И. Б. Кобызев

АЛГЕБРАИЧЕСКИЙ АНАЛОГ КОНСТРУКЦИИ БОРЕЛЯ И ЕЕ СВОЙСТВА

1. Введение

В топологической литературе хорошо известна конструкция, называемая конструкцией Бореля, позволяющая по замкнутой подгруппе H компактной группы Π G отождествить представления группы H с G-эквивариантными векторными расслоениями на многообразии G/H (см., например, классическую статью Атьи и Хирцебруха [1]). Однако соответствующая ей алгебраическая конструкция нигде в литературе в деталях не прописана. Настоящая работа посвящена восстановлению этого существенного пробела, причем данные нами определения, конструкции и доказательства даны в ситуации над произвольной нетеровой базисной схемой. Наибольшую эвристическую сложность вызвало нахождение удачного определения понятия G-эквивариантного расслоения на многообразии G/H. Следует отметить, что в статье Панина [2] эта алгебраическая конструкция была сформулирована, но все детали были пропущены.

Основные определения и формулировка результата собраны в разделе 2. Остальная часть работы посвящена детальному доказательству основной теоремы.

Автор выражает признательность своему научному руководителю И. А. Панину за постановку задачи и постоянную поддержку.

2. Основные определения

Пусть R – коммутативное нетерово кольцо с единицей, $X=\operatorname{Spec}(R)$ – аффинная схема. Пусть H – аффинная строго плоская групповая схема над $X,\ R[H]-R$ -алгебра, соответствующая аффинной X-схеме H.

Замечание 1. В дальнейшем при написании тензорного произведения над кольцом R мы будем вместо \otimes_R писать просто \otimes .

Ключевые слова: эквивариантные векторные расслоения, комодули, торсоры, котензорное произведение, строго плоский спуск, конструкция Бореля.

Определение 1. Пусть W — конечно порожденный проективный модуль над R. Левое R[H]-кодействие на W — это гомоморфизм R-модулей $\rho:W\to R[H]\otimes W$, такой что диаграммы

коммутативны. Пара (W, ρ) называется левым R[H]-комодулем.

Определение 2. Гомоморфизм левых R[H]-комодулей

$$(W, \rho) \rightarrow (W_1, \rho_1)$$

– это такой гомоморфизм R-модулей $W \stackrel{\phi}{ o} W_1,$ что диаграмма

$$\begin{array}{ccc} W & \stackrel{\rho}{\longrightarrow} & R[H] \otimes W \\ \downarrow & & \mathrm{id} \otimes \phi \downarrow \\ W_1 & \stackrel{\rho_1}{\longrightarrow} & R[H] \otimes W_1 \end{array}$$

коммутативна.

Определение правого R[H]-комодуля вводится аналогично с очевидными изменениями.

Определение 3. Объекты категории $\operatorname{Rep}_X(H)$ – это левые R[H]-комодули (W, ρ) .

Морфизмы в категории $\operatorname{Rep}_X(H)$ – это гомоморфизмы левых R[H]-комодулей.

Всюду в работе нам будет необходимо использовать понятие торсора (или главного однородного H-расслоения). Дадим соответствующие определения.

Определение 4. Пусть H – аффинная строго плоская X-групповая схема, Y – схема над X. Правый H-торсор над Y (правое главное

однородное H-расслоение над Y) – это пара $(q: \mathcal{H} \to Y, \nu: \mathcal{H} \times_X H \to \mathcal{H})$, такая что:

- (0) $\mathcal{H} Y cxe Ma$,
- (а) ν морфизм Y-схем, являющийся правым H-действием,
- (b) морфизм $\psi = (\operatorname{pr}_{\mathcal{H}}, \nu) : \mathcal{H} \times_X H \to \mathcal{H} \times_Y \mathcal{H} u \operatorname{зомор} \phi \operatorname{usm} Y \operatorname{-} \operatorname{cxem},$
- (c) морфизм q строго плоский.

Если дополнительно предположить, что Y и \mathcal{H} – аффинные схемы, то ясно, что задание правого H-торсора над Y эквивалентно заданию пары $(q^*:R[Y]\to R[\mathcal{H}], \nu^*:R[\mathcal{H}]\to R[\mathcal{H}]\otimes R[H])$ такой, что:

- (a') ν^* гомоморфизм R[Y]-алгебр, являющийся правым R[H]-ко-действием,
- (b') морфизм $\psi^*:R[\mathcal{H}]\otimes_{R[Y]}R[\mathcal{H}]\to R[\mathcal{H}]\otimes R[H]$, заданный правилом $\psi^*(f\otimes g)=(f\otimes 1)\cdot \nu^*(g)$, является изоморфизмом.
 - (c') q^* строго плоский гомоморфизм R-алгебр.

Определение 5. Морфизм правых H-торсоров над Y:

$$(\mathcal{H} \xrightarrow{q} Y, \nu) \longrightarrow (\mathcal{H}' \xrightarrow{q'} Y, \nu')$$

это морфизм Y -схем $\alpha:\mathcal{H}\to\mathcal{H}',$ согласованный с действиями ν и $\nu',$ т.е. такой, что диаграмма

$$\begin{array}{ccc} \mathcal{H} \times_X H & \stackrel{\nu}{\longrightarrow} & \mathcal{H} \\ & & & \alpha \downarrow \downarrow & & \alpha \downarrow \\ & \mathcal{H}' \times_X H & \stackrel{\nu'}{\longrightarrow} & \mathcal{H}' \end{array}$$

коммутативна.

Снова, если предположить, что Y и \mathcal{H} – аффинные схемы, то задание морфизма левых H-торсоров над Y равносильно заданию гомоморфизма R[Y]-алгебр $\alpha^*: R[\mathcal{H}'] \to R[\mathcal{H}]$ такого, что коммутативна диаграмма R[Y]-алгебр:

$$\begin{split} R[\mathcal{H}] \otimes R[H] & \xleftarrow{\nu^*} \quad R[\mathcal{H}] \\ \alpha^* \otimes \mathrm{id} & \qquad \alpha^* & \uparrow \\ R[\mathcal{H}'] \otimes R[H] & \xleftarrow{\nu'^*} \quad R[\mathcal{H}']. \end{split}$$

Пусть G — аффинная строго плоская X-групповая схема. Пусть $H \subset G$ — замкнутая строго плоская X-групповая подсхема (таким образом, H — тоже аффинная схема — см. [3]).

Определение 6. X-фактор схемой G/H называется такая X-схема Y, что пара $(G \stackrel{q}{\to} Y, \nu_H : G \times_X H \to G)$ является правым H-торсором над Y, где $\nu_H : (g,h) \mapsto gh$.

Будем предполагать, что в нашей ситуации X-фактор схема G/H существует и является аффинной. Пусть также она является строго плоской X-схемой и к тому же нетерова. Будем впредь обозначать ее Y.

Пусть отображение $\theta: G \times_X Y \to Y$ есть левое G-действие (морфизм X-схем). Обозначим через $y_0 = \bar{e}: X \to Y$ соответствующее сечение.

Пусть $\theta^*:R[Y]\to R[G]\otimes R[Y]$ — соответствующий гомоморфизм R-алгебр.

Определение 7. Объект категории $\operatorname{Vect}_X^G(G/H) = \operatorname{Vect}_X^G(Y) - \mathfrak{Im}$ пара

$$(\mathcal{V}, \widehat{\rho}: \mathcal{V} \to R[G] \otimes \mathcal{V}), \qquad makas \ umo:$$

- (a) V R[Y]-модуль локально свободный и конечно порожденный,
- (b) $\widehat{\rho}$ левое R[G]-кодействие на R-модуле \mathcal{V} .
- (c) если на $R[G]\otimes \mathcal{V}$ рассмотреть структуру R[Y]-модуля, заданную правилом

$$f \cdot (a \otimes s) = \theta^*(f) \cdot (a \otimes s), \quad a \in R[G], f \in R[Y], s \in \mathcal{V},$$

то гомоморфизм $\widehat{\rho}$ становится гомоморфизмом R[Y]-модулей, то есть $\widehat{\rho}(f\cdot s)=\theta^*(f)\cdot\widehat{\rho}(s).$

 $\varPi ycm$ ь $(\mathcal{V},\widehat{
ho})$ и $(\mathcal{V}_1,\widehat{
ho}_1)$ — два объекта категории $\mathrm{Vect}_X^G(Y)$.

Морфизм $(\mathcal{V},\widehat{\rho}) \to (\mathcal{V}_1,\widehat{\rho}_1)$ в категории $\mathrm{Vect}_X^G(Y)$ — это гомоморфизм R[Y]-модулей $\widehat{\phi}:\mathcal{V}\to\mathcal{V}_1$, согласованный с $\widehat{\rho}$ и $\widehat{\rho}_1$, то есть диаграмма R[Y]-модулей

$$\begin{array}{cccc} R[G] \otimes \mathcal{V} & \longleftarrow^{\widehat{\rho}} & \mathcal{V} \\ & & & & & \\ \mathrm{id} \otimes \widehat{\rho} \Big\downarrow & & & & & & \\ R[G] \otimes \mathcal{V}_1 & \longleftarrow^{\widehat{\rho}_1} & \mathcal{V}_1 \end{array}$$

коммутативна.

Основная цель нашей работы — доказать, что имеют место две взаимно-обратные эквивалентности категорий:

$$\operatorname{Rep}_X(H) \xrightarrow[\operatorname{Res}]{\operatorname{Ind}} \operatorname{Vect}_X^G(Y)$$
.

Причем в обеих категориях есть операция тензорного произведения и указанные функторы строго перестановочны с указанными тензорными произведениями. Детали даются ниже.

Определение 8. Пусть $(V, \rho), (V_1, \rho_1) \in \mathrm{Ob}(\mathrm{Rep}_X(H))$. Рассмотрим композицию

$$V \otimes V_1 \xrightarrow{\rho \otimes \rho_1} R[H] \otimes V \otimes R[H] \otimes V_1 \xrightarrow{\Delta_H^* \otimes \mathrm{id}} R[H] \otimes V \otimes V_1$$

где $\Delta_H^*: R[H] \otimes R[H] \to R[H], \ \Delta_H^*(a \otimes b) = ab, \ a \ nocледняя \ стрелка определена так: <math>a \otimes v \otimes b \otimes w \mapsto ab \otimes v \otimes w.$ Для краткости обозначим сквозную стрелку через $\Delta_H^* \circ (\rho \otimes \rho_1).$

Положим: $(V, \rho) \otimes (V_1, \rho_1) = (V \otimes V_1, \Delta_H^* \circ (\rho \otimes \rho_1)).$

Можно проверить, что $\Delta_H^* \circ (\rho \otimes \rho_1)$ — это левое R[H]-кодействие. Таким образом, $(V,\rho) \otimes (V_1,\rho_1)$ — объект $\mathrm{Rep}_X(H)$. Он называется тензорным произведением левых R[H]-комодулей.

