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V. Vyalov

ON THE LOCAL SMOOTHNESS OF WEAK
SOLUTIONS TO THE MHD SYSTEM NEAR THE
BOUNDARY

ABSTRACT. We establish conditions sufficient for local regularity of
the siutable weak solutions to the MHD system near the plane part
of the boundary.

§1. INTRODUCTION

Assume that Q@ C R? is a C2 - smooth bounded domain and Q7 =
Q x (0,7). In this paper, we investigate e boundary regularity of solutions
to the system of magnetohydrodynamics (the MHD equations):

Ov+(v-V)v—Av+Vp=rot H x H .

t ( ) divv:Op } in Qr, (1)
0:H +rotrot H = rot(v x H .
t divH = 0 | )} in Q- @)

Here, unknowns are the velocity field v : Q7 — R3, pressure p : Q7 — R,
and the magnetic field H : Q7 — R3. We impose the boundary conditions:

vlsax,r) =0, Hylsaxo,r =0, (rot H):|lsaxo,r) =0, (3)
where by v is the outword unit normal to 92, H, = H - v, and (rot H), =
rot H — v(rot H - v). We introduce the following definition:

Definition. Assume D’ C 09Q. The functions (v, H,p) are called a boundary
suitable weak solution to the system (1), (2) near Tr =T x (0,T) if

1) v € Lyo(Qr) N Wy °(Qr) N Wg’é (Qr),
He L2,OO(QT) N WQLO(QT)a
2) peLy(@r)NWs5(Qr),
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3) dive=0, divH=0 ae in Qr,
4) wvlpn =0, H,|sq =0 in the sense of traces,
5) for any w € Ly(RY), the functions

tl—>/v(:c,t)-w($)dx and tH/H(x,t)-w(x)dx
Q Q

are continuous,
6) (v, H) satisfy the following integral identities: for any t € [0, T

/ v(z,t) - n(z,t) de —/ vo(z) - n(x,0) de

Q Q
t
+// (—v-@m—l—(Vu—v@v#—H@H):
0 Q
1,
Vi~ (p+ 5 |H] )dlvn) dedt = 0,
for all nEWé’l(Qt) such that 1]sqx 0,5y = 0,
2

/H(m,t)-w(x,t)dx _ / Ho() - (x, 0) da
Q

Q

t
+// (—H-é)tw-l-rotH-roth—(vxH)-rotw)dxdt:(),
0O

for all o € W;’l(Qt) such that ¥, |sax 0, = 0.
2
7) For every zo = (zo,to0) € 'y such that

QR(:U()) X (to — R2,t0) C QT
and for any

C S CSO(BR(ZII()) X (to — RZ,to])

such that % = 0, the following “local energy inequality near
I'r” holds:
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sup [ (1o + |HP) ds
tE(to—Rz,to)

r(2o)

to
+2/ /C(|Vv|2+|rotH|2)d:cdt

to*RZ QR(I[))

to
< jof? + [H2) (01 + AQ) dadt
Juad, (G20

to (4)
+/ / (Ivf? +25)v - V¢ dadt

to—R? QR(Z())

—2 f H® H) : V*(dzdt
[ [ @emivi

to—R2 QR(wo)

to
+2 / / (vx H)(V( x H) dx dt.
to*RZ QR(I[))
Also, we note that the following identity holds

to

(v x H)(VC x H) da dt
to—R2 QR(Io)
to tO

_ / /(v-V§)|H|2da:dt— / /(v-H)(H-VC)dmdt.

to—R2 QR(wo) to—R? QR(Z())

Here, Ls (Qr) is the anisotropic Lebesgque space equipped with the norm

T
Lo(Qr) = (/ (Q/If(a:,t)lsda:)l/s dt)l/l_
0

/]
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Henceforth, we use the following notation for the functional spaces:
Wi (Qr) = Li(0, T; W) = {u € Loy(Qr) - Vu € Lay(Qr)},
W2 Qr) = {u e W' (Qr) = VPu, dpu € Liy(Q1)},

WAQ) = {ue WHQ) : ulon =0},

and the following notation for the norms:

lellwrog, = lulle. @) + IVUllL. i@r)

L, (Qr) + ||6tu|

lulwzp(@r) = lellwipoor +1V7ul Lo i(@r)-

Denote B(zo,r) the open ball in R? of radius r centered at 2o and denote
by BT (xq,r) the half-ball {x € B(xo,r) | z3 > 0}. For zg = (zo, to) denote
Q(z0,7) = B(xo,r) % (to — 1%, t0), QT (20,7) = BT (z0,7) X (to — r2,t0).
In this paper we shall use the abbreviations: B(r) = B(0,r), B*(r) =
B*(0,r) etc, B= B(1), Bt = B*(1) etc.

