fields, whereas 7', Curl T and Gradv are tensor
fields. The corresponding Sobolev spaces will be denoted by H(Grad;2),
H(Grad; ©?), H(Curl; ©2), H(Curl; ), H(Curly; ), H(Curly; ), H(Div; ),
H(Divo; ). As usual, we denote by sym T := 1/2(T + T*) the symmetric
part of a tensor T

Let us now present our three crucial tools to prove the new estimate.
First we have obvious consequences from Lemmas 1 and 2:

Corollary 3. (Maxwell Estimate for Tensor Fields) For all T € H(Curl; Q)N
H(Div; )

: — 1/2

IT] 20y < em (ICWL T2 ) + [Div T g ).

Corollary 4. (Helmholtz Decomposition for Tensor Fields) We have the
orthogonal decomposition

L2(Q) = Grad ISI(Grad; Q) @ H(Divg; Q).

The third important tool is Korn’s first inequality [6, p. 207] or [20, p.
54]:

Lemma 5. (Korn's First Inequality) For all v € H(Grad; 2)
|Grad v > q) < V2 |sym Grad v 2(q) -
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§3. MAIN RESULTS
For tensor fields 7' € H(Curl; ?) we define the semi-norm

1/2
IT] = (lsym Tz gy + Curl T ) )%,

Lemma 6. Let ¢ := max{2,V5c,}. Then, for all T € H(Curl; Q)
ITls 0 < EITI.

Proof. Let T € H(Curl; ). According to Corollary 4 we orthogonally
decompose

T =Gradv + S € Grad ISI(Grad; ) @ H(Divg; 2).
Then, CurlT = Curl S and we observe S € I(-)I(Curl; 1) N H(Divo; Q) since

Grad H(Grad; ) ¢ H(Curly; Q). (3.1)
By Corollary 3 we have
||S|||_2(Q) < Cm ||Cur1T"L2(Q) : (3:2)
Then, by Lemma 5 and (3.2) we obtain easily
17172 () = [Grad offz(q) + IS 20
< 2|sym Grad v|{a () + |SIP2(q) < 4lsym T |72 + 51120 »
which completes the proof. (I

An immediate consequence is

Theorem 7. On H(Curl; Q) the norms |- ||H(Cur1_9) and || - || are equiva-

lent. In particular, || -|| is a norm on H(Curl; Q) and

Je¢>0 VT € H(Curl; ) c||T||H(Cur1;Q) < lsym T2y + [Curl T 2 (g -

3.1. Consequences for irrotational tensors: Korn’s first inequal-
ity. Picking irrotational tensor fields 7" or setting 7" := Grad v, we obtain
by Lemma 6 and (3.1)

Corollary 8. (Korn's First Inequality: Tangential-Variants)
i) ||T||L2(Q) <C|sym T||L2(Q) holds for all tensor fields T € H(Curlp; Q).
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(ii) |Gradv| (g < €lsymGrad o> q, holds for all vector fields v €

H(Grad; Q) with Gradv € ISI(Curlo; ).
(iii) |Gradv| 2y < €[sym Gradv| 2, holds for all vector fields v €

ISI(Grad; 0).

These are different but equivalent versions of Korn’s first inequality from
Lemma 5 with a larger constant ¢, since the boundary I' is connected, i.e.,
H(2) = {0}, and hence

Grad H(Grad; ) = H(Curly; Q).

Thus, e.g., (7i) holds, where the boundary condition means that Grad vy,
n = 1,2,3, are normal at I', which then extends Lemma 5 through the
(apparently) weaker boundary condition.

3.2. Consequences for skew-symmetric tensors: Poincaré’s in-
equality. Taking special skew-symmetric tensor fields

0 0 w Oru —0iu O
T=10 0 0|=2wu, Curll’=]| 0 0 0
—u 0 0 0 —0z3u O2u

with some scalar function u, we get by Lemma 6 since now CurlT is as
good as grad u and by

vaulpo  —viulso 0
VvV X T|3Q = 0 0 0
0 —v3ulsn  2ulan

v X Tlaa = 0 is equivalent to u|sqo = 0

Corollary 9. (Poincaré’s Inequality) For all special skew-symmetric tensor

fields T in H(Curl; Q), i.e., for all functions u € H(grad; Q) with u =T,
luli2(q) < Clgraduf s (g, -
Proof. We have T' € H(Curl; ), if and only if u € H(grad; Q). Moreover,

2 [uli2i) = IT1 2y < & [Curl T2 < 2¢° Jgradulizq,

holds. O
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We note that the latter Corollary also remains true for general skew-
symmetric tensor fields 7' € H(Curl; ) and vector fields v € H(Grad; Q)
with

0 U1 (]

§4. THE TWO-DIMENSIONAL CASE

Let 2 be a bounded domain in R? with connected Lipschitz continuous
boundary I, which is equivalent (in R?) to the topological property that 2
is simply connected. For tensor fields T :  — R2*2 we define analogously
the Curl-operator row-wise by

Ty Tz _ Curl[TnTu]t
To1 T curl[T21T22]t

_ 01112 — 02111
0115 — 02101’
where now curl denotes the two dimensional scalar rotation and CurlT :

) — R? is a vector. With the appropriate changes, Lemma 6 and Theorem
7 hold as well. In particular, there exists a positive constant ¢, such that

CurlT = Curl [

c|T] 20y < Isym T2 (q) + [Curl T 2 g

o
holds for all T' € H(Curl; ).
During the preparation of our paper we got aware that a two-dimensional
related result may be inferred from Garroni et al. [4]. Instead of tangential
boundary conditions v x P|p = 0 they impose the normalization condition

/ skew T = 0. (4.1)
Q

Let us define the total variation measure of the distribution CurlT for
T € L'(Q) by

|CurlT|q := sup (T, CoGradv>L2(Q), CoGradv := [

o
veCH(Q)
”U”LOQ(Q)<1

82 V1 — 61 U1:|

O2v2 — 0112

We note

<T, CoGrad U>L2(Q) = / T11 82 v — T12 81 U1 + T21 62 Vg — T22 61 V2.
Q
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Using partial integration, i.e., (T, CoGrad v}, »(q) = (Curl T, v) 2 q, for v €

CH(Q), it is easy to see that | CurlT|q = |Curl T+ (g if CurlT € LY(Q).
In [4, Theorem 9] it is shown that for  having a Lipschitz boundary and
a special ‘slicing’ property, there exists a constant ¢ > 0, such that

C ||T||L2(Q) < ||SymT||L2(Q) + | CuI‘lT|Q

holds for all T € L*(Q) with (4.1). Their proof uses essentially that in R>
the operators curl and div can be exchanged by a simple rotation, i.e.,
curl [v1, v5]" = div [—vs,v1]". Thus, such a strong result may not be true
in higher space dimensions N > 3 and it is open whether the normaliza-
tion condition (4.1) can be exchanged with the more natural tangential
boundary condition.
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