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QUASIMORPHISMS, RANDOM WALKS, AND
TRANSIENT SUBSETS IN COUNTABLE GROUPS

ABSTRACT. We study interrelations between the theory of quasi-
morphisms and theory of random walks on groups, and establish
the following criterion of transience for subsets of groups: if a sub-
set of a countable group has bounded images under any three lin-
early independent homogeneous quasimorphisms on the group, then
this subset is transient for all nondegenerate random walks on the
group. From this it follows by results of M. Bestvina, K. Fujiwara,
J. Birman, W. Menasco, and others that, in a certain sense, generic
elements in mapping class groups of surfaces are pseudo-Anosov,
generic braids in Artin’s braid groups represent prime links and
knots, generic elements in the commutant of every non-elementary
hyperbolic group have large stable commutator length, etc.

INTRODUCTION

Two basic notions of this paper are that of quasimorphisms and random
walks on groups. Recall that a function ¢ : G — R on a group G is
called a quasimorphism (and sometimes quasi-homomorphisms or quasi-
characters) if the following condition is fulfilled:

sup |p(g192) — (g1) — ¢(g2)] < oc.
91,92€G
More generally, a map ® : G — RY (d € N) is an RY-quasimorphism if the
set

Do :={2(g9192) — ®(91) — 2(92)}, goec

is bounded in RY. Obviously, a map G — RY is an RY-quasimorphism if
and only if all its coordinate functions are (R!-)quasimorphisms. In other
words, RY-quasimorphisms may be thought of as d-tuples of quasimor-
phisms. An R9-quasimorphism ® : G — RY is homogeneous if ®(g*) =
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k- ®(g) for all g € G, k € Z. Each R%-quasimorphism @ has a unique ho-
mogeneous R9-quasimorphism ® such that the map ® — ® is bounded (see
Lemma 1.1). We say that an R%-quasimorphism is nondegenerate if the im-
age of the corresponding homogeneous RY-quasimorphism is not contained
in a hyperplane of RY. (A nondegenerate RY-quasimorphism on a group
exists if and only if the vector space of homogeneous quasimorphisms on
the group has dimension at least d.)

Let G be a countable group and let p be a probability measure on G.
(We consider the measures that are regular with respect to the discrete
topology on the group.) Recall that the right random walk (Xi)r>0 on G
with distribution p (or, briefly, u-walk) is the time-homogeneous Markov
chain whose state space is GG, the transition probabilities are given by
P(g,h) = u(g~th), and the initial distribution is concentrated at the iden-
tity of the group. Realizations of this process are called paths of the ran-
dom walk. The distribution of the p-walk at the k-th step is the k-fold
convolution p**. We say that p is nondegenerate if its support generates
G as a semigroup; a random walk is nondegenerate if its distribution is
nondegenerate.

Given a group G and a mapping f : G — R to some space R, by the
“behaviour” of f with respect to a random walk (Xj)r>0 on G we mean
various properties of random variables f(X}) and sequences f(7y), where
(Tk)k>0 are paths of (Xj)g>o0. Observe that the behaviour of homomor-
phisms G — RY with respect to random walks on G is described by the
classical theory of random walks on Euclidean spaces (due to the obvious
fact that homomorphisms G — RY send random walks on G to random
walks on RY). Since quasimorphisms are similar to homomorphisms, one
could expect that some theorems concerning random walks on Euclidean
spaces may be generalized to describe behaviour of quasimorphisms with
respect to random walks. M. Bjoérklund and T.Hartnick [5] proved that
the (analogues of the) central limit theorem and the law of the iterated
logarithm are valid for quasimorphisms. The basic result of this paper is
the following theorem, which is the direct analogue of a well-known fact
about random walks on RY (Z9).

0.1. Theorem. Let G be a countable group and let ® : G — RY, d €
N, be a nondegenerate RY-quasimorphism. Then for each nondegenerate
probability measure u on G and for every bounded subset Q C RY there
exists a constant C := C(G,®,u, Q) such that for any k € N and x € R¢
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we have
pr (@t (x+ Q) < CkY2
where p** denotes the k-fold convolution of yu.