§2. MAIN RESULTS

Our work deals with the criteria of local regularity of suitable weak
solutions to the MHD system near the plane part of the boundary. In [9]
the following results were obtained.

Theorem 2.1. There exists an absolute constant €, > 0 with the following
property. Assume (v, H,p) is a boundary suitable weak solution in Qr and
assume zg = (xo,to) € 0N x (0,T) is such that xo belongs to the plane part
of OQ. If there exists ro > 0 such that Q% (29,70) C Q1 and

1
-z / ( |U|3+|H|3+|p|% )dmdt < €y
0Q+(Zo77‘0)

then the functions v and H are Hélder continuous on Q% (2o, 2.

Theorem 2.2. For any K > 0 there exists eo(K) > 0 with the following
property. Assume (v, H,p) is a boundary suitable weak solution in Qr and
assume zo = (xo,to) € 0N x (0,T) is such that xo belongs to the plane part
of 00. If

1 1/2
limsup( - / |VH|? dx dt ) < K (5)

r—0
Q(z0,7)
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and . 1
limsup( - / |Vv|? de dt ) < €0, (6)
r—0 r
Q(zo,7)

then there exists p, > 0 such that the functions v and H are Hdélder con-
tinuous on the closure of Q% (29, ps).

Let us comment on the main differences between these theorems. The
statement of the theorem 2.1 contains smallness conditions on the three
functionals, but these conditions have to hold only for one value of cylinder
radius. In Theorem 2.2, we have conditions for all sufficiently small values
of radius, but smallness condition (6) is imposed only on velocity v.

To describe more conditions of local regularity we need the following
notations

1 1/2
- |Vo|? dz dt ) ,
r

()
2
\VH|? dz dt) ,

Q+r)

1/2
swp [ efay)”
te T20)

Bt (r)
1/2
sy [ e
te T20)
Bt (r)
1/
|U|qdydt) q,

1
r

=N | =

=N | =

1
754
Q+(r)

1 1/
— / \H|" do dt) !
.

Qt(r)

1 3
r_Z/ — [Plp+ ()] dydt) :

=07
= (
= (
= (
= (
= (
= (

Dsm:R%%(/o( [ 1ot )y

—r2  Bt(r)
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C(r) =Cs(r), F(r)=Fs(r), Du(r)=Dg(r).

Note that in the equations (1) (2), these functionals and statements of
the previous theorems are invariant under the scaling transformations

vp(y,5) = pu(py + o, p°s + to),
H,(y,s) = pH(py + w0, p*s + to), (8)
Po(y,s) = P*plpy + w0, p°s + to).

We use the approach wich was originally developed in [4] for the Navier—
Stokes equations (and later it was used also in [2]). According to this ap-
proach the regularity of solutions follows if one of the functionals (7) is
bounded uniformly with respect to r and additionally one of these func-
tionals is small only for a single sufficiently small value of the radius. Our
goal is to obtain the same result for the solutions to the MHD system.

The main result of our work is the following theorem, that is “interpo-
lation” of Theorems 2.1 and 2.2.

Theorem 2.3. For arbitrary K > 0 there ezxists a constant €1(K) > 0
with the following property: let (v, H,p) be a suitable weak solution to the
MHD system in QT and zo = (z9,t9) € 0N x (0,T), where xy belongs to
the plane part of 0. If

| s 1 12
timsup / ol dide )"+ ( / (P dedt ) < K (9)

. Q*(zom) Q+ (zom)

and one of the three following conditions holds
1 1/2
lim inf ( - / |Vo|? dz dt ) <e1,
r—0 r
Q*(z0,r)

o 1 5 1/2
hgl_}(r)lf( = sup / |v|* da dt ) <e1, (10)

T —r2<t<0
Bt (zq,r)

1 1/3
liminf( - / |v|? dz dt ) < ey,
r—0 r
QT (z0,r)

then there exists p. > 0 such that the functions v and H are Hélder con-
tinuous on the closure of Q% (29, ps).
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Note that it is possible to prove a lot of analogues of theorem 2.3. Gen-
erally the proof consist from two steps. Step one is the proof of bounded-
ness of energy functionals (7). Usually, this procedure is sufficient to have
boundedness condition for one functional depending on v and for one de-
pending on H. In our work, section 4 is focused on this step. Also, we will
use estimates for magnetic component H, that can be obtained if we con-
sider equation (2) as the heat equation with lower order terms depending
on v. These inequalities are proved in section 3.