Определение 9. Пусть $(\mathcal{V},\widehat{\rho})$ и $(\mathcal{V}_1,\widehat{\rho}_1)$ – объекты $\mathrm{Vect}_X^G(H)$. Рассмотрим композицию

$$\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1 \xrightarrow{\hat{\rho} \otimes \hat{\rho}_1} (R[G] \otimes \mathcal{V}) \otimes_{R[Y]} (R[G] \otimes \mathcal{V}_1) \xrightarrow{\Delta_G^*} R[G] \otimes \mathcal{V} \otimes_{R[Y]} \mathcal{V}_1$$

где последняя стрелка определена так: $a \otimes s \otimes b \otimes s_1 \mapsto ab \otimes (s \otimes s_1)$. Несложно проверить, что это гомоморфизм R[Y]-модулей.

Обозначим сквозную стремку $\Delta_G^* \circ (\widehat{\rho} \otimes \widehat{\rho}_1)$, легко проверяется, что она есть R[G]-кодействие на R-модуле $\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1$. Далее, $\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1$ – локально свободный конечно порожденный R[Y]-модуль. Гомоморфизм $\Delta_G^* \circ (\widehat{\rho} \otimes \widehat{\rho}_1)$ является R[Y]-модульным по построению.

Таким образом, $(\mathcal{V}, \widehat{\rho}) \otimes_{R[Y]} (\mathcal{V}_1, \widehat{\rho}_1) = (\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1, \Delta_G^* \circ (\widehat{\rho} \otimes \widehat{\rho}_1)) -$ объект $\operatorname{Vect}_Y^G(Y)$.

В части 5 покажем, что определенные произведения ассоциативны, коммутативны и имеют единицу.

Сформулируем основную теорему, которую будем доказывать в частях $3,\ 4$ и 5.

Основная теорема. Пусть $G, H \subset G, Y, \theta: G \times_X Y \to Y, \theta^*: R[Y] \to R[G] \otimes R[Y]$ такие, как перед определением 7. Тогда имеют место взаимно-обратные тензорные эквивалентности категорий:

$$\operatorname{Ind}:\operatorname{Rep}_X(H)\to\operatorname{Vect}_X^G(Y),$$

$$\operatorname{Res}: \operatorname{Vect}_X^G(Y) \to \operatorname{Rep}_X(H).$$

Другими словами, функторы ResoInd и IndoRes изоморфны тождественным и, кроме того, имеются изоморфизмы (функториальные по каждому аргументу)

$$\operatorname{Ind}(V, \rho) \otimes_{R[Y]} \operatorname{Ind}(V_1, \rho_1) \stackrel{\cong}{\to} \operatorname{Ind}((V, \rho) \otimes (V_1, \rho_1)),$$

$$\operatorname{Res}(\mathcal{V},\widehat{\rho}) \otimes \operatorname{Res}(\mathcal{V}_1,\widehat{\rho}_1) \xrightarrow{\cong} \operatorname{Res}((\mathcal{V},\widehat{\rho}) \otimes_{R[Y]} (\mathcal{V}_1,\widehat{\rho}_1)),$$

в категориях $Vect_X^G(Y)$ и $Rep_X(H)$, соответственно.

Обозначение 1. Пусть $(\mathcal{H} \stackrel{q}{\to} Y, \nu)$ – правый H-торсор над Y. Будем обозначать $i\nu: \mathcal{H} \times_X H \to \mathcal{H}$ отображение $(y,h) \mapsto yh^{-1}$.

Теперь перейдем к построению функторов Ind и Res.

3. Описание функторов Res и Ind

Функтор Ind

Прежде всего, фиксируем следующие данные. Пусть $X = \operatorname{Spec}(R)$, Y — аффинная нетерова строго плоская X-схема, H — аффинная групповая X-схема, \mathcal{H} — аффинная схема. Более того, ($\mathcal{H} \stackrel{q}{\to} Y, \nu : \mathcal{H} \times_X H \to \mathcal{H}$) — правый H-торсор над Y. Пусть (V, ρ) — левый R[H]-комодуль.

Определение 10.

$$R[\mathcal{H}] \square_{R[H]} V = \ker \Big(R[\mathcal{H}] \otimes V \xrightarrow[-\mathrm{id} \otimes \varrho]{(i\nu)^* \otimes \mathrm{id}} R[\mathcal{H}] \otimes R[H] \otimes V \Big).$$

Введем на $R[\mathcal{H}]\square_{R[H]}V$ структуру R[Y]-модуля. Для этого введем стуктуры R[Y]-модулей на $R[\mathcal{H}]\otimes V$ и $R[\mathcal{H}]\otimes R[H]\otimes V$ следующим образом: $f\cdot (a\otimes v)=q^*(f)a\otimes v$ и $f\cdot (a\otimes (h\otimes v))=q^*(f)a\otimes (h\otimes v).$ Очевидно, что тогда отображения $(i\nu)^*\otimes \mathrm{id}$ и $\mathrm{id}\otimes \rho$ становятся гомоморфизмами R[Y]-модулей, а значит, $R[\mathcal{H}]\square_{R[H]}V-R[Y]$ -подмодуль R[Y]-модуля $R[\mathcal{H}]\otimes V$.

Конструкция в определении 10 называется котензорным произведением пары $(R[\mathcal{H}], \nu^*)$ и (V, ρ) .

Утверждение 3.1. Пусть $(\mathcal{H}_1 \xrightarrow{q_1} Y, \nu_1) \xrightarrow{\cong \phi} (\mathcal{H}_2 \xrightarrow{q_2} Y, \nu_2)$ — изоморфизм правых H-торсоров над Y. Пусть (V, ρ) — R[H]-комодуль. Тогда изоморфизм R[Y]-модулей:

$$R[\mathcal{H}_2] \otimes V \xrightarrow{\phi^* \otimes \mathrm{id}_V} R[\mathcal{H}_1] \otimes V$$

ин дуцирует изоморфизм R[Y]-модулей:

$$R[\mathcal{H}_2] \square_{R[H]} V \xrightarrow{\phi^* \square \mathrm{id}_V} R[\mathcal{H}_1] \square_{R[H]} V.$$

Доказательство. Этот факт немедленно следует из коммутативности диаграммы R[Y]-модулей

$$R[\mathcal{H}_{2}] \otimes R[H] \otimes V \xrightarrow{\phi^{*} \otimes \operatorname{id}_{H} \otimes \operatorname{id}_{V}} R[\mathcal{H}_{1}] \otimes R[H] \otimes V$$

$$(i\nu_{2})^{*} \otimes \operatorname{id}_{V} \bigwedge \cap \operatorname{id}_{\mathcal{H}_{2}} \otimes \rho \xrightarrow{\phi^{*} \otimes \operatorname{id}_{V}} (i\nu_{1})^{*} \otimes \operatorname{id}_{V} \bigwedge \cap \operatorname{id}_{\mathcal{H}_{1}} \otimes \rho$$

$$R[\mathcal{H}_{2}] \otimes V \xrightarrow{\cong} R[\mathcal{H}_{1}] \otimes V.$$

Коммутативность этой диаграммы следует из того, что ϕ согласован с действиями ν_1 и ν_2 .

Утверждение 3.2. Пусть $(\mathcal{H} \xrightarrow{q} Y, \nu)$ — правый H-торсор над Y. Пусть $(V_1, \rho_1) \xrightarrow{\psi} (V_2, \rho_2)$ — гомоморфизм левых R[H]-комодулей. Тогда гомоморфизм R[Y]-модулей: $R[\mathcal{H}] \otimes V_1 \xrightarrow{\mathrm{id}_{\mathcal{H}} \otimes \psi} R[\mathcal{H}] \otimes V_2$ индуцирует гомоморфизм R[Y]-модулей:

$$R[\mathcal{H}] \square_{R[H]} V_1 \xrightarrow{\mathrm{id}_{\mathcal{H}} \square \psi} R[\mathcal{H}] \square_{R[H]} V_2.$$

Доказательство. Доказательство аналогично предыдущему утверждению. \Box

Утверждение 3.3. Пусть (\mathcal{H}, ν) – правый H-торсор над Y, пусть $Y' \xrightarrow{f} Y$ – морфизм X-схем и (\mathcal{H}', ν') – замена базы H-торсора (\mathcal{H}, ν) при помощи f. Пусть (V, ρ) – левый R[H]-комодуль. Тогда стандартный изоморфизм R[Y']-модулей

$$R[Y'] \otimes_{R[Y]} (R[\mathcal{H}] \otimes V) \xrightarrow{\simeq} (R[Y'] \otimes_{R[Y]} R[\mathcal{H}]) \otimes V = R[\mathcal{H}'] \otimes V$$

ин дуцирует изоморфизм R[Y']-модулей

$$R[Y'] \otimes_{R[Y]} (R[\mathcal{H}] \square_{R[H]} V) \xrightarrow{\simeq} R[\mathcal{H}'] \square_{R[H]} V.$$

Доказательство. Доказательство сразу следует из коммутативности диаграммы R[Y']-модулей:

$$\begin{split} R[Y'] \otimes_{R[Y]} (R[\mathcal{H}] \otimes R[H] \otimes V) & \xrightarrow{\simeq} & (R[Y'] \otimes_{R[Y]} R[\mathcal{H}]) \otimes R[H] \otimes V \\ & \operatorname{id}_{Y'} \otimes (i\nu)^* \otimes \operatorname{id}_{V} \bigwedge \bigwedge_{-\operatorname{id}_{Y'}} \otimes \operatorname{id}_{\mathcal{H}} \otimes \rho & & (i\nu_{H'})^* \otimes \operatorname{id}_{V} \bigwedge_{-\operatorname{id} \otimes \rho} \\ & R[Y'] \otimes_{R[Y]} (R[\mathcal{H}] \otimes V) & \xrightarrow{\simeq} & (R[Y'] \otimes_{R[Y]} R[\mathcal{H}]) \otimes V. \end{split}$$