(In the case where d = 1 and ® is square-integrable with respect to u,
the statement of Theorem 0.1 trivially follows from the above-mentioned
central limit theorem of M. Bjorklund and T.Hartnick.)

Theorem 0.1 readily implies the following corollaries for subsets of groups.

0.2. Corollary. If a subset S of a countable group G has bounded image
under a nondegenerate RY-quasimorphism G — RY, d € N, then for every
nondegenerate probability measure p on G there ewists a constant C :=
C(p) such that for each k € N we have

w*(S) < kY2

Since the convolution p** determines the distribution of the p-walk at
the k-th step, we have also the following corollary.

0.3. Corollary. If a subset S of a countable group G has bounded image
under an unbounded quasimorphism, then, for every nondegenerate prob-
ability measure p on G, the probability that the random p-walk on G hits
S at the k-th step, tends to 0 as k tends to infinity.

It is to be remarked in relation to Corollaries 0.2, 0.3 (and 0.4 be-
low) that if a subset S of a group G has bounded image under an RY-
quasimorphism ®, then ®(S?) is also bounded for each p € Z; moreover,
for any finite subset N C G the image ® ((SUS™! U N)?) is bounded'.

Theorem 0.1 implies specific corollaries in the case d > 3. Recall that
a subset of a group is said to be transient with respect to a random walk
on the group if almost every (a.e.) path of the random walk visits the
subset only finitely many times. In particular, every subset S C G with
finite sum Y~ p**(S) is transient with respect to the random p-walk
by the Borel-Cantelli lemma. Therefore, since the series Y .-, k92 is
convergent whenever d > 3, Theorem 0.1 yields the following criterion of
transience for subsets of countable groups.

0.4. Corollary. If a subset S of a countable group G has bounded image
under a nondegenerate R3-quasimorphism of G, then S is transient for
each nondegenerate random walk on G. Moreover, for any finite subset

IBecause the definition of RY-quasimorphisms implies that for any S1,S2 C G the
image ®(S152) is contained in ®(S1)+®(S2)+ Dg, while ®(S~1) C ®(1g)—®(S)—Deo.
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N C G and p € 7Z, the subset (SU S~ U N)P is also transient® (for each
nondegenerate random walk on G).

Corollary 0.4 trivially implies the following result, which generalizes the
well-known fact that every nondegenerate random walk on Z¢ with d > 3
is transient.

0.5. Corollary. Let G be a countable group. Assume that d > 3. Then
each nondegenerate R -quasimorphism on G sends a. e. path of every non-
degenerate random walk on G to a sequence tending to infinity.

A remark on the asymptotic density. The transiency is one of natu-
ral characteristics for the “smallness” of subsets in groups. Another such
characteristic is the zero asymptotic density. (Recall that the asymptotic
density of a subset S in a countable group G with a fixed finite generating
set X is the upper limit, as r — oo, of the proportion of elements from S in
the ball B,.(G, X) of radius r.) We remark that, in general, the property of
a subset to have bounded image under a nondegenerate R-quasimorphism
does not imply its zero asymptotic density. For example, in the direct prod-
uct Fy, x Z9 (where F}, is the free nonabelian group of rank n > 2 and Z¢ is
the free abelian group of rank d > 1), the subgroup F,, x {0} has bounded
image under the projection homomorphism F,, x Z¢ — Z¢ C R? (which is
a nondegenerate R9-quasimorphism); the asymptotic density of the sub-

group (with respect to the natural generating set) is equal to (”T’l)d > 0.
At the same time, in the free nonabelian group Fj,, analogues of Theo-
rem 0.1 and Corollaries 0.2, 0.3 hold true for the asymptotic density. If a
subset S of the free group F), has bounded image under a nondegenerate
RY-quasimorphism, then there exists a constant C such that for each r € N
we have

#[B,NS]

#B,

where B, is the ball of radius r in F}, with respect to the standard generat-
ing set. In particular, if a subset of a free group has bounded image under
an unbounded quasimorphism, then the subset has zero asymptotic den-
sity. (These assertions may be proved, e. g., with the techniques developed
in the present paper.)

