3auCKu HayIHBIX
cemuHapos [IOMU
Tom 394, 2011 .

A. L. Glazman, P. B. Zatitski, A. S. Sivatski, D. M. Stolyarov

FORMS OF HIGHER DEGREE OVER CERTAIN
FIELDS

ABSTRACT. Let F' be a nonformally real field, n,r positive inte-
gers. Suppose that for any prime number p < n the quotient group
F*/F*P is finite. We prove that if N is big enough, then any system
of r forms of degree n in N variables over F' has a nonzero solution.
Also we show that if in addition F' is infinite, then any diagonal
form with nonzero coefficients of degree n in |F*/F*™| variables is
universal, i.e. its set of nonzero values coincides with F'*.

In contrast to the well developed algebraic theory of quadratic forms the
theory of forms (homogeneous polynomials in several variables) of higher
degree over fields is in rudimentary condition, and the most of the known
results here are rather scattered and depend on the structure of the ground
field. However, certain notions and definitions from the theory of quadratic
forms make sense in the higher degree setting. Let F' be a field. The number
of variables of a form ¢ over F' is called the dimension of ¢. The form
a1zl + -+ apey, in variables x4, ..., xy, is called diagonal and denoted
by {(ai,...,an) (if there is no ambiguity about the degree n). The form
(A, ..., A) of dimension m is denoted by m(\). If ¢ and ¢ are forms of the
same degree whose sets of variables do not intersect, we denote the sum
¢+ by ¢ L. If ¢is a form, by D(¢) we mean the set of nonzero values
of ¢. The form ¢ of dimension m over the field F' is said to be isotropic if
there exists a nonzero row (ay,...,a;,) € F™ such that ¢(a1,...,a,) =0
and anisotropic otherwise. The form ¢ is called universal if D(¢) = F*, i.e.
any nonzero element of F'is a value of ¢. Following [3], we denote by vg,, =
vgr(F) the smallest number, such that each system of r forms of degree
d in more that vq, variables has a nonzero solution, and write vg, = co
otherwise. Put vy = vg,1. For example, if k is an algebraically closed field
and F/k is an extension of transcendental degree i (more generally, if F'
is a C;-field), then vy, < rd’ ([4, Ch. 2, Th. 15.8]). Define the number
¢q = ¢q(F) similarly to vg, except that in this case only diagonal forms
are considered.
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It has been proved in [1] that vg, is finite provided v, vs,...,vq are.
On the other hand, later in [3] it has been shown that for any d and r
there is a quantative upper bound for vy via ¢s, ¢3,...,¢q. More pre-
cisely, v9 < 2¢9, and if d > 3 and each of ¢s,...,¢4 is finite, then
vy < vvd . vg2 (2¢d)2d_2 ([3, Th. 2]). Combining these results, we
get that vg . is finite provided ¢, @3, ..., ¢4 are. This stimulates our inter-
est in fields with finite ¢;. Obviously, if F' is formally real (i.e. —1 is not a
sum of squares), then ¢4 = oo for any even d. By this reason in the sequel
we will consider only nonformally real fields.

We start with the following

Proposition 1. Let F be an infinite nonformally real field, n a positive
integer. If the group F* | F*" is finite, then any diagonal form with nonzero
coefficients over F of degree n and dimension |F™*/F*"| is universal.

Proof. We will need a few lemmas. The first of them (Lemma 2 below) is
of some independent interest. Surprisingly enough, although the statement
in this lemma is purely algebraic, its proof is not completely algebraic.
Namely, at certain point we apply integration over the unit sphere in R™,
which makes the proof not quite constructive.

Following the well-known definition of nonformally real field, we say that
a commutative ring R is nonformally real, if there exist a positive integer
l and by, ...,b € R not simultaneously zero such that b + --- + b7 = 0.

Lemma 2. Let R be a nonformally real commutative ring. Then for any
positive integer n there exist a positive integer m and ay,...,ayn € F not
simultaneously zero such that a¥ +--- +ak =0 for any 1 <k < n.

Proof. We will call the system of equations in the statement of the lemma
the power system and argue by induction on n. Let b1,...,b; € R be not
simultaneously zero elements such that

bi+ -+ =0.

Notice that the row (bi,...,b;, —b1,...,—b;) is a solution of the power
system for n = 2.

