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ESTIMATES OF DEVIATIONS FROM EXACT
SOLUTION OF THE STOKES PROBLEM IN THE
VORTICITY-VELOCITY-PRESSURE FORMULATION

ABSTRACT. Vorticity-velocity-pressure formulation for the station-
ary Stokes problem in 2D is considered. We analyze the correspond-
ing generalized formulation, establish sufficient conditions that guar-
antee existence of the generalized solution and deduce estimates of
the difference between the exact solution (i.e., exact velocity, vortic-
ity, and pressure) and an arbitrary approximating function (veloc-
ity, vorticity, pressure) that belongs to the corresponding functional
class and satisfies the boundary conditions. For this purpose we use
the method suggested in [10, 12], which is based on transformations
of the integral identity that defines the corresponding generalized
solution.

§1. STATEMENT OF THE PROBLEM

We consider the stationary Stokes problem in a bounded one-connected
domain Q € R?: find a vector-valued function u = (uy,us2) (velocity) and
a scalar function p (pressure) satisfying the relations

—Au+Vp =f in €, (1.1)
divey =0 in Q. (1.2)
We assume that f € L2(Q2), Q has a piecewise smooth boundary I', which
consists of three nonintersecting parts I'g, I, and I',,. On the correspond-
ing parts, the following boundary conditions are imposed (in particular,
such type boundary conditions arise in problems modeling flow of a viscous
incompressible fluid in a pipe, see, e.g., [3]):
0, w-v=0 on Iy, (1.3)
0, p=po on I',

0, w=uwo on I',.
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In (1.3)—(1.5), v and 7, denote the unit normal (outward) and tangential
vectors to I, respectively, and w = curlu := us,; — u; 2. Here and later on
partial derivatives are denoted by comma and subindex, i.e. usp := g_;;’
t,k = 1,2. We assume that pg € L2(I';), and wy € L2(T,). The sets Ty,
I';, and ', may have several disconnected components, which structure

we do not specify. However, throughout this paper it is assumed that

e cither I'y has internal points or I'; has only one connected compo-
nent;

e the angles between adjoining components are strictly lesser than
7w and greater than zero.

§2. CORRECTNESS OF THE PROBLEM

The Stokes system (1.3)—(1.5) can be represented in a different form
(which is called the ”vorticity-velocity-pressure formulation”, see, e.g., [1]).
Now the problem is to find a scalar valued function w (vorticity), a vector-
valued function w (velocity), and a scalar valued function p (pressure)
satisfying in €2 the following relations:

curl*w + Vp = f, (2.1)

w = curlu, .

divu = 0. (2.3)
Here curl*w = (wg2,—w,;) is the operator adjoint to curl. In order to

introduce the corresponding generalized solution, we introduce the spaces
H={w: we H(Q,div) N H(Q,curl), w-v|p,ur, =0, w- T|r,ur, = 0},
and

H?H:{wE]HI: divw = 0},

where the boundary conditions are understood in the generalized sense

and H (Q,div) and H (12, curl) are subspaces of L?(Q2, R?) that contain the

vector valued functions with square summable divergence and rotor, re-

spectively. H is a Hilbert space endowed with the product [(divvdivw +
Q

curlvcurlw) dz. In view of (2.5) this product generates a norm |w|g =
| curl w|| + || divwl]|.
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We multiply (2.1) by w € H, integrate by parts, and use the boundary
conditions (1.3)—(1.5). Then, we arrive at the relation

/w curlw dx

Q

= /[f cw + pdivw]dz — /pow -vdl + /wow -7dl, (24)
Q r, r,
where w-v € Ly(I';) and w-7 € Ly(T',) (see (2.17)). This integral identity

suggests the following generalized formulation of the problem: find v € Hi,
p € Ly(), and w € Ly(2) such that w = curlu, and (2.4) holds for all
w € H.

Below we prove that it is correct in the sense that a generalized solution
exists and is unique. The proof is based upon the estimate of Lo-norm of
a function w from H through Ls;-norms of its divergence and rotor. We
can consider this inequality as a certain generalization of the Poincaré—
Friedrichs inequality.