< Cr 92,

2Because (S U S~1 U N)? has bounded image under the same R3-quasimorphism,
as S does (this is explained in the remark just above).
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Pseudo-Anosov elements in mapping class groups. M. Bestvina and
K. Fujiwara [4, Theorem 1.1] showed that if the mapping class group
MCG(M) of a compact surface M (M is allowed to have non-empty
boundary and be non-orientable) is not virtually Abelian, then there ex-
ists an infinite number of linearly independent homogeneous quasimor-
phisms MCG(M) — R each of which sends all non-pseudo-Anosov ele-
ments of MCG(M) to 0. This means that, if MCG(M) is not virtually
Abelian, then for each d € N there exists a nondegenerate R9-quasimor-
phism MCG(M) — R? that sends the set of non-pseudo-Anosov elements
in MCG(M) to (the bounded subset) {0} C RY. By Corollary 0.4, this
implies the following result.

0.6. Corollary. If the mapping class group MCG(M) of a compact sur-
face M is not virtually Abelian, then the subset T,, of all non-pseudo-
Anosouv elements in MCG (M) is transient for each nondegenerate random
walk on MCG(M). Moreover, all the subsets T , p € N, are transient for
each nondegenerate random walk on MCG(M).

Remarks. The proof of Theorem 1.1 in [4] shows that Corollary 0.6 ex-
tends to all non-virtually-Abelian subgroups of MCG(M) that contain
pseudo-Anosov elements.

Recall that {J ey 7% = MCG(M) and define the norm

eN"m
I -llr, : MCG(M) — Z

by setting [|g[|z,, := min{p € NU{0} |g € T" }. Corollary 0.6 implies that if
the mapping class group MCG (M) of a compact surface M is not virtually
Abelian, then for a.e. path (7;)r>0 of every nondegenerate random walk,

the sequence (HTk”TM) tends to infinity.
k>0

Remark. Corollary 0.6 says that pseudo-Anosov mapping classes are ge-
neric with respect to random walks. The genericity of pseudo-Anosovs
is intensively studied. For some distributions pu, the statement of Corol-
lary 0.6 follows from results of I. Rivin and J. Maher, whose approaches are
distinct and different from those developed in this paper. The approach de-
veloped by Rivin [17, 18, 19] is based on the study of random walks on the
symplectic group Sp(2n,Z) and the action of mapping classes on homol-
ogy. (See also Kowalski [11], where arguments of Rivin are presented in the
framework of the generalized method of large sieve, and also Malestein and
Souto [15] and Lubotzky and Meiri [12].) The approach of Maher [13, 14]
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exploits the action of mapping classes on the complex of curves. (Remark
that this action is used by Bestvina and Fujiwara in order to construct
quasimorphisms that we need.) Arguments of Rivin and Maher show that
(under some restrictions on the distribution u) the probability u**(Ta)
that an element is non-pseudo-Anosov decays exponentially with respect
to the length k of the random p-walk, while the approach via quasimor-
phisms gives only the superpolinomiality.

Braid groups and knots. The above-mentioned result of M. Bestvina
and K. Fujiwara about mapping class groups trivially implies that, for the
Artin braid group B, with n > 3, there exists an infinite number of linearly
independent homogeneous quasimorphisms B, — R each of which sends
all non-pseudo-Anosov braids in B,, to 0. (In order to see this, one can
use the natural homomorphism B,, — MCG(S,,+1) to the mapping class
group MCG(Sp+1) of (n+1)-punctured sphere. This homomorphism sends
(non-)pseudo-Anosov braids to (non-)pseudo-Anosov elements in
MCG(S;,+1); its image is a finite index subgroup in MCG(S,+1).) By
Corollary 0.4, this implies that Corollary 0.6 is valid in the case of braid
groups.