Утверждение 3.4. Пусть (\mathfrak{H}, ν) — тривиальный правый H-торсор, то есть $(Y \times_X H \stackrel{\mathrm{pr}}{\to} Y, \mathrm{id} \times \mu_H : (Y \times_X H) \times_X H \to Y \times_X H)$. Тогда для любого левого R[Y]-комодуля (V, ρ) имеет место изоморфизм R[Y]-модулей (функториальный по (V, ρ)):

$$R[Y] \otimes V \cong R[Y \times_X H] \square_{R[H]} V.$$

Доказательство. По определению,

$$R[\mathcal{H}]\square_{R[H]}V = \ker(R[Y] \otimes R[H] \otimes V \xrightarrow[-\mathrm{id}_{Y} \otimes \mathrm{id}_{H} \otimes \rho]{}^{*} \otimes \mathrm{id}_{V}} R[Y] \otimes R[H] \otimes R[H] \otimes V) =$$
 (вынесем $R[Y]$ за скобки, так как по предположению $R[Y]$ – плоская R -алгебра)
$$= R[Y] \otimes \ker(R[H] \otimes V \xrightarrow[\mathrm{id}_{H} \otimes \rho]{}^{*} \otimes \mathrm{id}_{V} \times R[H] \otimes R[H] \otimes V).$$

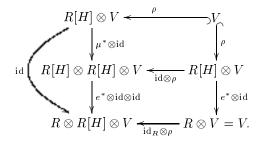
Нам осталось показать, что V изоморфно ядру разности стрелок. Для начала заметим, что есть вложение: $\rho:V\hookrightarrow R[H]\otimes V$. Это следствие того, что единица действует тождественно:

$$V = R \otimes V \underbrace{\stackrel{e^* \otimes \mathrm{id}}{\underset{\mathrm{id}}{\longleftarrow}} R[H] \otimes V \stackrel{\rho}{\longleftarrow} V.$$

Коммутативная диаграмма из определения 1 показывает, что:

$$\rho(V) \subseteq \ker((i\mu_H)^* \otimes \mathrm{id}_V - \mathrm{id}_H \otimes \rho).$$

Для доказательства сюръективности ρ возьмем $\alpha \in \ker((i\mu_H)^* \otimes \mathrm{id}_V - \mathrm{id}_H \otimes \rho)$ и рассмотрим диаграмму:



Видно, что $1\otimes \alpha=(\mathrm{id}_R\otimes \rho)(1\otimes \beta)$, где $\beta\in V$ – единственный элемент V, такой что $1\otimes \beta=(e^*\otimes \mathrm{id}_V)\alpha$. Поэтому в $R[H]\otimes V$ имеем $\alpha=\rho(\beta)$. \square

Утверждение 3.5. Пусть $(\mathcal{H} \xrightarrow{q} Y, \nu)$ — правый H-торсор над Y. Рассмотрим морфизм $q: \mathcal{H} \to Y$ как замену базы, получим правый H-торсор $(\mathcal{H} \times_Y \mathcal{H} \xrightarrow{\operatorname{pr}_1} \mathcal{H}, \operatorname{id}_{\mathcal{H}} \times_Y \nu)$ над \mathcal{H} . Утверждается, что изоморфизм \mathcal{H} -схем из пункта (b) определения 4:

 $\psi=(\mathrm{pr}_{\mathcal{H}}, \nu):\mathcal{H}\times_X H\overset{\cong}{\to}\mathcal{H}\times_Y\mathcal{H}$ является изоморфизмом правых H-торсоров над $\mathcal{H}.$

Доказательство. Утверждение следует из коммутативности диаграммы:

$$(\mathcal{H} \times_X H) \times_X H \xrightarrow{\psi \times \mathrm{id}_H} (\mathcal{H} \times_Y \mathcal{H}) \times_X H$$

$$\downarrow_{\mathrm{id}_{\mathcal{H}} \times \mu_H} \qquad \qquad \downarrow_{\mathrm{id}_{\mathcal{H}} \times \nu}$$

$$\mathcal{H} \times_X H \xrightarrow{\psi} \mathcal{H} \times_Y \mathcal{H},$$

которая, в свою очередь, легко проверяется на элементах.

Следствие 3.1. Пусть $(\mathcal{H} \xrightarrow{q} Y, \nu)$ — правый H-торсор над Y. Пусть (V, ρ) — левый R[H]-комодуль. Тогда $R[\mathcal{H}] \square_{R[H]} V$ — локально свободный R[Y]-модуль ранга $\mathrm{rank}_R(V)$.

П

Доказательство. Рассмотрим правый Н-торсор

$$(\mathcal{H} \times_{\mathcal{V}} \mathcal{H} \stackrel{\mathrm{pr}_1}{\to} \mathcal{H}, \mathrm{id}_{\mathcal{H}} \times_{\mathcal{V}} \nu)$$

над Н из утверждения 3.5. По утверждению 3.3:

$$R[\mathcal{H}] \otimes_{R[Y]} (R[\mathcal{H}] \square_{R[H]} V) = R[\mathcal{H} \times_Y \mathcal{H}] \square_{R[H]} V =$$

по утверждениям 3.5 и 3.1

$$=R[\mathcal{H}\times_X H]\square_{R[H]}V=$$

по утверждению 3.4

$$=R[\mathcal{H}]\otimes V.$$

Ясно, что $R[\mathcal{H}] \otimes V$ — плоский и конечно порожденный $R[\mathcal{H}]$ -модуль. Поскольку $R[\mathcal{H}]$ — строго плоская R[Y]-алгебра, то по теории строго плоского спуска (см., например, [4]) R[Y]-модуль $R[\mathcal{H}] \square_{R[H]} V$ тоже плоский и конечно порожденный, а значит, в силу предположения нетеровости кольца R[Y], — локально свободный.

Сформулируем без доказательства стандартный факт из теории торсоров.

Утверждение 3.6. Правые H-торсоры ($\mathcal{H} \xrightarrow{q} Y, \nu$) и ($Y \times_X H, \operatorname{id} \times \mu_H$) над Y изоморфны тогда и только тогда, когда существует сечение $s: Y \to \mathcal{H}$ проекции q. Более того, если s – такое сечение, то морфизм

$$Y \times_X H \xrightarrow{\psi} \mathcal{H}, \quad (y,h) \mapsto s(y) \cdot h,$$

является изоморфизмом правых H-торсоров над Y.

Пусть $G, H \subset G, Y = G/H, \theta: G \times_X Y \to Y, \theta^*: R[Y] \to R[G] \otimes R[Y],$ $y_0 = \bar{e} \in G/H = Y$ такие, как перед определением 7.

Для каждого левого R[H]-комодуля (V, ρ) рассмотрим R[Y]-модуль

$$\mathcal{V} := R[G] \square_{R[H]} V.$$

Далее рассмотрим диаграмму

$$0 \longrightarrow V \xrightarrow{i} R[G] \otimes V \xrightarrow{(i\nu)^* \otimes \operatorname{id}_{V}} R[G] \otimes R[H] \otimes V$$

$$\downarrow \rho \downarrow \qquad \qquad \downarrow \mu_{G}^* \otimes \operatorname{id}_{V} \qquad \qquad \downarrow \mu_{G}^* \otimes \operatorname{id}_{H} \otimes \operatorname{id}_{V}$$

$$0 \longrightarrow R[G] \otimes V \xrightarrow{\operatorname{id}_{G} \otimes i} R[G] \otimes R[G] \otimes V \xrightarrow{\operatorname{id}_{G} \otimes (i\nu)^* \otimes \operatorname{id}_{V}} R[G] \otimes R[H] \otimes V.$$

Правый квадрат в этой диаграмме коммутативен по верхним и нижним стрелкам очевидным образом. Следовательно, стрелка $\mu_G^* \otimes \mathrm{id}_V$ индуцирует гомоморфизм R-модулей $\widehat{\rho}: \mathcal{V} \to R[G] \otimes \mathcal{V}$.

Лемма 1. Если $R[G] \otimes V$ рассмотреть как R[Y]-модуль, следуя определению 7, то $\widehat{\rho}$ – гомоморфизм R[Y]-модулей.

Доказательство. Если мы рассмотрим $R[G]\otimes R[G]\otimes V$ как $R[G]\otimes R[Y]$ -модуль, используя $\mathrm{id}_G\otimes q^*$, то гомоморфизм $\mathrm{id}_G\otimes i$ – гомоморфизм $R[G]\otimes R[Y]$ -модулей. Действительно, пусть $a\otimes f\in R[G]\otimes R[Y]$ и $a_1\otimes s\in R[G]\otimes \mathcal{V}$. Тогда

$$(\mathrm{id}_G \otimes i)((a \otimes f) \cdot (a_1 \otimes s)) = (\mathrm{id}_G \otimes i)(aa_1 \otimes fs) = aa_1 \otimes i(fs)$$
$$= aa_1 \otimes q^*(f) \cdot i(s) = (a \otimes q^*(f)) \cdot (a_1 \otimes i(s))$$
$$= (\mathrm{id}_G \otimes q^*)(a \otimes f) \cdot (\mathrm{id}_G \otimes i)(a_1 \otimes s).$$

Если мы рассмотрим $R[G]\otimes R[G]\otimes V$ как R[G]-модуль, используя гомоморфизм R[G]-алгебр $\mu_G^*:R[G]\to R[G]\otimes R[G]$, то ясно, что $\mu_G\otimes \mathrm{id}_V$ станет гомоморфизмом R[G]-модулей.

Рассмотрим коммутативную диаграмму

$$R[Y] \xrightarrow{q^*} R[G]$$

$$\theta^* \downarrow \qquad \qquad \mu_G^* \downarrow$$

$$R[G] \otimes R[Y] \xrightarrow{\mathrm{id}_G \otimes q^*} R[G] \otimes R[G]$$

Пусть $f \in R[Y], s \in \mathcal{V}$ рассмотрим цепочку равенств, следующих из вышесказанного:

$$(\mathrm{id}_G \otimes i)\widehat{\rho}(fs) = (\mu_G \otimes \mathrm{id}_V)i(fs) = (\mu_G \otimes \mathrm{id}_V)(q^*(f) \cdot i(s))$$

$$= (\mu_G^*q^*(f)) \cdot (\mu_G \otimes \mathrm{id}_V)(i(s)) = (\mathrm{id}_G \otimes q^*)(\theta^*(f)) \cdot (\mathrm{id}_G \otimes i)\widehat{\rho}(s)$$

$$= (\mathrm{id}_G \otimes i)(\theta^*(f) \cdot \widehat{\rho}(s)).$$

Так как $\mathrm{id}_G \otimes i$ – мономорфизм, то мы получили, что $\widehat{\rho}(fs) = \theta^*(f) \cdot \widehat{\rho}(s)$.

