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A. L. Chistov

AN IMPROVEMENT OF THE COMPLEXITY BOUND
FOR SOLVING SYSTEMS OF POLYNOMIAL
EQUATIONS

ABSTRACT. In 1984 the author suggested an algorithm for solving
systems of polynomial equations. At present we modify it and im-
prove bounds for its complexity, degrees and lengths of coefficients
from the ground field of the elements constructed by this algorithm.

§1. STATEMENT OF THE THEOREM

Let F be a field finitely generated over the field H, where H = Q or the
finite field Fy~ of ¢* elements for a prime number g. If the characteristic
char(F) > 0 then g = char(F), if char(F) = 0 put ¢ = 1. Suppose that
the field F = H(Th,...,T;)[n], the element T7,...,T; are algebraically in-
dependent over H and the element 7 is algebraic separable over the field
H(T\,...,T;), the minimal polynomial ¢ € H(Th,...,T;)[Z] of the ele-
ment 7 over the field H(Ty,...,T;) is given. The degree degy, 1, » < di,
and the maximum of lengths of coefficients from H of the polynomial
@ is bounded from above by M, see below the exact definitions. Let
fo,---s fr—1 € F[Xy,...,X,] be linearly independent over F' homogeneous
polynomials with degy, x fi <d,degy 7 fi <d2 and the maximum
of lengths of coefficients from H of the polynomials f; is bounded from
above by M for all 0 < i < k — 1, see below.

In [1] an algorithm is suggested for solving the system fo = ... =
fr—1 = 0 in P*(F). In the general case the complexity of this algorithm
is polynomial in (d"d;ds)"*!, My, Ms, k, and ¢. Till the present time
this algorithm has had the best known complexity bound in the general
case. But now we discovered that this bound can be improved. Namely
one can obtain the analogous algorithm with the complexity polynomial
in d”Z, (d*dydy)'*t, My, My, k, and ¢. This estimate does not depend on

(d1ds)™ and it is more natural and understandable since there are only
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l transcendental elements T7,...,7;. Similar improvements are obtained
for degrees and lengths of coefficients from the ground field of all the
elements constructed by this algorithm. More precise bounds are given in
the formulation of Theorem 1. It is of importance. We use this algorithm
in many papers. The algorithm itself remains almost without changes. To
achieve our goal it is sufficient only to introduce two steps factoring over
finitely generated fields arising in the computation. We discuss it below.

Now we proceed to exact statements. We represent the polynomial
w0 = Zogigdegz(p(pgl)/(p@)Zi where all <p£1),<p(2) € H[Ty,...,T), H=17
if the characteristic char(F) = 0, H = H if char(F) = ¢ > 0 and
GCD{eM, 0@} =1in HTy,...,T;]. Each clement f € F[Xo, ..., X,]
is represented in the form

1 - |
= b Z Qiig,.inT X" oo X,
0<i<degy ©,i0;---in
where all a;;,, i.,0 € H[T1,...,T}), GCD 4 i {@isio,...in b} = 1 in
the last ring. Put

deng,...,Tl f= maX{deng,...,T, ai,io,...,inadeng,...,T, b} (1)
The length 1(h) of an element h € Z is its bitwise length. The length 1(h)
of an element h € Fy« is klog, ¢. Denote by 1(f) the maximum of lengths
of coefficients from H (actually from H) at the monomials in T4, ...,T; of
the polynomials a;q.,...i,,b. In the similar way the degree degy, 1, z¢

and the length of coefficients 1(¢) are defined. We shall suppose that for
al0<i<k—1

degr, .m.zp <di, degp 5 fi<ds, degx, . x fi<d,
I(p) < My, 1(fi) < M

for some integers d, d; , dy. By definition put the sizes Ly (f;) = dt”) dydb Mo,
La(p) = d™ M, (here Ly(...) is the notation from [1]; Ly(...) is used in [1]
but not in this paper).

The projective algebraic variety Z(fo,..., fr—1) C P*(F) of the roots
of the system fy = ... = fr_1 = 0 is decomposed Z(fo,..., frk—1) =
U W, C P? (F) where each component W, is defined and irreducible over
the perfect closure F? ~ of the field F. Further, W, = UgW, 3 where
(absolutely irreducible) components W, g are defined and irreducible over

the algebraic closure F of the field F'. The algorithm from Theorem 1, see
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below, constructs all the components W, and after that all W, s (actually
W, and W, g are defined over some finite extensions of the field F' which
also are constructed by the algorithm). Each component W,, (respectively
W) is represented by the algorithm in two ways: by its generic point,
see (2), and a system of polynomial equations such that the set of its roots
coincides with the component W, (respectively W, ). We shall say that
this system gives (or define) the considered component.