0.7. Corollary. Let By, be the braid group of indexn > 3 and let T,, C B,
be the subset of all non-pseudo-Anosov braids in B,,. Then all the subsets
TP, p € N, are transient for each nondegenerate random walk on B,.

It is deduced in [16, Proposition 6.1] from results of J.S.Birman,
W. W. Menasco, and I. A. Dynnikov that all braids in B,, \ T? represent?
prime knots and links (that is, every braid representing composite, split,
or trivial link is the product of two non-pseudo-Anosov braids). By Corol-
lary 0.7, this fact implies the following result.

0.8. Corollary. In the braid group B, with n > 3, the set of those braids
that represent non-prime (i.e., composite, split, or trivial) knots and links
is transient for each nondegenerate random walk on B,.

We conjecture that techniques developed by T. Ito in [9, 10] may be used
to establish new relations between quasimorphisms of braid groups and
properties of links represented by braids. In particular, we conjecture that
these techniques allow to (prove the existence and) construct a function

¢ : N — N such that, for each k € N, the set S(n, k) C By, of those braids

in B,, that represent knots and links of genus < k is contained in Tf (k).

3In the classical sense of J. W. Alexander and A.A.Markov.
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In view of Corollary 0.7 this would imply that, for any n > 3 and k € N,
S(n, k) is transient for each nondegenerate random walk on B,,.

0.1. Commutants and (stable) commutator length. Another area
where we can apply Theorem 0.1 is the theory of (stable) commutator
length (see [6] for references and definitions). Recall the Bavard duality
theorem [1], which states that in every group G for each element a € [G, G]
we have?
scl(a) = sup M,
peQa~HY, 2do

where Q¢ denotes the vector space of homogeneous quasimorphisms of G,
H} C Qg is the vector space of real-valued homomorphisms of G, and
ds > 0 is the defect of ¢ € Qg ~ H}. Thus, we can use quasimorphisms
for the estimation of scl. In particular, Corollary 0.5 implies the following
result (cf. [6]).

0.9. Corollary. Let G be a countable group. Assume that the vector space
Qc/HE, where Qg denotes the vector space of homogeneous quasimor-
phisms of G and Hé C Q¢ 1is the vector space of real-valued homomor-
phisms of G, has dimension at least 3. Then for a.e. path (Ty)k>0 of ev-
ery nondegenerate random walk on the commutant [G,G], the sequence
(scl(Tk)) > tends to infinity.

Proof. (Sketch.) It can be easily checked that a homogeneous quasimor-
phism ¢ : G — R is a homomorphism if and only if ¢(|G,G]) = 0. Conse-
quently, the assumption that the vector space Q¢ /H¢ has dimension > 3
implies that there exists a homogeneous R3-quasimorphism ® : G — R?
with defect dg > 0 such that the restriction ®|i ¢ : [G,G] — R? is a non-
degenerate R3-quasimorphism of [G, G]. Then it follows by Corollary 0.5

4The theorem’s part scl(a) > |¢(a)|/(2dg ), which we will use, has very short proof.
Let ® : G — RY be a homogeneous R4-quasimorphism with defect dg > 0. Since each
homogeneous quasimorphism is conjugation invariant, it follows that ||®([a,b])|1 < de
for any a,b € G. Consequently, for any a1, b1, ..., ak, by from G we have
le([a1,b1]. . [ak, be])lls < 2kde —1,
whence it follows that for each g € [G, G] we have cl(g) > %. Therefore, for
each g € [G,G] we have
le(@™)ll: +1 _ [[2(g)lly

1 m
scl(g) 4 Jim cg™) > lim = . (1)

m— 00 m m— 00 2d<1>m 2d<1>
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that for a.e. path (7x)r>0 of every nondegenerate random walk on [G, G]
the sequence ®(7;) tends to infinity in R3. Then (scl(7y)) > tends to
infinity by (1). O