Пара $(\mathcal{V}, \widehat{\rho})$ является объектом категории $\mathrm{Vect}_X^G(Y)$. Действительно, \mathcal{V} — это локально свободный и конечно порожденный R[Y]-модуль в силу следствия 3.1. $\widehat{\rho}$ является левым кодействием на R-модуле \mathcal{V} , так как диаграмма

$$R[G] \xrightarrow{\mu_G^*} R[G] \otimes R[G]$$

$$\downarrow^{\mu_G^*} \qquad \qquad \downarrow^{\mathrm{id}_G \otimes \mu_G^*}$$

$$R[G] \otimes R[G] \xrightarrow{\mu_G^* \otimes \mathrm{id}_G} R[G] \otimes R[G] \otimes R[G]$$

коммутативна. Наконец, $\widehat{
ho}(fs) = \theta^*(f) \cdot \widehat{
ho}(s)$ по лемме.

Определение 11. Для левого R[H]-комодуля (V, ρ) положим

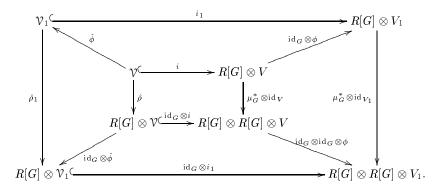
$$\operatorname{Ind}(V, \rho) = (\mathcal{V}, \widehat{\rho}) \in \operatorname{Ob}(\operatorname{Vect}_X^G(Y)).$$

Утверждение 3.7. Пусть $(V, \rho) \stackrel{\phi}{\to} (V_1, \rho_1)$ — гомоморфизм левых R[H]-комодулей. Тогда гомоморфизм

$$\mathcal{V} = R[G] \square_{R[H]} V \xrightarrow{\operatorname{id}_G \square \phi} R[G] \square_{R[H]} V_1 = \mathcal{V}_1,$$

построенный в утверждении 3.2, является гомоморфизмом $(\mathcal{V},\widehat{\rho}) \to (\mathcal{V}_1,\widehat{\rho}_1)$ в категории $\mathrm{Vect}_X^G(Y)$.

Доказательство. В утверждении 3.2 уже доказали, что $\mathrm{id}_G \Box \phi := \widehat{\phi}$ – гомоморфизм R[Y]-модулей. Согласованность с R[G]-кодействиями следует из рассмотрения большой диаграммы:



Верхний, нижний, центральный и правый квадраты коммутативны, и внешний коммутативен. Гомоморфизм $\mathrm{id}_G \otimes i_1$ инъективен, так как R[G] – плоская R-алгебра. Поэтому левый квадрат коммутативен. \square

Таким образом корректно следующее определение.

Определение 12. Правила $(V, \rho) \longmapsto (\mathcal{V}, \widehat{\rho}) u$

$$[\phi: (V, \rho) \to (V_1, \rho_1)] \longmapsto [\mathrm{id}_G \Box \phi: (\mathcal{V}, \widehat{\rho}) \to (\mathcal{V}_1, \widehat{\rho}_1)]$$

задают функтор

Ind:
$$\operatorname{Rep}_X(H) \to \operatorname{Vect}_X^G(G/H) = \operatorname{Vect}_X^G(Y)$$
.

Функтор Res

Пусть $(\mathcal{V}, \widehat{\rho})$ — объект $\operatorname{Vect}_X^G(Y)$. Здесь G, H, Y, θ^*, y_0 такие же, как перед определением 7.

Морфизм θ индуцирует морфизм $\theta_H: H \times_X Y \to Y$, такой что диаграмма

$$\begin{array}{c} H \times_X Y \xrightarrow{\theta_H} Y \\ & \uparrow^{\mathrm{id}_H \times y_0} & \uparrow^{y_0} \\ H \times_X X \xrightarrow{p} & X \end{array}$$

коммутативна. Поэтому коммутативна диаграмма R-алгебр:

$$R[H] \otimes R[Y] \xrightarrow{\theta_H^*} R[Y]$$

$$\downarrow^{\mathrm{id}_H \otimes y_0^*} \qquad \qquad \downarrow^{y_0^*}$$

$$R[H] \otimes R \xrightarrow{p^*} R.$$

Следовательно, $\ker(\mathrm{id}_H \otimes y_0^*) = R[H] \otimes I(y_0)$, где $I(y_0) = \ker(y_0^*)$ и $\theta_H^*(I(y_0)) \subseteq R[H] \otimes I(y_0)$.

Введем гомоморфизм $\widehat{
ho}_H$

$$R[H] \otimes \mathcal{V}^{\inf^* \otimes \operatorname{id}_{\mathcal{V}}} R[G] \otimes \mathcal{V} \stackrel{\widehat{\rho}}{\longleftarrow} \mathcal{V}$$
,

который является гомоморфизмом R[Y]-модулей, если структура R[Y]-модуля на $R[H]\otimes \mathcal{V}$ задана правилом $f\cdot (a\otimes s)=\theta_H^*(f)\cdot (a\otimes s)$. Поэтому диаграмма

$$R[H] \otimes \mathcal{V} \overset{\widehat{\rho}_{H}}{\longleftarrow} \mathcal{V}$$

$$\downarrow^{\operatorname{id}_{H} \otimes (m_{\mathcal{V}} \circ j)} \overset{\operatorname{id}_{H} \otimes m_{\mathcal{V}}}{\longleftarrow} \overset{\operatorname{id}_{H} \otimes m_{\mathcal{V}}}{\longleftarrow} R[H] \otimes I(y_{0}) \otimes \mathcal{V} \overset{\operatorname{id}_{H} \otimes j}{\longleftarrow} R[H] \otimes R[Y] \otimes \mathcal{V} \overset{\widehat{\rho}_{H}^{*} \otimes \operatorname{id}_{\mathcal{V}}}{\longleftarrow} R[Y] \otimes \mathcal{V} \overset{j}{\longleftarrow} I(y_{0}) \otimes \mathcal{V}$$

коммутативна, где j – включение, $m_{\mathcal{V}}$ – R[Y]-модульная структура.

Коммутативность внешней трапеции показывает, что имеется единственный гомоморфизм R-модулей

$$R[H] \otimes \mathcal{V}(y_0) \stackrel{\widehat{\rho}_H(y_0)}{\longleftarrow} \mathcal{V}(y_0) := \mathcal{V}/I(y_0)\mathcal{V},$$

делающий коммутативной диаграмму

$$R[H] \otimes \mathcal{V}(y_0) \overset{\widehat{\rho}_H(y_0)}{\longleftarrow} \mathcal{V}(y_0)$$

$$\uparrow^{\mathrm{id}_H \otimes \pi(y_0)} \qquad \uparrow^{\pi(y_0)}$$

$$R[H] \otimes \mathcal{V} \overset{\widehat{\rho}_H}{\longleftarrow} \mathcal{V}.$$

Поскольку $\widehat{\rho}_H$ — левое R[H]-кодействие, то и $\widehat{\rho}_H(y_0)$ — левое R[H]-кодействие.

Заметим, что $y_0^*:R[Y]\to R$ сюръективно, поэтому есть естественный изоморфизм $R[Y]/I(y_0)\cong R$, и можно переписать $\mathcal{V}/I(y_0)\mathcal{V}\cong R\otimes_{R[Y]}\mathcal{V}$. Так как \mathcal{V} конечно порожденный R[Y]-модуль, то $\mathcal{V}(y_0)$ – конечно порожденный R-модуль. Проективность R-модуля $\mathcal{V}(y_0)$ очевидна. Следовательно, $(\mathcal{V}(y_0),\widehat{\rho}_H(y_0))$ – левый R[H]-комодуль.

Определение 13. Положим

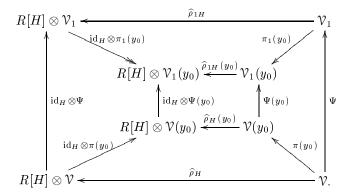
$$\operatorname{Res}(\mathcal{V}, \widehat{\rho}) = (\mathcal{V}(y_0), \widehat{\rho}_H(y_0)) \in \operatorname{Ob}(\operatorname{Rep}_X(H)).$$

Утверждение 3.8. Пусть $(\mathcal{V},\widehat{\rho})\stackrel{\Psi}{\to} (\mathcal{V}_1,\widehat{\rho}_1)$ – морфизм в категории $\mathrm{Vect}_X^G(Y)$. Тогда гомоморфизм

$$\mathcal{V}(y_0) \xrightarrow{\Psi(y_0)} \mathcal{V}_1(y_0)$$

является гомоморфизмом левых R[H]-комодулей.

Доказательство. Рассмотрим диаграмму



Коммутативность внутреннего квадрата следует из коммутативности всех остальных квадратов и сюръективности отображения $\mathrm{id}_H \otimes \pi_1(y_0)$.

Таким образом, имеет смысл следующее определение.

Определение 14. Правила $(\mathcal{V}, \widehat{\rho}) \longmapsto (\mathcal{V}(y_0), \widehat{\rho}_H(y_0))$ и

$$[\Psi:(\mathcal{V},\widehat{\rho})\to(\mathcal{V}_1,\widehat{\rho}_1)]\longmapsto [\Psi(y_0):\mathcal{V}(y_0)\to\mathcal{V}_1(y_0)]$$

задают функтор

$$\operatorname{Res}:\operatorname{Vect}_X^G(Y)\to\operatorname{Rep}_X(H).$$

4. Доказательство эквивалентности категорий $\mathrm{Rep}_X(H)$ и $\mathrm{Vect}_X^G(G/H)$

Разобьем доказательство эквивалентности на две теоремы.

Теорема 1. Имеет место изоморфизм функторов

$$id_{\operatorname{Rep}_{\mathbf{Y}}(H)} \to \operatorname{Res} \circ \operatorname{Ind}.$$

Доказательство. Для каждого объекта (V, ρ) требуется построить изоморфизм левых R[H]-комодулей

$$\phi_{(V,\rho)}:(V,\rho)\stackrel{\cong}{\to} \mathrm{Res}(\mathrm{Ind}(V,\rho))$$

и проверить, что для любого морфизма левых R[H]-комодулей $\psi:(V,\rho) \to (V_1,\rho_1)$ диаграмма

$$V_{1} \xrightarrow{\phi_{(V_{1},\rho_{1})}} \operatorname{Res}(\operatorname{Ind}(V_{1},\rho_{1}))$$

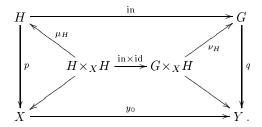
$$\downarrow^{\psi} \qquad \qquad \uparrow^{\operatorname{Res}(\operatorname{Ind}(\psi))}$$

$$V \xrightarrow{\varphi_{(V,\rho)}} \operatorname{Res}(\operatorname{Ind}(V,\rho))$$

коммутативна.