Assume that the lemma is true for some n — 1> 2 and ay,...,am € R
is a solution of the power system for n— 1. If n is odd, then similarly to the
case n = 2 the row (ay,...,am,—a1,...,—a,) is a solution of the power

system for n. Now assume that n is even. For all 1 < i < n consider the
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polynomials
filmr, syt o t)

— Z (@1te) +  F Tota(m)' € Z[@1, 0 Ty tr, - ],

TESm
where 1,...,2y,t1,.. ., b, are indeterminates, and .Sy, is the permutation
group on the set {1,...,m}. This polynomial is symmetric with respect to
the variables 1, ..., z,,, hence there exists a positive integer r such that

foreach1<i<n

rfi(xe,. o Tty tm) = it o tm) S+ hi(S1, .-, 8i-1), (*)

where g; and h; are polynomials over Z and Z[ty, . .., t,,] respectively, and
s; = i +---+z},. Substituting a4, ..., a,, for z,,...,2z,,, and taking into
account that s;(a1,...,a,) =0 for each 1 <i <n —1, we get from (x)

r Z (ar1tr) + - + amtr(m)"
TeSm

=rfp(ar, ... am,t1, . tm) = gn(te, ..., tm)(al + - +apy).

Suppose for a moment that there exist t1,...,tm € 7 such that
gn(t1, ... tm) < 0. Let gn(t1,-..,tm) = —u. Notice that for any 1 < i <
n—1
r Z (331;77(1) + -+ :Um;ﬂ(m))i € Z[s1,...,si],
TeESm

hence
r Z (alfﬂ(l) +--+ athﬂ(m))i =0.
TeSm

Therefore, we have

r ( Z (alfﬂ(l) +-+ amfﬂ(m))i> +ulad +---+a’)=0

TeESmM

for 1 <i < n, which gives a representation of zero as a sum of rm! 4+ um
not simultaneously zero kth powers, completing the induction step.
Thus, it remains to find t1,...,t, € Z such that g,(t1,...,¢,) < 0.
To do this consider the function p(z) = [ (z,t)"dt on R™, where
teSm—1
x = (x1,...,Tm), and (z,t) is the scalar product of z and ¢ as elements of
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R™. Obviously, p is homogeneous of degree n and constant on the sphere
Sm=1, Hence

p(x1,. . o) =c(ad + - +a2)2 2682%

for some ¢ > 0 depending only on m and n. It follows from (x) that

n—1
cm!s2% = / fo(z, t)dt =17 ts, / gn(t)dt + Z qi (%)
i=1

tesm—1 tesm—1
for some ¢; € Q[s1,...,S,—1]. Since the representation of any symmetric
polynomial in z,...,2,, as a polynomial in s; is unique, we obtain from
(+) that
gn(t)dt = 0.
tesSm—1

Obviously, g, is not identically zero
(for example, ¢,(1,0,...,0) = (m — 1)!),

which implies that there exist t1,...,¢, € R™ such that g,(t1,...,tmn)
< 0. Since Q is dense in R and g, is continuous, we can assume that

(t1,.-.,tm) € Q™. Moreover, since g, is homogeneous, we can assume

that (t1,...,tm) € Z™, which finishes the proof. O

Lemma 3. Let n be a positive integer and F a field such that —1 is a sum
of a few nth powers of elements of F'. Then the subset Fy C F' consisting
of all finite sums of nth powers of elements of F' is a subfield of F.

Proof. Obviously, 0,1 € Fy, and if z,y € Fp, then 2+y € Fy and zy € Fp.
Since —1 € Fy, x —y =z + (—=1)y € Fp. Finally, zy~! = z(y~ )"y ! €
Fp. O

By Lemma 2 there are some ay,...,a, € F, an # 0 such that af +
<-4 ar =0, or, equivalently,

(apta)” + -+ (aptam—1)" = —1.

By Lemma 3 sums of nth powers in F' form a subfield Fy of F', and by the
hypothesis of Proposition 1 the factorgroup F*/Fy* is finite. In particular,
F, is infinite. Suppose Fy # F. Choose any a € F \ Fy. If a,b € Fy
are distinct, then, obviously, the images of the elements a + a and o + b
are distinct in F*/Fy*, hence co = |Fj| < |F*/F{|, a contradiction to
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finiteness of the group F*/Fy*. Therefore, Fy = F, i.e. any element of F'
is a sum of nth powers.

