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S. A. Avdonin, V. S. Mikhaylov

INVERSE SOURCE PROBLEM FOR THE 1-D
SCHRODINGER EQUATION

ABSTRACT. We consider the inverse problem of determining a source
in the dynamical Schrédinger equation iut —uzz +q(z)u = w(t)a(z),
0 < z < 1, with Dirichlet boundary conditions and zero initial
condition. From the measurement uz(0,t), 0 < ¢ < T', we recover
unknown a(z) provided ¢(z) and w(t) are given. We describe also
how to recover a(z) and g(z) from the measurements at the both
boundary points.

§1. INTRODUCTION

We consider the initial boundary value problem (IBVP)
iug(z,t) — Upe(z,t) + g(z)u(z, t) = w(t)a(z),

0<z<l, 0<t<T, (1.1)
w(0,t) = u(1,t) =0, (1.2)
u(z,0) =0, (1.3)

where T' is an arbitrary positive number, the (real-valued) potential ¢
belongs to L;(0,1), w € H*(0,T) and w(0) # 0. The function a € Hg(0,1)
is unknown and has to be found from the trace of the derivative of the
solution u to the IBVP (1.1)-(1.3) at a boundary point: u(t) := u.(0,1t),
te€0,T].

The solution of this inverse problem is presented in Sec. 2. It is based on
the version of the Boundary Control (BC) method proposed in [3]. (The
review of the history and achievements of the BC method can be found in
[9].) We derive the integral equation, which eventually allows us to recover
the Fourier coefficients of the unknown function a.

This approach is especially efficient in the case of zero potential and
a special choice of the intensity w(t). Another approach to such a kind
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inverse problem was discussed in [15]) for the wave equation. In papers
[12] and [13], the authors used observers techniques and developed an
efficient algorithm recovering initial data in the wave and Euler-Bernoulli
plate equations.

Control theoretic ideas in the inverse source problem for hyperbolic
equations were used by Yamamoto in [16]. His result was based on the
exact controllability of the corresponding dynamical system. Notice that
our approach is, in general, less restrictive and requires only the spectral
controllability.

The proposed method can be applied to the inverse source problem for
parabolic, wave and beam equations (cf. [3]). The generalization of our
approach to the case of abstract differential equation in Hilbert space will
be discussed in a forthcoming publication.

In Sec. 3, we assume that both the potential ¢ and source a are unknown
and the derivative u, is measured at the both boundary points z = 0, 1;
t € [0,T]. We demonstrate that the spectral function of the correspond-
ing spectral problem can be recovered from these data. Then one can
recover the potential and source using either classical Gelfand-Levitan—
Krein approach or the Boundary Control method (see [7]). In more detail

the algorithm solving this problem and stability estimates are discussed
in [8].

§2. OBSERVATION AT ONE END OF THE INTERVAL

We consider the Sturm-Liouville problem associated with (1.1), (1.2):

—¢"(x) + q(x)d(x) = Ad(x), 0<w <L, (2.1)
¢(0) = ¢(1) = 0. (2.2)

The following facts are well-known.
(a) Its spectrum { A}, of the problem (2.1), (2.2) is pure discrete, simple,

and real with the only point of accumulation at +oo.
(b) The asymptotic representation holds,

VA =k + o(l) as k — oc. (2.3)

(c) The corresponding eigenfunctions {¢}3>, form an orthogonal basis in
L?(0,1) (which we assume to be orthonormal).
(d) The estimates hold

¢k (0)] < k. (2.4)
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This relation means that

0 < inf |¢}.(0)/k| < sup |¢}(0)/k| < oo.
keN kEN

We look for the solution to (1.1)—(1.3) in the form
t) = Z cr(t) o (). (2:5)
k=1

Plugging (2.5) into (1.1), multiplying by ¢y, we derive the equations on
c(t):

Ck(t) — i)\kck (t) = —iakw(t), Ck (0) = 0,
where a;, are Fourier coefficients of the function a:

o0

2) =Y ardi(), lalltno = D law/k*. (2.6)
k=1

k=1

It follows that

t
z/e“"“t S)w s)ay, ds.
0
Uy

Therefore, the function u(t) := u,(0,t) can be presented in the form

= Z¢ / )eM =) qp(s) ds = —i/r(t —s)w(s)ds, (2.7)

k=1

where
t)=> e (0)a. (2.8)
k=1

Statements (a) and (b) above imply that the family {e“"“t}zo;l forms
a Riesz basis in closure of its linear span in L2(0,7T) for any T' > 0 (see
[4, Sec. 11.4]), [5, 6]). From (2.4) and (2.6) it follows that {¢},(0)ay} € ¢*.
Therefore, the series in the RHS of (2.8) converges in L?(0,T).
Differentiating (2.7) we obtain

W (t) = —iw(0)r(t) — i/w’(t —s)r(s)ds, 0<t<T. (2.9)
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We see that, if w € H'(0,T) and a € H}(0,1), then p € H'(0,T). Since
w(0) # 0, the equation (2.9) is the second kind Volterra equation for r(t).
Given w and p, it has a unique solution r € L%(0,T).