Согласно введенным выше обозначениям, $\mathcal{V}=R[G]\square_{R[H]}V$ – локально свободный R[Y]-модуль и $i:\mathcal{V}\to R[G]\otimes V$ – его вложение в качестве R[Y]-подмодуля.

Замена базы правого H-торсора ($G \xrightarrow{q} Y, \nu_H$) посредством морфизма $X \xrightarrow{y_0} Y$ – это правый H-торсор ($H \to X, H \times_X H \xrightarrow{\mu_H} H$). В частности, последний торсор тривиален. Диаграмма замены базы выглядит таким образом:



По утверждению 3.3 $\mathrm{id} \otimes_{R[Y]} i$ отождествляет $R \otimes_{R[Y]} \mathcal{V}$ с $(R \otimes_{R[Y]} R[G]) \square_{R[H]} V$ (то есть с ядром $\mathrm{ker}(\mathrm{id}_R \otimes (i\nu_H)^* \otimes \mathrm{id}_V - \mathrm{id}_R \otimes \mathrm{id}_G \otimes \rho)$). Рассмотрим диаграмму

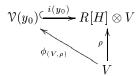
$$R \otimes_{R[Y]} \mathcal{V} \xrightarrow{\operatorname{id} \otimes i} R \otimes_{R[Y]} R[G] \otimes V \xrightarrow{\operatorname{id} \otimes (i\nu_H)^* \otimes \operatorname{id}_V} R \otimes_{R[Y]} R[G] \otimes R[H] \otimes V$$

$$\cong m \downarrow \qquad \qquad \cong \downarrow \operatorname{in}^* \otimes \operatorname{id}_V \qquad \qquad \cong \downarrow \operatorname{in}^* \otimes \operatorname{id}_H \otimes \operatorname{id}_V$$

$$\mathcal{V}(y_0) \xrightarrow{i(y_0)} R[H] \otimes V \xrightarrow{\operatorname{id}_H \otimes \varrho} R[H] \otimes R[H] \otimes V.$$

Здесь мы определяем $i(y_0)$ как $i(y_0)=(\operatorname{in}^*\otimes\operatorname{id}_V)\circ(\operatorname{id}\otimes i)\circ m^{-1}$. Коммутативность правого квадрата следует из коммутативности диаграммы замены базы, приведенной выше.

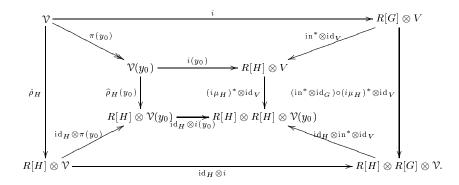
Нижняя строчка показывает, что $i(y_0)$ отождествляет $\mathcal{V}(y_0)$ с $R[H]\square_{R[H]}V$. Поэтому существует единственный гомоморфизм R-модулей $\phi_{(V,\rho)}:V\to\mathcal{V}(y_0)$ такой, что диаграмма



коммутативна. Из сказанного следует, что $\phi_{(V,\rho)}$ — изоморфизм R-модулей.

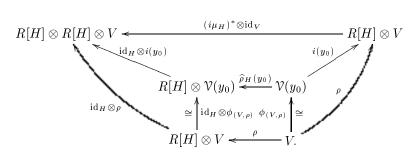
Лемма 2. Отображение $\phi_{(V,\rho)}$ – изоморфизм левых R[H]-комодулей.

Доказательство. Для начала докажем, что $((i\mu_H)^* \otimes \mathrm{id}_V) \circ i(y_0) = (\mathrm{id}_H \otimes i(y_0)) \circ \widehat{\rho}_H(y_0)$. Рассмотрим диаграмму



Коммутативность центрального квадрата следует из коммутатвности остальных квадратов (а она очевидна) и сюръективности стрелки $\pi(y_0)$.

Чтобы доказать, что $\phi_{(V,\rho)}:(V,\rho)\to (\mathcal{V}(y_0),\widehat{\rho}_H(y_0))$ – изоморфизм левых R[H]-комодулей, достаточно проверить, что он согласован с левыми R[H]-кодействиями. Для этого рассмотрим диаграмму

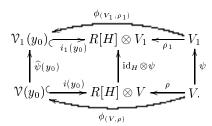


Коммутативность верхнего квадрата была доказана выше, правый треугольник коммутативен по определению $\phi_{(V,\rho)}$, внешний квадрат коммутативен, так как (V,ρ) – левый R[H]-комодуль. Так как гомоморфизм $\mathrm{id}_H\otimes i(y_0)$ инъективен, то нижний квадрат коммутативен. Таким образом, $\phi_{(V,\rho)}$ – изоморфизм левых R[H]-комодулей.

Чтобы завершить доказательство теоремы, осталось доказать, что соответствие $(V,\rho) \to \phi_{(V,\rho)}$ — преобразование фукторов $\mathrm{id}_{\mathrm{Rep}_X(H)} \to \mathrm{Res} \circ \mathrm{Ind}$. Для этого надо взять гомоморфизм левых R[H]-комодулей $\psi:(V,\rho)\to (V_1,\rho_1)$ и проверить коммутативность диаграммы

$$\begin{array}{ccc} \mathcal{V}(y_0) & \xrightarrow{\operatorname{Res}(\operatorname{Ind}(\psi))} & \mathcal{V}_1(y_0) \\ \phi_{(V,\rho)} & & & \phi_{(V_1,\rho_1)} \\ V & \xrightarrow{\psi} & V_1. \end{array}$$

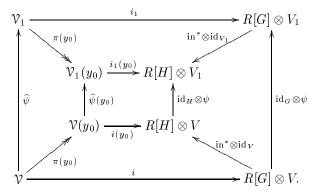
Используем обозначение $\widehat{\psi}$ для $\operatorname{Ind}(\psi)$ и $\widehat{\psi}(y_0)$ для $\operatorname{Res}(\widehat{\psi})$. Рассмотрим диаграмму.



В этой диаграмме верхний и нижний треугольники коммутативны по построению $\phi_{(V,\rho)}$, правый квадрат коммутативен, так как ψ

— гомоморфизм левых R[H]-комодулей. Если мы докажем коммутативность левого квадрата, то инъективность $i_1(y_0)$ повлечет за собой нужное нам равенство $\phi_{(V_1,\rho_1)}\circ\psi=\widehat{\psi}(y_0)\circ\phi_{(V,\rho)}$.

Для завершения доказательства рассмотрим диаграмму



Коммутативность центрального квадрата (которую нам и осталось доказать) следует из коммутативности всех остальных квадратов и сюръективности $\pi(y_0)$.

Теорема 2. Имеет место изоморфизм функторов

$$\mathrm{id}_{\mathrm{Vect}_{\mathbf{v}}^G(Y)} \to \mathrm{Ind} \circ \mathrm{Res}.$$

Доказательство. Пусть $(\mathcal{V}, \widehat{\rho}) \in \operatorname{Vect}_X^G(Y), (\mathcal{V}(y_0), \widehat{\rho}_H(y_0)) = \operatorname{Res}(\mathcal{V}, \widehat{\rho}).$ Пусть $i : \operatorname{Ind}(\mathcal{V}(y_0)) \hookrightarrow R[G] \otimes \mathcal{V}(y_0)$ включение R[Y]-модулей, задающее $\operatorname{Ind}(\mathcal{V}(y_0), \widehat{\rho}_H(y_0)).$ Рассмотрим диаграмму

$$0 \longrightarrow \operatorname{Ind}(\mathcal{V}(y_0)) \xrightarrow{i} R[G] \otimes \mathcal{V}(y_0) \xrightarrow{(i\nu_H)^* \otimes \operatorname{id}_{\mathcal{V}(y_0)}} R[G] \otimes R[H] \otimes \mathcal{V}(y_0)$$

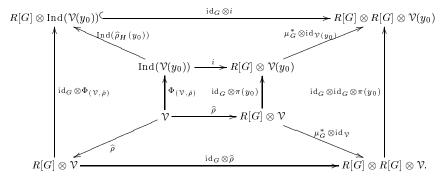
$$\downarrow^{\Phi}(\mathcal{V},\hat{\rho}) \qquad \operatorname{id}\otimes\pi(y_0) \qquad \qquad \downarrow^{\operatorname{id}_G \otimes \hat{\rho}_H(y_0)} \qquad \qquad \downarrow^{\operatorname{id}_G \otimes \operatorname{in}^* \otimes \pi(y_0)}$$

$$0 \longrightarrow \mathcal{V} \xrightarrow{\hat{\rho}} R[G] \otimes \mathcal{V} \xrightarrow{-\operatorname{id}_G \otimes \hat{\rho}} R[G] \otimes R[G] \otimes \mathcal{V}.$$

Очевидно, что правый квадрат по верхним и нижним стрелкам коммутативен. Итак, мы видим, что имеется единственный гомоморфизм R-модулей $\Phi_{(\mathcal{V},\hat{\rho})}: \mathcal{V} \to \operatorname{Ind}(\mathcal{V}(y_0))$, такой, что левый квадрат коммутативен.

Лемма 3. Отображение $\Phi_{(\mathcal{V},\hat{\rho})}:(\mathcal{V},\widehat{\rho})\to\operatorname{Ind}(\mathcal{V}(y_0),\widehat{\rho}_H(y_0))$ согласовано с R[G]-кодействием.

Доказательство. Рассмотрим диаграмму



Нам нужно показать коммутативность левого квадратика. Ясно, что все остальные квадраты (включая внешний) коммутативны. Гомоморфизм $id \otimes i$ инъективен, так как i инъективен и R[G] — плоская R-алгебра. Поэтому левый квадрат коммутативен.

Лемма 4. $\Phi_{(\mathcal{V},\hat{\rho})}:\mathcal{V} \to \operatorname{Ind}(\mathcal{V}(y_0))$ есть гомоморфизм R[Y]-модулей.