The second step, is to prove regularity if all the functionals (7) are
bounded and one functionals on v is small for a sufficiently small value of
r. This result can be found in section 5.

§3. ESTIMATES OF SOLUTIONS TO THE HEAT EQUATION

In this section, we study solutions of the heat equations with the lower

order terms:
OH — AH = divv@ H—-H®v) in Q7.
U|1:3=0 = 07
H3|CE3=0 =0, Ha73|w3=0 =0, a=12.

Namely, we assume the functions (v, H) possess the following properties:
v HEWQT, (11)
V|gs=0 = 0, Hslzs—0 = 0 in the sense of traces,

for any € C§°(Q; R?) such that n3|,,—0 = 0 the following integral identity
holds

/(—H-am+VH:Vn) dodt = —/G:Vndxdt, 12)
Qt Qt
here G = v® H — H®wv, and

dive =0, divH =0 ae.in Q7. (13)

Lemma 3.1. Assume that the conditions (11)—(13) hold. Then, for any
0<r<1and0<0<1 the following estimate holds

Fy(0r) < e Fy(r) + 0~ 2C(r) AL (r). (14)

Proof. Denote by v* and H* the extensions of functions v and H from Q*

onto Q. Fix arbitrary r € (0,1) and let ( € C*°(Q) be a cut off function
such that ¢ = 1 on Q(r) and supp( C B x (—1,0]. Denote II = R3 x
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(—1,0) and denote by G the function which coincides with G* on
additionally possesses the following properties: G e Wl1 0( )N

G is compactly supported in II, and
1Glzg ,an < llGllLg @) < €ellGlig @+ (15)
We decompose H* as N
H* =H +H,
where H is a solution of the Cauchy problem for the heat equation
{ &H—AH = divG  in I,

L 16
H|t=71 = 07 ( )

defined by the formula H =TxdivG = —VI‘*@, where I is the fundamen-
tal solution of the heat operator. The function H satisfies the homogeneous
heat equation
OGH—-AH=0 in Q%) (17)
Take arbitrary 6 € (0,3). We estimate |[H||1,(q+(gr)) in the following
way

IH | pa@tory < 1H N pa@ery < IHlpa@ory) + 1H La@rm)s
(18)
For ||H||L2 Q(or)) We have

IHl Lo(@or)) < € ||H||L2 (z)- (19)

2

As H satisfies (17) by local estimate of the maximum of H via its Ly—norm
we obtain

1 La@iomy < ¢ 62 [HllLyorz)) R (20)
<e 68 (1H ooy + 1H Lo@(z))
So, we need to estimate ||H||L2 (1)) As singular integrals are bounded

on the anisotropic Lesbegue space Ls 1 (see, for example, [8]) for the con-
volution h = I x G we obtain the estimate

||h||wg>12(Q(r)) < C||G||L%2(H)
g,

On the other hand, from the 3D- parabolic imbedding theorem (see [1])

3 2 3 2
2,1 1,0
W2HQ) — W0(Q 1-(2+2-2-Z) >0,
s7l() p,q() as (S l P q) 0
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forp=¢=2and s = g,l:2andforflz—VEweobtain
2200 < € 1GllLg ,a-

We note that the constant ¢ in this inequality does not depend on 7. Taking
into account (15), we arrive at the estimate

2@y < ¢ ||G||L%‘2(Q+(§))- (21)
From the definition of G we obtain
0 3
||G||L% L(@+(5) SC / lo® HI, 5+ (/2 dt
? 5
_T2/4
1
0 2
< Il e 1H 1B oy (22)
7‘2

0
3
< ||H||2,oo,Q+(r) (/ ||U||§,B+(r)dt <r2C(r)Ax(r).
7’2

Combining inequalities (20)-(22), we will get the statement of lemma. O

Using interpolation inequality (see for example (24) below) for C(r) in
the right hand side (14), we obtain inequality (14) in another form

Corollary 3.1. Assume that conditions (11)-(13) hold. Then for any
0<r<1and0<0<1 the following estimate holds

Fy(0r) < 0 Fy(r) + 0 2B (r) A3 (r) A, (r). (23)

§4. BOUNDEDNESS OF ENERGY FUNCTIONALS

In this section we derive estimates of energy functionals which allow us
to obtain uniform boundedness (with respect to the radius) of all function-
als (7) if boundedness of some of them is known.