Theorem 2.1. There exists constant C'pp, depending only on 2, I'y, ',
and I'; such that for all w € H the following inequality is valid

/|w|2 dx < Cpp, /|cu1rlw|2 d:v-l—/|divw|2 de | . (2.5)
Q Q Q

Proof. If 'y = I', then Cpp, can be taken from Friedrichs inequality.
Assume that Ty # ['. To justify the inequality for this case, we consider
the following two boundary value problems:

Ap =divw in Q

Oy (2.6)
90|r0 =0, 90|FT =0, E‘FV =0,
— At = curlw in Q
oY o (2.7)
Ylr, =0, %‘FOZ 3y 0. =0
(]

Generalized solutions of these two problems belong to H!(2) and satisfy
the energy inequalities

[Vell < Cr[l divwl, (2.8)
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VY]l < Cy| curlw], (2.9)
where C; and C, are the constants from Sobolev embedding theorem for
functions vanishing near T'; or T, respectively and || - || denotes the norm

of L2 (Q)
By means of ¢ and 1, we construct the function v = w — Vi — curl* .
Our main goal is to show that

[lo]| < C (]| divw|| + || curlw]|) . (2.10)
Since
lwl < lloll + Vel + [ curl* ¥ = [Jv]| + [ Vel + VY,

the estimates (2.8), (2.9), and (2.10) imply (2.5).
First of all we show that v belongs to a finite dimensional space. By the
construction

divve =0, curlv=0,
(2.11)

U-T}F():O, U-T}FT:0, v-u}ryzo.

Since curlv = 0, there exists a function g € H'(Q2) such that v = Vg
and g satisfies (in the sense of distributions) the following boundary value
problem with mixed Dirichlet—-Neumann boundary conditions:

—Ag =0,

09

dg dg (2.12)
8T|F0: J E|FT: J 5‘1“,,:

Our goal is to describe the set of nontrivial solutions of the above prob-
lem. Assume that meas(I'o UT';) > 0. Any solution of (2.12) that satisfies
the condition %‘f = 0 on a certain measurable boundary part [ satis-
fies the condition g|r = const. Certainly, the constants may be different
for disjoint parts of [. Let the number of disjoint components of I'o U T,
be N. We denote the corresponding components by I';, j = 1,...,N.
Then we can construct N different boundary value problems with Dirichle
boundary conditions (i.e., for the problem i we set g‘rj = 0;j, where §;;

is the Kronecker symbol). Solutions of these problems we denote by g(¥,
i=1,...,N. Since the boundary conditions are linearly independent, the
corresponding solutions functions ¢ are also lineary independent and any
nontrivial solution of (2.12) is a linear combination of g(?).
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N
It is clear that g = > g(®) is a function, which from one hand satisfies
k=1
(2.12) and, on the other hand, g = 1 on 'y U ;. The function g = 1 is
the only one that meets such conditions (indeed, if there would be another
function g satisfying the same conditions then § — g would be a harmonic
function vanishing on a boundary part with nonzero measure, which is im-
possible). It is evident that the only solution is the function that identically
equal to one. Therefore

N
Zg(k)(a:) =1, in Q
k=1

and, consequently,
N
> VgW(z)=0, in Q (2.13)
k=1

All solutions of (2.11) are presented by Vg(*). Then (2.13) shows that
the dimension of a solutions space of (2.11) is smaller or equal to N — 1.
However, the dimension can not be smaller then IV — 1. Indeed, otherwise
we have

Z V¥ () =0, in Q.

kEN

for some |[N| < N — 1 where not all ¢ are equal to zero. Therefore,

Z crg®(z)=¢, in Q.
kEN

The constant ¢ in the right-hand side of the equality cannot be equal to
zero (because g\®)|p, =1 for k =1,...,N). On the other hand, it cannot
be nonzero (because g®)|p, =0if k€ N, 1 ¢ N).

It remains to consider the case I' = I';. In this case, (2.12) has only
one nontrivial solution g = 1, which means that (2.11) has only trivial
solutions.

We require from the sets g, and [, that either [I'g| > 0 or I'; has only
one connected component. In the second case, the space of solutions of
(2.9) is empty.

In the first case v belongs to a finite dimensional space where all the
norms are equivalent. In view of this fact, ||Vg|| can be estimated through-
out ||g—fb||_17ro. We recall that v = w—Ve—curl* ¢, v = Vg, and w-v =0

2
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on I'g, wherefrom we find that

oy Op 00

aylro = _%h“o + o7 |F0' (214)
Then
s _[oe] |2
on —%,Fo = ov —%,Fo or —%,Fo

< Co[[Vell + Vo) < Co(Cr + Cu)([| div wl| + [ curlwl]),  (2.15)

where C, is a constant from the trace embedding theorem (H~/?(I'y) C
L,(9)) and in the last inequality we have used (2.8)—(2.9).

Remark 2.1. There exist a constant C such that

lwll 1, o < Cs(llcurlw]® + || divew|)

for all w € H and s < sg. Here sp is a constant, which depends on angles
between adjoining smooth components of the boundary.

Proof. We use the decomposition of w into three parts
w =V + curl* ¢y + Vg.