Structure of the paper. All the rest of the paper is devoted to the proof
of Theorem 0.1. Section 1 contains several basic lemmas about RY-quasi-
morphisms. In Section 2, we introduce the technical notion of special pairs
of sequences and reduce Theorem 0.1 to a pair of statements about these
pairs (Propositions 2.4 and 2.5). We prove Proposition 2.4 in Section 4
and Proposition 2.5 in Section 5. Section 3 contains the proof of one com-
binatorial result, which generalizes the Sperner theorem and is used in the
proof of Proposition 2.4.

Acknowledgments. The author is cordially grateful to N. Yu. Netsvetaev
and T.Smirnova-Nagnibeda for useful discussions. I would also like to
thank I. Rivin for helpful comments.

§1. PRELIMINARIES ON RY-QUASIMORPHISMS

A function ¢ : G — R on a group G is called a quasimorphism with
defect d if the following condition is fulfilled:

sup [p(g192) — @(g1) — w(g2)| = d < oo.
91,92€G

In order to study d-tuples of quasimorphisms, it is convenient to use the
following notion of RY-quasimorphisms. We say that a map ® : G — R¢
(d € N) is R-quasimorphism if the set

Do :={®(g192) — (1) — ®(92)},, e

is bounded in R9.

It is clear that a map F : G — RY is an RY-quasimorphism if and only
if all its coordinate functions® are quasimorphisms. This yields a natural
bijection between the set of all d-tuples of quasimorphisms of G and the
set of all RY-quasimorphisms of G.

In order to perform basic estimates and characterize properties of RY-
quasimorphisms (e.g., to define the notion of defect for R9-quasimor-
phism), we need to pick a reference norm in RY. In what follows, we will

5By the coordinate functions of F' we mean the functions f1 : G - R, ..., fg: G — R
such that F(g) = (f1(9), -+, fa(9))-
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use the 1-norm® defined by

d
[(z1,-..,zd)[1 == Z|xl|
i=1

We define the defect dg of an R9-quasimorphism @ to be

de := sup ||v|l;.
veEDs
A quasimorphism ¢ : G — R is said to be homogeneous if ¢(g*) = ko(g)
for all ¢ € G, k € Z. We say that an RY-quasimorphism ® : G — RY is
homogeneous if ®(gF) = k- ®(g) for all ¢ € G, k € Z. The definition
obviously implies that an RY-quasimorphism is homogeneous if and only
if all its coordinate quasimorphisms are homogeneous.

1.1. Lemma. Fach Rd-qgasimorphism ®:G — RI has a unique homoge-
neous RY-quasimorphism ® : G — RY such that the map ® — ® is bounded.

For every g € G we have ®(g) = limg_. o Q(I‘zk) and ||®(g) — <I>(g)||1 <ds.

Proof. Since for any h € G, k € N we obviously have
[@(h*) —k-@R)|1 < (k- 1)das,

it follows that for any k,m € N, g € G we have

H B(g")  B(g™)|| _ [m- 2l - R(g*) + 2(g") — k- 2(g™)],
1 km
(m = ds + (k ~ ds (%+%—%) ds. (2)

Therefore, for every g € G the sequence {®(g*)/k}ren converges being a
Cauchy sequence. Consequently, the function

?(g")
! g

is well-defined. From (2) it follows that for every g € G we have

[2(9) — @(g)||, < da.

k m

km

®(g) := lim

k—o0

6We chose the 1-norm only because it simplifies some of our formulas below.
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This means that the map ® — ® is bounded and hence ® is an R9-
quasimorphism. Moreover, from (3) it easily follows that ® is homoge-
neous. Observe that the difference of any two distinct homogeneous R9-
quasimorphisms is unbounded. It follows that ® is a unique homogeneous

RY-quasimorphism of G’ such that the map ® — ® is bounded. O

We say that an Re-quasimorphism is degenerate if the image of the cor-
responding homogeneous RY-quasimorphism is contained in a hyperplane
of RY. Obviously, an R9-quasimorphism is degenerate if and only if a non-
trivial linear combination of its coordinate quasimorphisms is a bounded
function.