Note that one can prove a group of estimates that are the consequences
of Holder inequality, embedding theorem and interpolation inequality.

Cr) < A*(ME(r),  F(r) < AZ()[E2(r) + FE(n)],  (24)
D(r) < ¢Di(r), Di(r) < ¢Ds(r), Vs>1. (25)
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First of all we prove the decay estimate for the pressure

Lemma 4.1. If v,p, H are the suitable weak solution near the boundary
to the MHD equations in Q%, then for any 0 <r <1 w0 < 0 < 1 the
following estimate holds:

Dy (6r) < cb” (Dyz (1) + E(r))
+¢(6) (E(r)A% (NCE(r) + B, (r)AZ (r)F? (r)) .

“Im

(26)

Proof. In order to obtain (26) we apply the method developed in [3, 5],
see also [6]. Denote II, = R3 x (—r?,0). We fix r € (0,1] and 6 € (0, 3)
and define a function g : ILF — R3 by the formula

[ rotHxH—(v-V)v, in QF(r),
v = { 0, in IG5\ Q*(r)

Then we decompose v and p as
v =040, p=Dp+p

where (0, D) is a solution of the Stokes initial boundary value problem in
a half-space

: +

divo =0 I

ﬁ|t:0 = 07 6|Z3:0 = 07

{ 8ﬁ—Aﬁ+V;ﬁ =g,

and (v,p) is a solution of the homogeneous Stokes system in Q% (r):
0w —Av+Vp = 0,
divo =0

Bpsmo = 0.

in Q" (r),

For Vp and Vp the following estimates hold (see [5], see also [7]):

IVBIL,, 5@+ + —IIWII Ly 3(Q+(r)
11’2 11’2 (27)
c ( 1 X xot Hllppy g @+ () + 10 V)0l g(@rir) )

IVollL,

L1z 3(
11°2

1
r

IVBl s s @+ om) < 8% ( @ e HIVBlLy y@ren )- (28)

12 3(
11°2
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On order to estimate the right hand side of (27), we use Holder and inter-
polation inequalities

ol

3 3
I D)l jag = /nv Velede | < | [ 9ol ol

1
6

0 % 0
Il | [ tolpde | <U9ol [ lolglolsa
7’2 7’2

1 1
< Vollafvfl collvll3
(29)

The term ||H x rot H||1, , (@+(r)) can be estimated analogously and the

12 3
11°2

right hand side of (28) can be estimated as follows:

1.
—||Vv||L_2 2@+ T VPl 4@+
r i1°% 11°2

<c(||wnz@+ VPl 40

Qt(r)t (30)

+ 219011 y0ron + 190l yvm)-
11°2 11°2
Combining inequalities (27)-(30) we obtain the statement of Lemma. O

Theorem 4.1. Letv,p, H are the suitable weak solution near the boundary
to the MHD equations in QT and

C(R)+ F>(R) <M, 0<R<1
For the functional

L(r) = A%(r) + E*(r) + A%2(r) + E2(r) + D

o

Els Rl
—~
=
~

the following estimate holds:
L(r) SC(M)(r*L(1) + 1).
Proof. By the local energy inequality, we have
L(0r) < ¢ (C3(20r) + F5(20r) + C*(20r) + C(20r)D(26r)
+ C2(20r)F3(20r) + C(20r) F2(20r) + D: (97«)) .
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Now, we estimate each term in the right hand side. Our goal is to prove
the following estimate:

L(or) < %L(r) +C(M). (31)

After that, we can use the standard iteration procedure (see [4]) and obtain
the statement of the theorem.