The functions ¢ and ¢ are subject to (2.6), (2.7), for which it is known
that (see [7, 5])

IVellytso + 1VYlly 450 < Ol divwl| + || curlw]]).

Since the function g (as we have proved in the last theorem) belongs
to finite-dimension space, we take into account (2.14), rewrite (2.15), and
obtain

99
AVl 1n < | 32

1, 1
S,Fo al/ S7F0 87— S7F0
< Cs(IVelly o0 + VPl 1 45,0) < CC([divw| + [ curlw])), (2.16)

where Cj is a constant in the trace embedding (H*(T'o) ¢ HY/?t5(Q)). O

Corollary 2.1. If w € H then there exist trace w on I' and w|p € Ly(T)
lw|} < Cr(|| curlw||® + || divw]|?). (2.17)
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For proving existence we first consider (2.4) (where w = curlu and

u € H) on test functions w € H, which leads to the integral identity

/ curl u curl w dx
Q

:/f-wdx—/pow-udf+/w0w-rdf Yw € H. (2.18)
Q

. r,

We note that the left-hand side of (2.18) defines an inner product in ]ﬁl
and the right-hand side of (2.18) is a continuous linear functional over HC-)H

Therefore, there exists u € H such that (2.18) holds for all w € H and
w = curlu. It remains to determine the pressure.

In the case |I';| = 0, we can take test-functions w € HC-)H vanishing on the
boundary of Q. Then, (2.18) can be rewritten in the form

/curlucurlwd:c—/f-wdx:(l

Q Q

which means that there exist p € Lo(Q) such that the equation
—Au + Vp = f holds in the sense of distributions (see [6]), i.e.,

/(curlucurlw —frw—pdivw)dzr =0 VYw € H}(Q,R*)NH, (2.19)
Q
where H} denotes the subspace of H' containing the functions vanishing
on I'. Henceforth, we use the following Lemma ([6]).

Lemma 2.1. Let g € L2(Q2), a € H%(F,Rz), and the compatibility con-

dition
/g(x)dm :/a-uds

Q r

holds. Then there exists a vector valued function w, € H'(Q,R?) such

that
divwy, =g z€Q,

Wy = @ HASS 60, (220)

Vw2 < (llgl? + all3 1) -
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Remark 2.2. The constant inverse to & is the constant Crpp in the so-
called Ladyzhenskaya—Babuska—Brezzi condition, which is often used in
the analysis of boundary value problems for incompressible viscous fluids.

To obtain (2.4) from (2.18) and (2.19) we use Lemma 2.1, which shows
that an arbitrary w € H can be presented in the form w = wg + w1, where

{ divwgy = 0, { divw; = divw,

w0|aQ:w' w1|8§2:0'

Since |I';] = 0 and w € H, we see that w-v = 0 on I'. Hence, the

compatibility condition holds for both problems and, therefore, wg € ]ﬁl
and w; € H NH exists.

Combining (2.18) and (2.19) written for wy and wy we arrive at (2.4)
for w.

In the case [I';| > 0, we use Lemma 2.1 in the following form. We fix
some continuous function ¢(x) such that ¢(z) € [0,1] in Q, ¢ vanishes on
I’ everywhere except I';, and the trace on I'; belongs to C§°(I';). Then
for arbitrary ¢ € L2(2) we can find a function w, such that

divw, = ¢ in €, (2.21)
wg =vegyp on I (2.22)
where
~1
Cy = /<de /qdm,
T, Q

so that the compatibility condition holds.
Counsider the functional G(g) : Ly — R defined by the relation

G(q) = /curlucurlwq dz — /f ~wq dx + /powq -vdl — /wowq -7dl.
Q Q . r,
We note that the problem (2.21)—(2.22) may have different solutions. If wg

and wg» are such solutions, then w = wy —wy» € ]ﬁl (indeed divw = 0 and
the boundary conditions holds). Hence, (2.18) is valid for w, which means
that the values of G(¢) do not depend on the particular choice of wy.
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Evidently, G(q) is a linear functional. In view of the estimates

1G(q)| < [ Vwyll(| curlul| + /Cprrllfl + v/Cr(Ipoll + llwol))),

IVwgll < VE(lall + cqllvell2,r),
-1

¢ < gl / pdl| 102,
r,

it is bounded. Hence, by Riesz theorem there exists (unique) p € Ly(2)
such that

G(q) :/qu:c :/diqupd:v.
Q Q

In other words,

/curlucurlwqda:—/f-wqu
Q

Q
+/p0wq-udf—/w0wq ~Tdl = /diqupd:c. (2.23)
T r, Q

Now, we end up the proof as follows. For an arbitrary w € H, we
construct wgiy» (which means that we take ¢ = divw in (2.21)—(2.22)).