Remark 1. Notice also that if ¢ > 1 then we suppose that the field H
contains sufficiently many elements extending the field H if necessary, see
the description of the algorithm from [1]. We choose some linear forms with
coefficients from H in the algorithm from [1]. If [ > 0 then alternatively one
can choose these linear forms from H[T},...,T;] and don’t extend H. In
any case using the Frobenius automorphism within the time bounds from
Theorem 1, see below, one can easily find the maximal separable subfield
of the minimal field of definition over the initial field F' (when H is not
extended) of each constructed component W, or W, .

Now we need to formulate the definition of the generic point used in
this paper and [1]. Let W C P"(F) be a projective algebraic variety,
codimp- W = m. Suppose that W is defined and irreducible over the field
F which is a finite extension of F. Let F, be the maximal separable ex-
tension of F' such that the field Fy C Fi. Let t1,...,t,—m be algebraically
independent elements over the field F'. The generic point of the algebraic
variety W is given by the Fs-isomorphism of the field:

E5(tyy .. ytn_m)[0]

Xy X Xo\" X, \" 2
~ By =2 J"—'",( ) < ) CFR (W),
<Xj Xjo \Xj X
where 6 is an algebraic separable element over the field K =F5(t1, ..., tn—m)

with the minimal polynomial ® € K[Z], the leading coefficient lcz® = 1;
the elements X;/X;, are considered here as the rational functions on
W and the variety W ¢ Z(Xj,) for some 0 < jo < n, every element
t; — Xj, /X, under isomorphism (2); if ¢ > 1 then v > 0 is an integer, if
qg =1 then v = 0.

The field F» = H(Ty,...,T;)[n2] where n, is an algebraic separable over
the field H(Ty, ..., T;) with the minimal polynomial ¢, € H(T1,...,T})[Z].
We suppose that ¢ is given for the generic point (2). We represent each
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element from the field z € K[6][Z] in the form

2= (1/20) Y 2iums0’ 2", (3)
YR
where all zo,2; ., € I?[[Th oIty .o ty—m] are relatively prime ele-

ments, 0 < i < degy 2, 0 < j < deg, . Now the degrees degy, 1, 2,
and deg;, ;2 aredefined in the natural way similarly to (1) and also
the length 1(2) of coefficients from H is defined (here we leave to give the
exact definitions to the reader). If degy, 2 <ds, deg, , 2 <dj,
deg, o < ds, deg, ® < dg,1(z) < M3 then the size La(2) < dydy ™ (dsds+
1)M;.

In what follows we shall write a < P(b,c) if and only if there is a
polynomial P with integer coefficients such that the last inequality holds.
We shall use also other similar notations.

Theorem 1. (a) An algorithm is suggested for finding the decomposition
Z(fo,---, [k—1) = UaWy. For every W, = W the algorithm constructs its
generic point (2) (with Fo = F, o2 = ) and polynomials \Ifga), . \I'S\C,Y) S
F[Xo,...,X,] such that Wy = Z(®\®, .., ¥\¥)). Put m = codimp-W,,
Oy =0, ®, = &, M = My + My + ldy + (n — m). Then ¢ < d*™,
deg, @, < degW, < (d—1)™. For all j the degrees, lengths of coefficients
and the sizes

O, < P(d™), degy, .., (X;/X;)?) < P(d™),
degr, . . ®o < doP(di,d™), degq,  1,((X;/X;0)") < doP(dy,d™),

(®a) and 1((X;/X;,)") < MP(dy,d™),
Ly(®a) and Lo((X;/X;,)%) < MdyP(dt, amitn=m+i)y,

degtl,...,

tn—m

The number of equations N < m?d*™, the degrees degy, . vl <
d*™, degy, 1, 7l < dyP(dy,d™). Further, every o s represented by
the algorithm in the form \Ifga) = Eﬁ“)(zs,o, eesZs n—m+2) where all Zs ;
are linear forms in Xo,..., X, with coefficients from H. The length of
coefficients of all linear forms 1(Z, ;) < P(m)logd, for all s the degrees

degy, oo Ze nmse Tia) < d?™, the degrees, lengths of coefficients and the
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sizes
degr, 7 0 < dyP(di,d™), 1T) < MP(dr,d™),
Ly(T) < MdyP(d+t, gmiten=m+D),

S

Put ¢ = 1+ max, dim W,. Then the working time of the algorithm for
constructing oll W,, with their generic points and defining them systems is
polynomial in d*(°*tD | (dydy)'*', My, My and q.