Lemma 4. D(¢ L (X)) # D(¢) for any nonuniversal diagonal form ¢ and
any A € F~*.

Proof. In the case of quadratic forms this is just Kneser’s Lemma (]2, Ch.
11, 6.5.]), and we will modify its proof for forms of higher degree. However,
the proof of Kneser’s Lemma uses the fact that any nondegenerate isotropic
quadratic form is universal. This is not true for forms of higher degree, and,
indeed, as is shown in Proposition 5 below, Proposition 1 is not always true
for finite fields. So assume that D(¢ L (\)) = D(¢). Then, iterating, it is
easy to see that D(¢ L N(\)) = D(¢) for any positive integer N. Since
Fy = F and the group F*/F*" is finite, the form N(A) is universal if
N is big enough, hence the form ¢ 1 N(\) is universal as well. But this
is a contradiction to the equality D(¢ L N()\)) = D(¢), since ¢ is not
universal. The lemma is proved. (I

Now we can finish the proof of Proposition 1. Let |F*/F*"| = m. Con-
sider any form (ai, ..., a,) of degree n, where a; € F*. Let

7 F* — F*/F*™"

be the projection map. We may assume that the form (a1,...,an,-1) is
not universal. Obviously, D(¢) = 7~ (7(D(¢))) for any form ¢ of degree
n. In particular, by Lemma 4

m(D({ay,...,a;:))) #w(D{a1,...,ai+1)))

forany 1 <i <m — 1. Hence |7(D({a1, - - .,am)))| > m, which implies that
|m(D({a1,...,an)))] =m and the form (ay,...,a,) is universal. Proposi-
tion 1 is proved. (I

Example. The proof of Lemma 2 does not give us an upper bound on m
as a function of n. Moreover, in fact, we prove only existence of a;, not
expressing them via the coordinates of a solution of the equation % +- - -+
z} = 0. However, if n = 4 we can find a concrete solution of the required
system. More precisely, if b7 + - - + b7 = 0, then
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! 4 !
> <Zeibi> =21 Y bi+6 D b
) \i=1 i=1

(61,...761 1§’<]Sl

! 2 ! !
~o((y) eyt ) <
i—1 i—1 i=1

where ¢; € {1, —1}. Obviously, we may assume that [ + 1 is divisible by 4.

Then
l

4
Z <2l41 Zezbz> + Z b;l =0.
(€1,---,€1) =1 i=1

The last equality shows that zero can be represented as a sum of 2! + [
4th powers of certain ci,...,co;; € R not simultaneously zero. Then
(c1,...,Ca14y, —C1,. .., —Coryg) is asolution of the corresponding power sys-
tem in 2(2' + [) variables for n = 4. As we have mentioned already, the
condition that the field F' in Proposition 1 is infinite is essential. For a
finite field F' the subfield Fy from Lemma 3 does not necessarily coincide
with F', and Proposition 1 is no longer true. More precisely, keeping the
notation in Lemma 3, we have the following

Proposition 5. Let F be a finite field of order p™. Then the following
conditions are equivalent:

1) There exists a nonuniversal diagonal form with nonzero coefficients
of dimension |F*/F*"| and degree n over F.

2) Fp #F.
3) n is a multiple of %, where k is a divisor of m and k # m.

4) The form % 4 --- 4z} over F is not universal for any .

Proof. 1) = 2). This follows from the proof of Proposition 1.
2) = 3). Let the order of F be p*. Obviously, k is a divisor of m and
the order of F*/F*" is a multiple of the order of F*/Fy*, which is equal

m
1 .
’I’) +— - Consider the exact sequence

to
1 —kern — F* 5 F* — F*/F*" — 1,
where the map n is taking the nth power. We have |kern| = |F*/F*"|,

m
. .. . . 1
and |kern| is a divisor of n. Therefore, n is a multiple of I;)k—l .
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pMm—1
3) = 4) Let K be the subfield of F' of order p*. Then z#*-* € K for
any € F. In particular, D(z} + --- +a}') C K # F.
4) = 1). Trivial. O
Corollary 6. For a fized power n there exist only finitely many finite fields

F with a nonuniversal form over F of degree n, dimension |F*/F*"| and
nonzero coefficients.