Доказательство. Поскольку $\operatorname{Ind}(\mathcal{V}(y_0)) \stackrel{i}{\to} R[G] \otimes \mathcal{V}(y_0)$ – инъективный гомоморфизм R[Y]-модулей, то достаточно проверить, что композиция

$$\mathcal{V} \xrightarrow{\widehat{\rho}} R[G] \otimes \mathcal{V} \xrightarrow{\mathrm{id}_G \otimes \pi(y_0)} R[G] \otimes \mathcal{V}(y_0)$$

является гомоморфизмом R[Y]-модулей, где на $R[G]\otimes \mathcal{V}(y_0)$ R[Y]-модульная структура задана как сразу после определения 10, то есть, формулой $f\cdot (a\otimes v)=q^*(f)a\otimes v$. Напомним, что $\widehat{\rho}$ удовлетворяет условию $\widehat{\rho}(fs)=\theta^*(f)\cdot \widehat{\rho}(s)$ (см. определение 7).

Имеем $(\mathrm{id}_G \otimes \pi(y_0))\widehat{\rho}(fs) = (\mathrm{id}_G \otimes \pi(y_0))(\theta^*(f) \cdot \widehat{\rho}(s)) = (\mathrm{id}_G \otimes y_0^*)(\theta^*(f)) \cdot (\mathrm{id}_G \otimes \pi(y_0))\widehat{\rho}(s) = q^*(f) \cdot (\mathrm{id}_G \otimes \pi(y_0))\widehat{\rho}(s)$. Последнее равенство верно, так как композиция

$$G \times_X X \xrightarrow{\operatorname{id} \times y_0} G \times_X Y \xrightarrow{\theta} Y$$

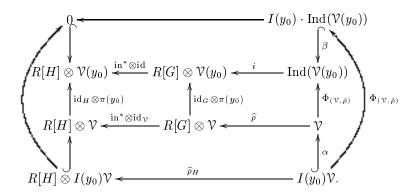
совпадает с q.

Следствие 4.1. $\Phi_{(\mathcal{V},\hat{\rho})}$ – морфизм в категории $\operatorname{Vect}_X^G(Y)$.

Теперь докажем, что $\Phi_{(\mathcal{V},\hat{\rho})}$ — изоморфизм. Доказательство проведем в несколько шагов.

Утверждение 4.1. $\Phi_{(\mathcal{V},\hat{\rho})}(y_0): \mathcal{V}(y_0) \to \operatorname{Ind}(\mathcal{V}(y_0))(y_0) - uзоморфизм R-модулей.$

Доказательство. Рассмотрим диаграмму



Правый квадратик (искривленный) коммутативен, так как $\Phi_{(\mathcal{V},\hat{\rho})}$ – гомоморфизм R[Y]-модулей. Правый центральный квадратик коммутативен по определению $\Phi_{(\mathcal{V},\hat{\rho})}$. Левый центральный и левый искривленный квадратики очевидно коммутативны. Покажем, что нижний квадрат коммутативен. Для этого достаточно проверить, что $((\mathrm{id}_H \otimes \pi(y_0)) \circ (\mathrm{in}^* \otimes \mathrm{id}_\mathcal{V}) \circ \widehat{\rho})(I(y_0)\mathcal{V}) = 0$. Последнее имеет место, так как для $f \in R[Y], s \in \mathcal{V}$ имеем

$$((\operatorname{in}^* \otimes \pi(y_0)) \circ \widehat{\rho})(f \cdot s) = (\operatorname{in}^* \otimes \pi(y_0))(\theta^*(f)\widehat{\rho}(s))$$
$$= (\operatorname{in}^* \otimes y_0^*)\theta^*(f) \cdot (\operatorname{in}^* \otimes \pi(y_0))\widehat{\rho}(s).$$

Если $f \in I(y_0)\mathcal{V}$, то равенство нулю достигается за счет коммутативности диаграммы

$$\begin{array}{ccc}
H \times_X X & \longrightarrow X \\
\downarrow^{\mathrm{id} \times y_0} & \downarrow^{y_0} \\
H \times_X Y & \xrightarrow{\theta_H} Y.
\end{array}$$

Проверим коммутативность верхнего квадрата. Имеем $((\operatorname{in}^* \otimes \operatorname{id}) \circ i)(fs) = (\operatorname{in}^* \otimes \operatorname{id})(q^*(f) \cdot i(s)) = \operatorname{in}^*(q^*(f)) \cdot ((\operatorname{in}^* \otimes \operatorname{id})i(s)) = f(y_0) \cdot (x),$ где $x \in R[H] \otimes \mathcal{V}(y_0)$. Если $f \in I(y_0)\mathcal{V}$, то получится ноль.

Из коммутативности верхнего прямоугольника следует существование и единственность гомоморфизма $i'(y_0)$, делающего диаграмму

$$R[H] \otimes \mathcal{V}(y_0) \stackrel{i'(y_0)}{\longleftarrow} \operatorname{Ind}(\mathcal{V}(y_0))(y_0)$$

$$\uparrow^{\operatorname{in}^* \otimes \operatorname{id}_{\mathcal{V}(y_0)}} \uparrow^{\pi(y_0)}$$

$$R[G] \otimes \mathcal{V}(y_0) \stackrel{i}{\longleftarrow} \operatorname{Ind}(\mathcal{V}(y_0))$$

коммутативной. Видно, что гомоморфизм $i'(y_0)$ совпадает с гомоморфизмом $i(y_0)$, построенным в доказательстве теоремы 1.

Из коммутативности большой диаграммы следует, что коммутативна:

$$R[H] \otimes \mathcal{V}(y_0) \overset{i'(y_0)}{\longleftarrow} \operatorname{Ind}(\mathcal{V}(y_0))(y_0)$$

$$\uparrow^{\Phi_{(\mathcal{V},\hat{
ho})}(y_0)} \mathcal{V}(y_0).$$

Но в силу теоремы 1 у нас есть похожая коммутативная диаграмма:

$$R[H] \otimes \mathcal{V}(y_0) \xrightarrow{i(y_0)} \operatorname{Ind}(\mathcal{V}(y_0))(y_0)$$

$$\cong \bigwedge^{\phi_{(\mathcal{V}(y_0),\hat{\rho}(y_0))}} \mathcal{V}(y_0).$$

Поскольку $i(y_0)=i'(y_0)$ инъективно, то $\Phi_{(\mathcal{V},\hat{\rho})}(y_0)=\phi_{(\mathcal{V}(y_0),\hat{\rho}(y_0))}$ — изоморфизм.

Предположим теперь, что R=k, то есть наше базовое кольцо является полем, а $X=\mathrm{Spec}(k)=\mathrm{pt}$ – точка. В этих предположениях докажем следующее утверждение.

Утверждение 4.2. Пусть R = k, $\Phi : (\mathcal{V}, \hat{\rho}) \to (\mathcal{V}_1, \hat{\rho}_1)$ – морфизм в категории $\operatorname{Vect}_{\operatorname{pt}}^G(Y)$. Если $\Phi(y_0) : \mathcal{V}(y_0) \to \mathcal{V}_1(y_0)$ – изоморфизм k-векторных пространств, то Φ – изоморфизм в $\operatorname{Vect}_{\operatorname{pt}}^G(X)$.

Доказательство. Для доказательства этого утверждения сформулируем определение и лемму.

Определение 15. Для $y \in Y$ положим $I(y) = \ker(k[Y] \xrightarrow{y^*} k)$, $\mathcal{V}(y) = \mathcal{V}/I(y)\mathcal{V}$. Если $g \in G$ положим

$$l_{g,Y}^* = g^* \circ \theta^* : \quad k[Y] \to k[G \times Y] \to k[Y],$$

$$l_{g,Y}^* = (g^* \otimes \mathrm{id}_{\mathcal{V}}) \circ \hat{\rho} : \quad \mathcal{V} \to k[G] \otimes \mathcal{V} \to k \otimes \mathcal{V}.$$

Лемма 5. Пусть $(\mathcal{V}, \hat{\rho}) \in \mathrm{Vect}_{\mathrm{pt}}^G(Y)$. Пусть $gy_0 = y_1$, где $y_0, y_1 \in Y(k)$. Тогда существует единственный изоморфизм $\bar{l}_{g,\mathcal{V}}^*: \mathcal{V}(y_1) \to \mathcal{V}(y_0)$, делающий диаграмму

$$\begin{array}{ccc}
\mathcal{V} & \xrightarrow{\hat{\rho}} k[G] \otimes \mathcal{V} & \longrightarrow k \otimes \mathcal{V} = \mathcal{V} \\
\downarrow & & \downarrow \\
\mathcal{V}(y_1) & \xrightarrow{\bar{l}_{g,\mathcal{V}}^*} & \mathcal{V}(y_0)
\end{array}$$

коммутативной.

Доказательство. Две коммутативные диаграммы

показывают, что имеет место коммутативная диаграмма изоморфизмов и включений:

$$I(y_1) \otimes \mathcal{V} \xrightarrow{l_{g,Y}^* \otimes l_{g,\mathcal{V}}^*} I(y_0) \otimes \mathcal{V}$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Наконец, отсюда следует существование изоморфизма $ar{l}_{g,\mathcal{V}}^*$.

Перейдем к доказательству утверждения 4.2. Рассмотрим диаграмму

$$\begin{array}{c} \mathcal{V}_{1}(y_{0}) \stackrel{\overline{l}_{g,\mathcal{V}_{1}}^{*}}{\stackrel{\cong}{\cong}} \mathcal{V}_{1}(y_{1}) \\ \cong & \Phi(y_{0}) & \Phi(y_{1}) \\ \mathcal{V}(y_{0}) \stackrel{\overline{l}_{g,\mathcal{V}}^{*}}{\stackrel{\cong}{\cong}} \mathcal{V}(y_{1}). \end{array}$$

По условию нам дано, что $\Phi(y_0)$ – изоморфизм. Чтобы показать, что $\Phi(y_1)$ – изоморфизм, следует доказать коммутативность этой диаграммы. Этот факт, в свою очередь следует из коммутативности диаграммы

и сюръективности гомоморфизма $\pi(y_1): \mathcal{V} \to \mathcal{V}(y_1).$

Таким образом, мы показали, что для любого $y \in Y$ отображение $\Phi(y)$ – изоморфизм.

$$\begin{array}{ccc}
\mathcal{V}/I(y)\mathcal{V} & \xrightarrow{\Phi(y)} \mathcal{V}_1/I(y)\mathcal{V}_1 \\
\parallel & & \parallel \\
\mathcal{V}(y) & \longrightarrow \mathcal{V}_1(y).
\end{array}$$

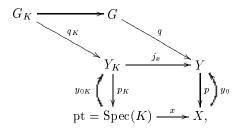
Поскольку $I(y) = \ker(k[Y] \to k)$ — максимальный идеал кольца k[Y], а \mathcal{V} и \mathcal{V}_1 — конечно порожденные локально свободные k[Y]-модули, то используя лемму Накаяма (подробности см. в [5]), нетрудно показать, что Φ — изоморфизм на ростках:

$$\mathcal{V}_y := \mathcal{V} \otimes_{k[Y]} (k[Y]_y) \xrightarrow{\cong} \mathcal{V}_1 \otimes_{k[Y]} (k[Y]_y).$$

Следовательно, Ф – изоморфизм.