(b) An algorithm is suggested for constructing the decomposition W =
Ua,3Wa,5- For every absolutely irreducible component W, g this algorithm
finds the maximal separable subfield F> of the minimal field of defini-
tion F1 D F of the variety W, 3. The algorithm construct the mini-
mal polynomial @, = 2, of the primitive element 1,3 = n2 of the
field Fy over H(Ty,...,T}). Let us replace in assertion (a) the quadruple
(Fyn, ¢, Wa) by (F2,0a.8,9a, Wa,3). Then similarly to (a) the algorithm
constructs a generic point of the variety W, g and a system of equations
defining this component. For all the parameters of the generic point of W, g
and the system of equations defining W, 3 the same estimates as the ones
from (a) hold true. Besides that, the algorithm represents Fy = F[&, 8],
finds the minimal polynomial o € F[Z] of &4, and the representation
a3 € H(Th, ..., T1)[1a,] in form (3). The following estimates for degrees,
lengths of coefficients and sizes hold:

degy, 1 Pa, degy 1 €ap and  degy g e <dayP(dy,d™),
lpa), Uéap) and l(thg) < MP(dr,d™),
Lo(pa), La(fap) and Lo(ve) < MdyP(dHh, dm™+D),

The upper bound for the working time of this algorithm is the same as the
one from assertion (a).

Now we discuss how to prove this theorem. In [1] we factor using
Proposition 1.1 and Theorem 1.2 of [1] polynomials in one variable (or
homogeneous polynomials in two variables) with coefficients from the field
K[f] = F(t1,...,tn—m)[f]. According to [1] these polynomials satisfy the
estimates to the degrees and length of coefficients similar to the ones for
the polynomial ®, from the statement of Theorem 1. In [1] we consider
the field Kf] as finitely generated over H with the transcendency basis
Ty,...,Ti,t1,...,tp—m and get the bound for the working time (of the de-
composition into irreducible of each considered polynomial) depending on
(dmd1d2)n—m+l+1'
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This factoring is modified in the algorithm from Theorem 1. Suppose,
e.g., that we need to factor a polynomial G € K[Z]. At first using Propo-
sition 1.1 (or Theorem 1.1) [1] we reduce this problem to factoring some
polynomials G; in the ring F[t1,...,tn—m, Z]. After that we construct an
extension Hy = H|[n] such that the fields F and H;(T4,...,T;) are lin-
early disjoint over the field H(T1,...,T;) and the degree of the extension
H, D H is the least possible satisfying the inequality

[Hy : H] > (2max{deg,, 7 G} + 1)

-

Hence [H, : H] < P(d™»~™+D), Put F; to be the composite of the
fields Hy and F over H. Theorem 1.2 [1] (we replace in its statement 6
by 1) reduces factoring the polynomials G;, to the decomposition into
the irreducible factors of some polynomials @,- € Fi[X,U], where X,U
are new variables. Next, again applying Theorem 1.1 [1] and the remark
at the end of §1, Chap. I [1] to the polynomials in two variables X,U
and the extension of fields F D Hy(Th,...,T;) we reduce factoring 61
to the decomposition into irreducible factors of some polynomials Q; ; €
H\(Ty,...,T))[X,U]. We shall suppose without loss of generality that
Qi; € Hi[Th,...,T;, X,U]. Assume at first that [ > 2. By the Gauss
lemma everything is reduced to factoring Q;; € H1(X,U)[Th,...,T;] in
the last ring and some polynomials P; ; € H;[X,U]. After that we con-
struct an extension Ho = H[ns] D H;p such that its degree [Hy : Hy| =
(2max; j{degy, 1, Qij}+ 1)'. We have [Hy : Hi] < dyP(d},d™). Theo-
rem 1.2 [1] (we replace in its statement (F,0) by (H1(X,U),n2)) reduces
factoring the polynomials (); ;, to the decomposition into the irreducible
factors of some polynomials @i,j € Hb[X,U, X', U], where X', U’ are new
variables. The polynomials va and P;; are factored directly using the
algorithm from Chap. I [1]. If | < 2 then similarly all @); ; are decomposed
directly. Thus, we have described the required modification of the algo-
rithm. It is known that the extensions of fields H; D H, i = 1,2, can be
constructed within the time polynomial in [H; : H] and ¢ (this is not quite
trivial if ¢ > 1). Now a simple analysis of the complexity using the results
from [1] proves Theorem 1.