Estimates for the first three terms are obvious. In order to estimate the
4th term, we use Young inequality and inequality (25)

25
C(20r)D(20r) < c (D 2 (20r) + M25) .

Now we are going to prove estimate for D%(%r). To do this, we use
inequalities (24) and (26)
D2 (207‘) <
11

<t (Dyg () + B(r)) +c(0) (B(r) A (CH (1) + B (r)AZ (r)F 1)
< ch® (D% (r) + E(r)) +e(9) (L% (NM? + L5 (1) EE ()
(32)
We use interpolation inequality to estimate F5(r)
Fy(r) < Fi(0FF () <e(AZ() (B2 + FF () ) Ff () -

< c(L%(r)M% +L

o=
<
Wi
N—

and substitute this relation into (32)

Then, we obtain
D (20r) < #°L(r) + ¢(6) (L* (r)M* + L%(T)M’”) .
11

Since the right hand side of the last inequality contain L(r) in the degree
smaller then 1, choosing 6 sufficiently small and using Young inequality
we obtain an estimate (31).

To estimate the last two terms we use (33)

Cr)F2(r) < (L

alon
=

QIIEEYEITEY
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and Young inequality. The second term can be estimated in the same
maner.

As the result we obtain (31). Next by standard iteration procedure we
finish the prove of the theorem. O

§5. PROOF OF THE MAIN RESULTS

As a first step we obtain theorem 2.1 without smallness condition on a
pressure.

Lemma 5.1. For arbitrary M > 0 there is 1 (M) > 0, such that if v,p, H
are the suitable weak solution near the boundary to the MHD equations in

Q,
A(R)+E(R)+A.(R)+E. (R)-I-F;»,(R)-I—D%(R) <M, VO<R<KI1 (34)
and
C(1) + F5(1) < &y, (35)
then the functions v and H are Hoélder continuous on Q7T (r.) for some
0<r. <1l

Proof. Assume that the statement of the lemma is false. Then there are
sequences of v, p,, H, of suitable weak solutions in @, such that

C(vn, 1)+ F3(Hp,1) =, — 0, as n — o0 (36)
and 0 is a singular point. Then by theorem 2.1
C(vn,7) + D(pn,7) + F3(Hp,7) > €. (37)

forall 0 <r < 1.
On the other hand from (26), (34), (36) and the embedding theorem we

have

D(pn,r) < cDz2(pn,r) < cr®M + c(r)M%&%. (38)
We fix 0 < r < 1 and pass to the limit by n in (37) and (38)

g« <limsup (C(vn,r) + D(pn,r) + F5(Hp,r))

n—oo

= limsup D(py,,7) < cr*M.

n— oo

As a result we obtain that the inequality
e <er®M

must be true for arbitrary 0 < r < 1. Hence, we have a contradiction. [
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Theorem 5.1. For arbitrary M > 0 there is eo(M) > 0, such that if
v,p, H are the suitable weak solution near the boundary to the MHD equa-
tions in Q%, satisfying to (34) and one of the following conditions holds

E(1) < es, (39)
A1) < e, (40)
C(1) < e, (41)

then the functions v and H are Hoélder continuous on QT (r.) for some
O0<r, <1

Proof. The proof of this theorem is similar to the proof of the previous
lemma. We begin from the case (39). Let vy, p,, H, are the sequences of
suitable weak solutions to the MHD system, such that (34) holds,

E(v,,1)=¢,—0
as n — 00, and zg = 0 is a singular point. Then from lemma 5.1 we have
C(vn,r) + F3(vp,1) > €1 (42)

for arbitrary 0 < r < 1.
On the other hand

C(Un:r) < %C(Uml) <
rs

| o

A% (0, 1)E% (v,,1) — 0 (43)

W

r

as n — oo and for any fixed 0 < r < 1. From (23) we obtain
lim sup F»(Hp,r) < er®M. (44)

Next we use interpolation inequality

alon

Fy(Hp,r) < Ef (Hp,r)Ff (Hp, 7). (45)

w5

To estimate the second factor in the right hand side of (45) we use (24).
So from (42)-(45) we obtain

1

1 < limsup (C(vn,7) + F3(vn, 7)) <er™*M* VO <r < 3

and, if we choose r sufficiently small, we will have a contradiction.
Observe, that E(r) and A(r) take part in (23) symmetrically, so the
proof of this theorem in the case (40) is similar to the previous one. In the
case of (41) for obtaining (44) is sufficient to use (14). O
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