Следствие 4.2. Отображение $\Phi_{(\mathcal{V},\hat{\rho})}: \mathcal{V} \to \operatorname{Ind}(\mathcal{V}(y_0))$ – изоморфизм в категории $\operatorname{Vect}_{\operatorname{pt}}^G(Y)$.

Теперь с помощью полученного результата докажем теорему в общем случае, когда R – произвольное коммутативное нетерово кольцо, $X=\operatorname{Spec}(R)$. Для начала введем некоторые обозначения. Пусть K – некоторое поле, $x:\operatorname{Spec}(K)\to X$ – морфизм схем. Рассмотрим диаграмму замены базы

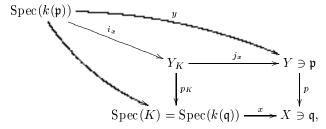


где Y_K и G_K обозначены pull-back'и.

Утверждение 4.3. Пусть Φ – морфизм в категории $\mathrm{Vect}_X^G(Y)$, такой что $\Phi(y_0) := \Phi|_{y_0(X)}$ – изоморфизм. Тогда Φ – изоморфизм в $\mathrm{Vect}_X^G(Y)$.

Доказательство. По свойству замены базы Φ_K согласован с G_K -действиями, а значит, является морфизмом в категории $\operatorname{Vect}_{\operatorname{pt}}^{G_K}(Y_K)$. Так как $\Phi|_{y_0(X)}$ – изоморфизм, то очевидно, что $\Phi_K|_{y_0K(\operatorname{pt})}$ – изоморфизм. Тогда по утверждению 4.2 Φ_K – изоморфизм в $\operatorname{Vect}_{\operatorname{pt}}^{G_K}(Y_K)$.

Пусть $\mathfrak{p} \in Y$ — замкнутая точка, а $\mathfrak{q} \in X$ — ее образ при проекции p, который, вообще говоря, будет схемной точкой. Рассмотрим диаграмму



где существование морфизма i_x следует из свойств pull-back'а. Так как мы показали, что $\Phi_K=j_x^*\Phi$ – изоморфизм, то также изоморфизмом будет $i_x^*j_x^*\Phi=y^*\Phi=k(\mathfrak{p})\otimes_{R[Y]}\Phi$. Отсюда по лемме Накаяма несложно

заключить, что $\Phi_{\mathfrak{p}}=(R[Y])_{\mathfrak{p}}\otimes_{R[Y]}\Phi$ — изоморфизм для любой замкнутой точки $\mathfrak{p}\in Y$. Значит, Φ — изоморфизм. \square

Следствие 4.3. Отображение $\Phi_{(\mathcal{V},\hat{\rho})}:\mathcal{V}\to\operatorname{Ind}(\mathcal{V}(y_0))$ – изоморфизм в категории $\operatorname{Vect}_X^G(Y)$.

Чтобы завершить доказательство теоремы, осталось доказать, что соответствие $(\mathcal{V},\widehat{\rho}) \to \Phi_{(\mathcal{V},\widehat{\rho})}$ есть преобразование фукторов

$$\operatorname{id}_{\operatorname{Vect}_X^G(Y)} \to \operatorname{Ind} \circ \operatorname{Res}.$$

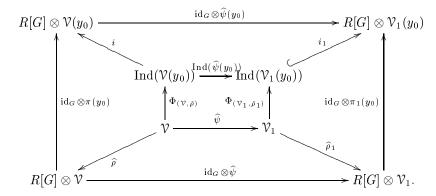
Для этого надо взять гомоморфизм $\widehat{\psi}:(\mathcal{V},\widehat{\rho})\to(\mathcal{V}_1,\widehat{\rho}_1)$ и проверить коммутативность диаграммы

$$\operatorname{Ind}(\mathcal{V}(y_0)) \xrightarrow{\operatorname{Ind}(\hat{\psi}(y_0))} \operatorname{Ind}(\mathcal{V}_1(y_0))$$

$$\uparrow^{\Phi_{(\mathcal{V}_1,\hat{\rho})}} \qquad \qquad \uparrow^{\Phi_{(\mathcal{V}_1,\hat{\rho}_1)}} \uparrow$$

$$\mathcal{V} \xrightarrow{\hat{\psi}} \mathcal{V}_1.$$

Рассмотрим диаграмму



Здесь нижний квадрат коммутативен, так как $\widehat{\psi}$ согласован с R[G]-кодействием, левый и правый квадраты коммутативны по определению $\Phi_{(\mathcal{V},\hat{\rho})}$, верхний квадрат – по определению функтора Ind, внешний квадрат – по определению π . Инъективность i_1 и доставляет коммутативность центрального квадрата.

5. ТЕНЗОРНЫЕ ПРОИЗВЕДЕНИЯ

Тензорное произведение в категориях $\operatorname{Rep}_X(H)$ и $\operatorname{Vect}_X^G(Y)$ было определено нами в параграфе 2. Сейчас мы рассмотрим некоторые свойства тензорного произведения и докажем, что функторы Res и Ind согласованы с операциями тензорного произведения. Напомним основные обозначения:

$$(\mathcal{V}, \widehat{\rho}) \otimes_{R[Y]} (\mathcal{V}_1, \widehat{\rho}_1) = (\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1, \Delta_G^* \circ (\widehat{\rho} \otimes \widehat{\rho}_1)) =: (\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1, (\widehat{\rho} \widehat{\rho}_1)),$$

$$(V, \rho) \otimes (V_1, \rho_1) = (V \otimes V_1, \Delta_H^* \circ (\rho \otimes \rho_1)) =: (V \otimes V_1, (\rho \rho_1)).$$

Лемма 6. Тензорное произведение левых R[H]-комодулей ассоциативно, коммутативно и левый R[H]-комодуль $(R,i:R\to R[H])$ является двусторонней единицей относительно этого тензорного произведения. Другими словами, имеют место естественные изоморфизмы левых R[H]-комодулей:

(a)
$$(V_1, \rho_1) \otimes ((V_2, \rho_2) \otimes (V_3, \rho_3)) \cong ((V_1, \rho_1) \otimes (V_2, \rho_2)) \otimes (V_3, \rho_3),$$

(b)
$$(V_1, \rho_1) \otimes (V_2, \rho_2) \cong (V_2, \rho_2) \otimes (V_1, \rho_1)$$
,

(c)
$$(V, \rho) \otimes (R, i) \cong (V, \rho) \cong (R, i) \otimes (V, \rho)$$
.

Доказательство. Для R-модулей эти свойства очевидны, а согласованность изоморфизмов с R[H]-кодействиями легко проверяется на элементах.

Лемма 7. Тензорное произведение в категории $\mathrm{Vect}_X^G(Y)$ ассоциативно, коммутативно и объект $(R[Y], \theta^* : R[Y] \to R[G] \otimes R[Y])$ является двусторонней единицей относительно этого тензорного произведения. Другими словами, имеют место естественные изоморфизмы:

$$\begin{array}{l} \text{(a)} \ (\mathcal{V}_1,\widehat{\rho}_1) \otimes_{R[Y]} ((\mathcal{V}_2,\widehat{\rho}_2) \otimes_{R[Y]} (\mathcal{V}_3,\widehat{\rho}_3)) \\ \cong ((\mathcal{V}_1,\widehat{\rho}_1) \otimes_{R[Y]} (\mathcal{V}_2,\widehat{\rho}_2)) \otimes_{R[Y]} (\mathcal{V}_3,\widehat{\rho}_3), \end{array}$$

(b)
$$(\mathcal{V}_1, \widehat{\rho}_1) \otimes_{R[Y]} (\mathcal{V}_2, \widehat{\rho}_2) \cong (\mathcal{V}_2, \widehat{\rho}_2) \otimes_{R[Y]} (\mathcal{V}_1, \widehat{\rho}_1),$$

(c)
$$(\mathcal{V}, \widehat{\rho}) \otimes_{R[Y]} (R[Y], \theta^*) \cong (\mathcal{V}, \widehat{\rho}) \cong (R[Y], \theta^*) \otimes_{R[Y]} (\mathcal{V}, \widehat{\rho})$$
.

Доказательство. Аналогично предыдущей лемме.

Сформулируем еще одну очевидную лемму.

Лемма 8. Имеют место естественные изоморфизмы:

$$\operatorname{Ind}(R,i) \cong (R[Y], \theta^*) \in \operatorname{Vect}_X^G(Y),$$

$$\operatorname{Res}(R[Y], \theta^*) \cong (R, i) \in \operatorname{Rep}_X(Y).$$

Утверж дение 5.1. Пусть $\widehat{\phi}: (\mathcal{V}, \widehat{\rho}) \to (\mathcal{W}, \widehat{\eta}), \ \widehat{\psi}: (\mathcal{V}_1, \widehat{\rho}_1) \to (\mathcal{W}_1, \widehat{\eta}_1) -$ морфизмы в категории $\mathrm{Vect}_X^G(Y)$. Тогда $\widehat{\phi} \otimes \widehat{\psi}: \mathcal{V} \otimes_{R[Y]} \mathcal{V}_1 \to \mathcal{W} \otimes_{R[Y]} \mathcal{W}_1 -$ тоже морфизм в категории $\mathrm{Vect}_X^G(Y)$.

Доказательство. $(\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1, (\widehat{\rho} \widehat{\rho}_1))$ и $(\mathcal{W} \otimes_{R[Y]} \mathcal{W}_1, (\widehat{\eta} \widehat{\eta}_1))$ — объекты $\mathrm{Vect}_X^G(Y)$. Покажем, что морфизм R[Y]-модулей $\widehat{\phi} \otimes \widehat{\psi}$ согласован с R[G]-кодействиями. Для этого рассмотрим диаграмму

Правый квадрат очевидно коммутативен, а левый коммутативен в силу того, что $\widehat{\phi}$ и $\widehat{\psi}$ – морфизмы в $\mathrm{Vect}_X^G(Y)$.