AN IMPROVEMENT OF THE COMPLEXITY BOUND 305

§2. APPLICATION TO THE ESTIMATION OF SIZES OF
COEFFICIENTS OF THE EFFECTIVE SMOOTH COVER AND
SMOOTH STRATIFICATION OF AN ALGEBRAIC VARIETY

Let the field & = F, the integer m = k — 1, f1,..., f;, be polynomials
from the Introduction. We consider ! as a constant in this section. In [2]
we prove the existence of a smooth cover and a smooth stratification of
an algebraic variety Z(f1,..., fm) with degrees of all strata polynomial

in 22nc d" for a constant C' > 0 and suggested the an algorithm for con-
structing these smooth cover and smooth stratification in [4]. In [3] we
obtained the similar result about the existence of a smooth cover and a
smooth stratification in the case of nonzero characteristic. These results
are difficult, strong and important. In [2,3] we were concentrated on the
estimation of degrees of strata but did not pay sufficient attention to the
sizes of coefficients from the ground field of the equations giving the strata.
Actually the estimates for sizes coefficients are straightforward and we did
not estimate them explicitly. There are minor inexactidudes related to the
sizes of coefficients from the ground field of the polynomials giving the
strata.

Now using the explicit estimates for lengths of coefficients and degrees of
the elements at the output of the algorithm from Theorem 1 we give bounds
for sizes of coefficients of the equations defining strata in the constructions
of [2—4]. The estimations for the degrees and sizes of coefficients from the
ground field from Theorem 1 are applied recursively in the constructions
of [2,3].

Assertion (vi) of Theorem 2 from [2] must be corrected as follows:

(vi) For all « € A, 1 < j < s(a) the lengths of coefficients from k
of polynomials hy; are bounded from above by a polynomial in
n2s(a)o ds(“)Z, di(a), ds, M, My, m for an absolute constant 0 <
C € R. Further, in the case of smooth stratification the lengths of
coefficients from k of all polynomials of the family f are bounded
from above by a polynomial in 22ncd”2, v, da, M, My, m for an
absolute constant 0 < C' € R.

Thus, one needs to replace d”, d; by ds(“)Z, df(a) for the case of the smooth

cover (respectively by d”z, dy for the case of the smooth stratification) in
(vi) Theorem 2 [2]. All the other assertions of this theorem and its proof are
without changes. In particular, the degrees of all the strata are bounded
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from above by 22ncd”. The proof is the same since actually we did not
estimate the lengths of coefficients from k of these polynomials explicitly.
The bound from (vi) is obtained straightforwardly by the recursive appli-
cation of Theorem 1 [2] and the estimates from Theorem 1, see the proof
Theorem 2 [2].

In the similar assertions (vi) of Theorem 3 [3] and (vi) of Theorem 4 [4]

one needs to replace d**(®) d; by ds(“)Z, df(a) for the case of smooth cover
(respectively by d”z, d? for the case of the smooth stratification). Here
we improve the results of [3] and [4] replacing d™*(®) by d5(®)* and correct
them replacing d; by di'® (respectively d7).

The working time of the algorithm from Theorem 4 [4] for constructing
the smooth cover and the smooth stratification is polynomial in the size

of the output and 22ncdn2, % dy, M, My, m, where 0 < C € R is an
absolute constant.

Notice that the proof of Theorem 3 [2] about computing the dimension
of a real algebraic variety is the same. It uses only the fact that the degrees

nC
of the strata from Theorem 2 [2] are bounded from above by 22" d". But
now one can not use immediately Theorem 4 [4] to deduce Theorem 3 [2].

So I know only one proof of Theorem 3 [2] using the original construction
from [2].
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