Since wy = W — Waivw € H we can use it in (2.18). We combine (2.23) and
(2.18) written for waiy . and wp, respectively. Then, we arrive at (2.4) for
w € H.

Let us deduce the energy estimates. We set in (2.4) w = u and obtain
/|w|2d:v:/f-udx—/pou-udl"—l—/wou-TdF.
Q Q r. r,
Using Holder inequality, Theorem 2.1 and (2.17) we arrive at
lwll* < 2[Cpr IFII* + Cr(llpoll* + llwol*)]- (2.24)
Since curlu = w, divu = 0, we use Theorem 2.1 and obtain

[ull* < Cpprlwl* < 2Cpr, [Cpr, | FII* + Cr(lpoll® + llwol*)].  (2.25)
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Estimates for the pressure can be derived with the help of Lemma 2.1.
We note that if |['z| # 0, then L2(£2) should be selected as the space for

pressure. If |T';| =0, I(jz ={f€Ly: [ f(z)dez =0} is the proper space.
Q

First, we deduce the estimate for the function

]_ o
F—p_ — Ly.
pP=p |Q|Q/p(fv)dfv€ 2

By Lemma 2.1, we can find w; € Hj(Q,R?) such that divw; = p and
[Vwg||* < & ||p]|>. Plugging wj into (2.4), we obtain

/p dm—/wcurlw,;dw—/f-w,;daz
Q

and, therefore,

[ 7 do <l curluwsl) + £ s

Q

< (lwll+ vV Cprr | FIDI curlwg|
< (Il + VCprelfFIDVEIR-  (2:26)

We divide both parts by ||p||, use (2.24), and arrive at the estimate
151 < 36(Crr, | FII* + Crllpoll* + llwol*)) (2.27)

Uniqueness of the solutions to the Stokes problem in the vorticity-velocity-
pressure formulation is a consequence of (2.24), (2.25), and (2.27). Indeed,
if one takes f = 0, po = 0, wg = 0, then by these estimates we conclude
that wu =0, w =0, and p = p where p = ﬁfp(x)d:c

Q

Therefore, (2.4) implies
0= /ﬁdivwdw :ﬁ/w-l/dl“.
Q r,

Taking w € H such that f w-vdl # 0, we find that p = 0.

Assume that |T';| # 0 Then (2.27) can be improved in a sense that p
can be replaced by p.
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We add the following integration by parts formula to the right-hand

side of (2.4)
—c/divwdx: —c/w-l/dI‘,
Q

r

and find that

/wcurlwdm:/[f-w—l—(p—c)divw]da:

Q Q

—/(po—C)w-udI‘+/wow~TdF. (2.28)

I, T,
Now, we apply Lemma 2.1 to the following problem

divw, =p—c in €, (2.29)
wp = Ve on I, (2.30)

where ¢(z) is a continuous function such that 1 > ¢(z) > 0 in 2, vanishes
on I' everywhere except I';, and the trace on I'; belongs to C3°(I';). If

c= (9l + [ gy [pa.
r, Q
then the compatibility condition holds. By Lemma 2.1, we know that
IVwpll* < & (llp = ell* + ¢*lvelli r)- (2.31)
Plugging w,, into (2.28), we find that

/(p —c)*dx — /(po —c)epdl = /(wcurlwp — fwpy)dx.

Q T, Q
Therefore,

Ip —cl? +02/<Pdf < [lwlll curlwy || + || [ [[wp|l +C/po<de,
I, r,
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and using Poincaré-Friedrichs inequality (2.5) and Holder inequality, we
arrive at the relation

||p—0||2+c2/<de<

I,
1
< (lwll + vV CrrelFINVE(lp = ¢l + cllvpllyzr, ) +clpollIT-|2,  (2.32)

where we have estimated || curlw,|| with the help of (2.31).
If we select ¢ such that [ ¢dI' > 1|I'-|, then, dividing by the square
r

-

root, of the left-hand side of (2.32), we obtain
1/2

lp—cl|* + c2/<de (2.33)
I,

—1/2
< (lwll + VCrre fINVE <1 + < /sodF) ||V@||1/2,rf> +v2]|po]|-
r

-

Note that

lpl* < llp = ell” +¢*(Q) < (L+2QIT-7H) | lp = el” + ¢ /wdl“

I
These two inequalities together with (2.24) lead to
I < e(, L7, 6) (Crrell £1? + Cr(llwoll* + [lpoll*)), (2.34)
where
c(Q,Lry0) = 41+ 2Q |- (1+ Do 7Hlwell 1) (2.35)