1.2. Lemma. Let G be a group and let ® : G — RY (d € N) be a non-
degenerate RY-quasimorphism. Then the image ®(G) is cobounded (i. e., it
forms an e-net) in R9.

Proof. Let ® : G — RY be the homogeneous R9-quasimorphism with
bounded difference ® — ®. Since ® is nondegenerate, then obviously so
is ®. Therefore, there is a d-tuple (gi,...,gq) of elements of G such that
the vectors

vi:=®(g1), ..., vqg:= P®(gq)
are linearly independent. Since ® is homogeneous, the following inequality
holds for any integers k1, ..., kq:

1R(gr" - g5*) — (k1 - vi+ -+ kg va)lL < (d = ),

where dg is the defect of ®. This means that for each point v of the lattice

generated by the vectors vy,...,vq, there is a point w € ®(G) such that
|[v — w| < (d — 1)dgz. The image ®(G) is thus cobounded. Since ® — ® is
bounded it follows that ®(G) is also cobounded. O

§2. PROOF OF THEOREM (.1 AND SPECIAL PAIRS OF SEQUENCES

Our proof of Theorem 0.1 is based on the notion of special pairs of
sequences. The definition is as follows.

2.1. Definition. Let A be a set, and let Y be a family of two-element
subsets of A. (In this paper, we mostly interested in the case where A is
finite or countable, and Y is finite and consists of pairwise disjoint subsets
of A.) Let V = (v1,...,v,) and W = (wy,...,w,), n € N, be two distinct
finite sequences over A. We say that the pair {V, W} is Y-special (special
when Y is fized) if the following two conditions hold:
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i) for each i € {1,...,n} we have either v; = w; or {v;,w;} €Y,
ii) there are no i,j € {1,...,n} such that v; = w; # w; = v;.

We will study sets of sequences that do not contain special pairs.

2.2. Example. Let Ab be a torsion-free Abelian group (say, the additive
group of real numbers). Let a,b,c € Ab and assume that b # c. Let ) be
the family consisting of the unique element {b, ¢} C Ab. Let L, be a set of
finite sequences over Ab such that the sum of elements in each sequence
from L, equals a. Then L, has no Y-special pairs.

2.3. Notation. If A is a set and n € N, we will denote by A™ the set of
all sequences of length n over A. If v is a measure on A, we will denote
by v™ the corresponding product measure on A".

We deduce Theorem 0.1 from the following two propositions.

2.4. Proposition. Let A be a countable or finite set, let d € N, and let
Y ={Y1,...,Yy} be a family consisting of d pairwise disjoint’ two-element
subsets of A. Let v be a probability measure on A with supp(v) DY :=
Y1 U---UYqy. Then there exists a constant C(v) such that for each n € N
and for every subset L C A™ without )-special pairs we have

v (L) < C(v)n~9/2

2.5. Proposition. Let G be a group and let ® : G — R, d € N, be
a nondegenerate R-quasimorphism. Let R > 0 be a positive real num-
ber. Then there exists a family ) consisting of d pairwise disjoint two-
element subsets of G such that for each n € N and for every Y-special pair
{(g1,---,9n), (h1,...,hn)} C G™ we have ||®(g1 - gn) — ®(h1 -~ hy)||; >
R. Moreover, if S C G is a subset generating G as a semigroup, then
there exist p € N and a family ) that satisfies all the above properties and
consists of subsets of SP.

The proofs of Propositions 2.4 and 2.5 may be found in Sections 4 and 5
below. Now, we deduce Theorem 0.1 from these propositions.