Утверждение 5.2. Пусть $\phi:(V,\rho)\to (W,\eta),\ \psi:(V_1,\rho_1)\to (W_1,\eta_1)$ – морфизмы в категории $\operatorname{Rep}_X(H)$. Тогда $\phi\otimes\psi:V\otimes V_1\to W\otimes W_1$ – тоже морфизм в категории $\operatorname{Rep}_X(H)$.

Доказательство. Аналогично предыдущему утверждению.

Теорема 3. $(\mathcal{V}, \widehat{\rho})$ и $(\mathcal{V}_1, \widehat{\rho}_1)$ – объекты $\operatorname{Vect}_X^G(Y)$. Тогда существует изоморфизм, функториальный по каждому аргументу:

$$\operatorname{Res}(\mathcal{V},\widehat{\rho}) \otimes \operatorname{Res}(\mathcal{V}_1,\widehat{\rho}_1) \stackrel{\cong}{\to} \operatorname{Res}((\mathcal{V},\widehat{\rho}) \otimes_{R[Y]} (\mathcal{V}_1,\widehat{\rho}_1)).$$

Доказательство. Рассмотрим отображение $\Delta_Y: R[Y] \otimes R[Y] \to R[Y]$, определенное на элементах следующим образом: $s \otimes s_1 \mapsto ss_1$. Очевидно, что корректно определено его ограничение на $I(y_0)$: $I(y_0) \otimes I(y_0) \xrightarrow{\Delta_Y} I(y_0)$.

Рассмотрим естественное отображение R-модулей $\widehat{\chi}:\mathcal{V}\otimes\mathcal{V}_1\to\mathcal{V}\otimes_{R[Y]}\mathcal{V}_1$ и сквозную стрелку:

$$(I(y_0)\mathcal{V})\otimes (I(y_0)\mathcal{V}_1) \xrightarrow{\Delta_Y} I(y_0)\mathcal{V}\otimes \mathcal{V}_1 \xrightarrow{\widehat{\chi}} I(y_0)\mathcal{V}\otimes_{R[Y]}\mathcal{V}_1.$$

Ясно, что диаграмма

коммутативна. Поэтому определен морфизм R-модулей $\chi:\mathcal{V}(y_0)\otimes\mathcal{V}_1(y_0)\to(\mathcal{V}\otimes_{R[Y]}\mathcal{V}_1)(y_0)$, такой что диаграмма коммутативна:

$$\begin{array}{c} \mathcal{V} \otimes \mathcal{V}_1 \xrightarrow{\widehat{\chi}} \mathcal{V} \otimes_{R[Y]} \mathcal{V}_1 \\ \downarrow^{\pi(y_0) \otimes \pi_1(y_0)} & \downarrow^{\pi_{01}(y_0)} \\ \mathcal{V}(y_0) \otimes \mathcal{V}_1(y_0) \xrightarrow{\chi} (\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1)(y_0) \end{array}$$

Перепишем морфизм χ , используя изоморфизм $\mathcal{V}(y_0) \cong R \otimes_{R[Y]} \mathcal{V}$:

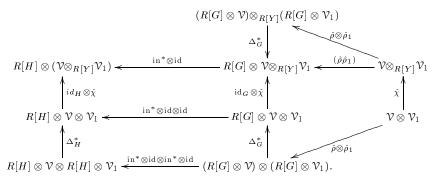
$$\chi: (R \otimes_{R[Y]} \mathcal{V}) \otimes (R \otimes_{R[Y]} \mathcal{V}_1) \to R \otimes_{R[Y]} (\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1),$$

действие на элементах такое:

$$(c_1 \otimes_{R[Y]} v) \otimes (c_2 \otimes_{R[Y]} w) \longmapsto c_1 c_2 \otimes_{R[Y]} v \otimes_{R[Y]} w.$$

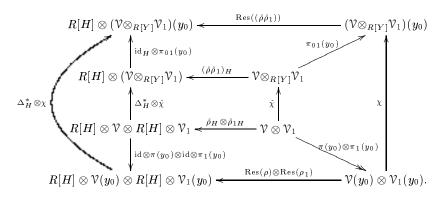
Очевидно, что он является изоморфизмом R-модулей (так как легко построить обратный к нему). Теперь покажем, что изоморфизм R-модулей χ согласован с R[H]-кодействиями. Для этого рассмотрим

диаграмму



В ней все квадратики, очевидно, коммутативны.

Напомним обозначение $\widehat{\rho}_H = (\mathrm{in}^* \otimes \mathrm{id}) \circ \widehat{\rho}$. Рассмотрим диаграмму



Коммутативность центрального квадрата доказана выше. Правый и левый квадраты коммутативны по построению χ . Верхний и нижний квадраты коммутативны по определению функтора Res. Сюръективность отображения $\pi(y_0) \otimes \pi_1(y_0)$ доставляет коммутативность внешнего обхода, который можно переписать так:

$$R[H] \otimes (\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1)(y_0) \xleftarrow{\operatorname{Res}((\widehat{\rho}\widehat{\rho}_1))} (\mathcal{V} \otimes_{R[Y]} \mathcal{V}_1)(y_0)$$

$$\downarrow^{\operatorname{id}_H \otimes \chi} \uparrow \qquad \qquad \chi \uparrow$$

$$R[H] \otimes \mathcal{V}(y_0) \otimes \mathcal{V}_1(y_0) \xleftarrow{(\rho \rho_1)} \mathcal{V}(y_0) \otimes \mathcal{V}_1(y_0).$$

Таким образом, χ — изоморфизм в категории $\mathrm{Rep}_X(H)$. Нам осталось проверить функториальность по каждому аргументу. Пусть $\widehat{\psi}$: $(\mathcal{V},\widehat{\rho}) \to (\mathcal{W},\widehat{\eta})$ — морфизм в категории $\mathrm{Vect}_X^G(Y)$. Рассмотрим диаграмму R-модулей:

$$\operatorname{Res}(\mathcal{V}) \otimes \operatorname{Res}(\mathcal{V}_{1}) \xrightarrow{\chi(\mathcal{V}, \mathcal{V}_{1})} \operatorname{Res}(\mathcal{V} \otimes_{R[Y]} \mathcal{V}_{1})$$

$$\downarrow \operatorname{Res}(\widehat{\psi}) \otimes \operatorname{id} \qquad \qquad \downarrow \operatorname{Res}(\widehat{\psi} \otimes \operatorname{id})$$

$$\operatorname{Res}(\mathcal{W}) \otimes \operatorname{Res}(\mathcal{V}_{1}) \xrightarrow{\chi(\mathcal{W}, \mathcal{V}_{1})} \operatorname{Res}(\mathcal{W} \otimes_{R[Y]} \mathcal{V}_{1}).$$

Она коммутативна (это легко проверяется на элементах). К тому же все стрелки в ней — это морфизмы R[H]-комодулей (вертикальные — в силу утверждений 5.1 и 5.2, горизонтальные — в силу доказанного выше). Таким образом, мы показали функториальность по первому аргументу. Аналогично проводится проверка функториальности по второму аргументу.

Теорема 4. Пусть (V, ρ) и (V_1, ρ_1) – объекты $\operatorname{Rep}_X(H)$. Тогда существует изоморфизм, функториальный по каждому аргументу

$$\operatorname{Ind}((V, \rho) \otimes (V_1, \rho_1)) \xrightarrow{\cong} \operatorname{Ind}(V, \rho) \otimes_{R[Y]} \operatorname{Ind}(V_1, \rho_1).$$

Доказательство. Рассмотрим сквозную стрелку

$$V \otimes V_1 \xrightarrow{\phi_{(V,\rho)} \otimes \phi_{(V_1,\rho_1)}} \operatorname{Res}(\operatorname{Ind} V) \otimes \operatorname{Res}(\operatorname{Ind} V_1) \xrightarrow{\quad \chi \quad} \operatorname{Res}(\operatorname{Ind} V \otimes_{R[Y]} \operatorname{Ind} V_1).$$

Первая стрелка изоморфизм в силу теоремы 1, а вторая – в силу теоремы 3. Для краткости обозначим их композицию $\chi \circ \phi$. Также рассмотрим другую сквозную стрелку

$$\operatorname{Ind}(V \otimes V_1) \xrightarrow{\operatorname{Ind}(\chi \circ \phi)} \operatorname{Ind}(\operatorname{Res}(\operatorname{Ind}V \otimes_{R[Y]} \operatorname{Ind}V_1)) \xrightarrow{\Phi^{-1}} (\operatorname{Ind}V) \otimes_{R[Y]} (\operatorname{Ind}V_1).$$

В последней стрелке для краткости вместо $\Phi_{\operatorname{Ind}V\otimes_{R[Y]}\operatorname{Ind}V_1}^{-1}$ написано просто Φ^{-1} — изоморфизм, построенный в теореме 2. Эта сквозная стрелка и есть доказываемый изоморфизм. Его функториальность сразу следует из построения.

Мы показали, что оба функтора Res и Ind согласованы с тензорными произведениями и тем самым полностью завершили доказательство основной теоремы.

Литература

- M.-F. Atiyah, F. Hirzebruch, Vector bundles and homogeneous spaces. Proc. Symp. Pure Math. 3, A.M.S., (1961), 7-38.
- I. A. Panin, On the algebraic K-theory of twisted flag varieties. K-Theory 8, No. 6 (1994), 541-585.
- 3. Р. Хартсхорн, Алгебраическая геометрия. Мир, М. (1981).
- 4. Дж. Милн, Этальные когомологии. Мир, М., 1983.
- 5. М. Атья, И. Макдональд, Введение в коммутативную алгебру. Мир, М. (1972).

Kobyzev I. B. The algebraic analog of the Borel construction and its properties.

Suppose that G is an affine algebraic group scheme faithfully flat over another affine scheme $X=\operatorname{Spec} R, H$ is a closed faithfully flat X-subscheme and G/H is an affine X-scheme. In this case we prove the equivalence of two categories: left R[H]-comodules and G-equivariant vector bundles over G/H, and that this equivalence respects tensor products. Our algebraic construction is based on the well-known geometric Borel construction.

С.-Петербургский государственный университет Университетский пр. 28, Петродворец, 198504 Санкт-Петербург, Россия E-mail: ivanuskobbus@gmail.com

Поступило 13 октября 2011 г.