When r(t) is recovered, the coeflicients ay can be found from (2.8). In
our case it can be done in different ways because Ay and ¢},(0) are known.
We demonstrate the method proposed in [3] (see also [1, 2]) since it works
also if A\ are unknown — we discuss this case in the next section.

We consider the following integral eigenvalue equation

T
/[T(QT 1) = ARQT —t— )| h(r)dr =0, 0<r<T, (2.10)

¢
where R(t) = [r(7)dr. It was proved in [3] that the eigenvalues of this

0
problem coincide with eigenvalues A\i, k& € N of the problem (2.1), (2.2).
More of that, if h(¢) denote the corresponding eigenfunctions of the prob-
¢

lem (2.10), then the family {fx(¢)}3°,, fx(t) = [ hx(7) dr, is biorthogonal
0

to {eM(T=t1ee in L2(0,T).
_ We consider also the equation of the form (2.10) with r(t) replaced by
r(t). This equation yields the sequence of eigenvalues Ay and eigenfunctions

¢
Jk(t). We put gx(¢t) = [ ji(7) d7 and normalize functions f, gi by the rule:
0

T T
Onk ://T(QT—t—T)fn(T)gk—(t)det.

Then we introduce constants aj and [By:
T

T
ap = / T — ) fu(r)dr, B = 0/ r(T — 7)gn(7) dr.

0

It was proved in [3] that a,¢"(0) = a;B. Therefore, the function a(x) can
be presented in the form

= apB -
ole) = 32 G 4
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Remark 1. Our method can be applied to inverse source problems for
the wave, heat and beam equations. The proposed procedure is especially
efficient when ¢ = 0 and, hence, the eigenfunctions and eigenvalues of (2.1),
(2.2) can be presented in the explicit form (see, e.g. [15] where a special
choice of the intensity w(t) was considered).

§3. OBSERVATION AT THE BOTH ENDS

We consider the dynamical system (1.1)—(1.3) and suppose that the po-
tential ¢ € L1(0,1) and the source a € Hj(0,1) are unknown. We suppose
also that for some fixed 7" > 0, two functions

:uO(t) = uw(O,t), ul(t) = Um(l,t), te [O,T],

are measured. Similarly to (2.7), one obtains the representation
t

pj =—i[rj(t—s)w(s)ds, j=0,1, where
0

ro(t) = > eM gl (0)ak, ri(t) =) e™ el (1)ay.
k=1 k=1
Using the method described in Section 2 we can recover the eigenvalues
A and the products ¢}, (0)ax and ¢} (1)ak.
We call the source a(x) generic if a # 0, k € N. In the case of generic
source our method allows to recover the spectral data consisting of pairs

¢ (1) }

A, 2 g e N 3.1
{50 o

In [14] the authors proved that this data determined the potential g(x)

uniquely and provided the method of its reconstruction. Here we describe

another method recovering the potential.

Let y = y(x, A) be the solution to the Cauchy problem
—y" +q@)y =Xy, 0<x<1l, y0O,AN)=0 ¥(0,)=L1
The eigenvalues of the Dirichlet problem (2.1), (2.2) are zeroes of the func-

tion y(1, \), the normalized eigenfunctions are ¢y, (z) = % Therefore,

) _ ¥ (LA
?:(0)  y'(0, Ax)
The following formulas can be found in [14])

= y/(].,)\k) = Ak
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)\k - A . 1 >\n - >\k
y(LAN = || 5= VL) = —55 H —— = B,
il k27 k2m nL moth n2mw

where dot denotes the derivative with respect to A.

We see that the data (3.1) allows us to find the norms |ly(-, A\x)|| =

A By. The set of pairs { g, ||y2(-, Ae)|| }72, is the “classical” spectral data.
The potential can be recovered from this data using the Gelfand-Levitan,
Krein or Boundary Control method (see, e.g. [7] for more details). When
the potential is found, the source a(x) can be recovered via its Fourier
series (see Section 2) or using the methods of observers [12, 13].

Remark 2. The inverse problem of the recovery the potential by one
measurement, for the dynamical Schrédinger equation on an interval was
studied in [8]. The authors proposed an algorithm for the reconstruction
of the potential and obtained stability estimates.

10.
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