§3. ESTIMATES OF DEVIATIONS FROM THE EXACT SOLUTION FOR
DIVERGENCE FREE FUNCTIONS

Let v € ]1(-)}1, be an approximation of u, w = curlv and ¢ be an approx-
imation of p satisfying the prescribed boundary conditions. Estimates of
the difference between v and u can be derived with the help of special type
transformations of the integral identity (2.4). We note that this method
has been earlier applied to the classical statement of the Stokes problem
in [11], generalized Stokes problem in [13], evolutionary Stokes problem in
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[9], and some classes of nonlinear models in the theory of viscous incom-
pressible fluids in [4].

We insert the function v into the integral identity (2.4) and exploit two
integration by parts relations (where ¢ € H(Q) and & € H'(Q, R?))

/o’icurlwd:c:/w-curl*@d$+/@w-7'df, Vw € H(,curl),

Q Q r
/Vq-wda::—/qdivwdaz+/qw-udl", Vw e H(Q,div),
Q Q r

which are naturally linked with the differential operators involved in the
problem statement.

We obtain
/(w — w) curlw dx
o)

:/((f—Vq—curl*@).w+(p—q—c)divw—(fu—fu)curlw)da:
Q
_/[(p—q—c)w'lf—(w—o’i)w-r]df. (3.1)
r

We set in (3.1) ¢ =0, w = u — v, and take into account that
curl(u —v) =w — @, div(u —v) = 0.

We have
/|w—o~J|2da: = /(<f—Vq—curl*@> (u=0) = (@ - B)(w - @) de.
Q Q

We apply Theorem 2.1 for the function u — v, which yields
[u—vl| < Cprrllw —a.
Hence,
|w -l < M[f,q,&,], (3.2)
where
M(f,q,@,0] = [|w =& + Cpp,|f — Vg — curl” &,
which is valid for any ¢,& € H', and v satisfying (1.2).
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Now we deduce estimates of the deviation from p. For this purpose, we
use Lemma 2.1 with w,,, such that divw,, = p — ¢ — ¢, where

-1

c= |Q|+/<de /(p—q)da:.

I, Q

We use such a function in (3.1) and obtain

/(w —w) curlwyy de = / [(f = Vg — curl” @) - wp,

Q Q

— (@ — @) curlwyy| dz + |[p—q— ||’ + cz/godF. (3.3)
r-

Therefore,

||p—q—c||2+c2/sodr
r,

< (VCrrllf = Va = curl" ol + |w =& + |5 = 3] ) lcurlw, . (3.4)
Then, we use Lemma 2.1 to estimate || curl wp,|| as follows
Jcurlwg|* < (Ilp—a = cl* + welor)
By (3.2) we estimate ||w — @|| and find that

1 1/2
(1= a=cl?+ 3ei0n1) < <||p—q—c||2+c2/sodr>
r

T

< (2v/Crrllf - Vg - wrl* & + 25 - 3 )

“1/2
X \/E<1 + (/‘Pdr> ||V‘P||1/27r>- (3.5)
I,

lp = ¢ = ¢l < 2M[f,q,5,8]VE1 + L7 | vl /2r),

el < 2V2|0, |72 Mf, 0,0, Q1VE(L + [Tr | vell20)-

1/2

Hence,
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Since ||lp—q| < |lp — ¢ — || + ¢|9?|, we finally arrive at the estimate
lp—all < (@7, 0)M[f,q,&,&], (3.6)
where ¢(2,T;, ¢) determined by (2.35).
Finally, we note that the deviation estimates discussed in this section
can be extended to non solenoidal functions. Let 7 € H, be an approxima-

tion of u, and @ = curl ¥, w = u — U and ¢ be the same as before. It is easy
to see that

lw — @] < ||w = curlw|| + || curlv — curlD]|

< M|f,q,@,curlv] + ||v — 0] + || curlv — curl ]|,

where 7 is an arbitrary vector valued function in ]1(-)}1 Since
| curlv — @|| < || curl® — & + || curlv — curlg]|,
we find that
lw—@| < M[f,q,&,curlv] + 2| curl(v — v)]|. (3.7)

It is clear that the last term is estimated from above by ||V (v — )|, which
leads to the estimate

lw—@| < M[f,q,@,curlv] + 2&]| divT]|. (3.8)

Now the estimate of ||u — ¥|| readily follows from (2.5). Estimates for the
pressure can be deduced with the help of the same method that has been
used for solenoidal fields.

The authors are grateful to N. D. Filonov for helpful comments on the
Poincaré—Friedrichs inequality.
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