Proof. Let a field F satisfy the required properties and |F'| = p™. Propo-
sition 5 implies that p% + 1 = £~ < n, which makes the assertion

o
m
2 —

obvious. O

The following statement, which is similar to Proposition 1, shows that
a diagonal form is isotropic provided its dimension is big enough.

Proposition 7. Let F be a nonformally real field, n a positive integer.
Suppose that the group F*|F*" is finite. Then any diagonal form of degree
n in more than |F*/F*"| variables is isotropic.

Proof. We may assume that all the coefficients of the form are nonzero.
Then for an infinite field F the statement follows immediately from Propo-
sition 1. However, to cover the case of a finite field we have to modify a bit
the argument from Proposition 1. So suppose that F' is finite, and the form
(ay,...,ayn) of degree n is anisotropic, where N > |F*/F*"|. Obviously,
there exists 1 <7 < |F*/F*"| such that

D((as,...,a)) = D((a, .., ai:1))-

Iterating as in the proof of Lemma 4, it is easy to see that
D{ar,-..,a)) = D({ar, . a5) L m{ais1)

for arbitrary m, and the form (ay,...,a;) L m{a;y1) is anisotropic. This is
a contradiction, since the form p{a;+1) is isotropic, where p = charF. O

So far all considered forms have been diagonal, which, of course, is very
restrictive. In the following result, which is a main purpose of this paper,
we omit this condition and consider systems of forms for certain fields.

Corollary 8. Let F be a nonformally real field, n,r positive integers.
Suppose that for any prime number p < n the factorgroup F* |F*P is finite.
Then, if N is big enough, any system of r forms of degree n in N variables
over F' has a nonzero solution.
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Proof. It is easy to see that for any k£ < n the factorgroup F*/F*k is
finite. We should prove that v,, , is finite. This follows from Proposition 6
and the results in [1] and [3] discussed in the beginning of the paper. O

It is easy to see that multidimensional local fields satisfy the conditions
of Corollary 8. Here is another example, which is due to Artin. For the
sake of completeness we consider it in detail.

Proposition 9. Let k be a field, ksep its separable closure, o € ksep \ k. Let
F be a mazimal algebraic extension of k not containing « (the exvistence
of F is provided by Zorn’s lemma). Then

1) p=[F(a) : F] is a prime.
2) If charF = p, then |F*/F*P| = 1. If charF # p, then |F*/F*?| = p.

3) Any finite field extension of F is a cyclic p-primary Galois extension.
In particular, F* = F*? for any prime number q # p.

4) If k is nonformally real, then F' satisfies the hypothesis of Corollary 7.

Proof. Let K/F be a finite extension and L/K the normal closure of K.
Consider the tower F' C F’ C L, where F'/F is purely inseparable and
L/F' is separable. If F # F’  then a € F’, a contradiction, since « is
separable over F. Therefore, F' = F’ and the extension L/F is separable,
hence Galois. Let G = Gal(L/F). Consider the tower F' C F(a) C L.
Let H = Gal(L/F(«)). Pick any 0 € G\ H. Let (o) be the cyclic group
generated by o. If L") # F, then F(a) C L'°?, or, in other words, o € H,
a contradiction. Therefore, L(?) = F, i.e. G = (¢). In particular, any finite
extension of F'is a cyclic Galois extension. Since any finite extension of
F contains F(a), we conclude that [F'(«) : F] = p is a prime, and any
finite extension of F' is p-primary. If charF' = p, and a € F*, then the field
extension F(a%) /F is purely inseparable. Since any finite extension of F
is separable, we get F(a%) = F,ie. F* = F*P_If charF # p, consider any
a,b € F*. Since any field extension of F is cyclic,

Gal(F(a¥,b?)/F) # Z/pZ x 7./ pL.

This implies that the images of a and b in the linear space F*/F*? over
Z/pZ are linearly dependent. Since the extension F'(«)/F is cyclic of degree
p we get |F* /F*P| = p. Thus, parts 1) — 3) are proven, and part 4) follows
at once from them. O
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Remark. If the prime number p in Proposition 9 is odd, then by part 3)
of this proposition F'(v/—1) = F, hence F' is nonformally real.

Open question. Suppose the field F' in Proposition 9 is nonformally real.
Is F a C; field, i.e. for each d > 1 any form of degree d in at least d + 1
variables isotropic? Notice that this is the case if the field k in Proposition 9

is finite.
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