Proof of Theorem 0.1. Recall that we consider a countable group G
and a nondegenerate RY-quasimorphism ® : G — RY (d € N). Our aim
is to show that for any nondegenerate probability measure p on G and

TIn fact, the statement of the proposition holds true in the (more general) case of
pairwise distinct (not necessarily disjoint) two-element subsets; see Rem. 4.1.
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bounded subset @ C RY there exists a constant C' := C(G, ®, u, Q) such
that for any & € N and x € R we have

Wk (@t (x+Q)) < Ck 92

Let p be a nondegenerate probability measure on G and let Q C R¢
be a bounded subset. Set S, := supp(u). (S, generates G as a semigroup
since p is nondegenerate.) Set Q' := @ + Dg, where

Do :={2(g9192) — ®(91) — 2(92)},, goeq -

(The set @' is bounded in RY because Dg is bounded by the definition
of R¥-quasimorphism.) Let R¢ denote the diameter of Q' with respect to
our reference norm || -||; (defined by ||(z1, ..., zq4)|1 = Zle |z;]). Let pry,
k € N, denote the natural projection from G* to G (this projection sends
the sequence (g1,...,gr) € G* to the element g - - - gx € G).

By Proposition 2.5, there exist p € N and a family Y = {Y7,..., Y4} con-
sisting of d pairwise disjoint two-element subsets of S¥ = supp(u*F) such
that for each k € N and for every V-special pair {(g1,-..,9%), (h1,...,he)}
C G* of k-sequences over G we have [|[®(g;---grx) — ®(hy---h)|1 >
Rg + 1.

This means that, for any k € N and x € RY, the set pr,;1 (<I>*1 (x+ Q'))
has no Y-special pairs.

Since supp(u™®) DY = Y1 U---UYy and Y7, ..., Yy are pairwise
disjoint in G, it then follows by Proposition 2.4 that there exists a constant
C(p*?, Q") such that for any k € N, x € R? we have

W) (pr (27 (x+ Q1)) < CW™, Q)K"
which is equivalent to
(@ (x+ Q) < O™, Qk/? (4)

(since for any measure v on G and k € N we obviously have prj, (v*) = v*F).
Let us show that for any ¥ € N and x € RY we have

(@ (x+ Q) < Cuk™Y2,
where G, := max{p"/?, (2p)/*C(u*",Q")}. (5)
Indeed, if k < p, then
wt (@t (x+Q) <1 < p?Pk79? < C kY2
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Suppose that & > p. Let k = mp +r, where m € N, r € {0,1,...,p— 1}.
Then we have

i (@7 (x4 Q) = ) (7 (x+.Q)
= > wou (g7 e (x+ Q). (6)

geG

Observe that
gl (x+Q) c e (2(9TeT (x+ Q)
C o (B¢ H+x+Q+Dg) = &' (g7 +x+ Q)
= &' (x,+Q), where x,:=x+®(g ). (7)
By (4) and (7) we have
(g (x4 Q) < 2N (x +Q) < C(u,QYm Y2 (8)
Since ), 1™ (9) =1, (6) and (8) yield
Wt (@7 (x+Q) = W (@7 (x+Q) < CuT,QIm 2 (9)

Since k =mp+r,m eN,pe N, and r € {0,...,p— 1}, we have k < 2mp,
whence

O™, Qym™? < C(w?,Q")(2p) k™ < Cuk™2. (10)

Inequality (5) and the theorem are thus proved. O

§3. A RESULT FROM SPERNER THEORY

In this section, we prove the following proposition, which will be used
in the proof of Proposition 2.4.

3.1. Proposition. Let X = X; U---U Xy (d € N) be the union of finite
(may be empty) pairwise disjoint sets X1, ..., Xq. Let A C 2% be a family
of subsets of X such that for any S,T € A there exists j € {1,...,d} for
which (SN X;) ¢ (TNX;) and (TNX;) ¢ (SNX;). Then

Al < lj([@p
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As it is common in combinatorics, Proposition 3.1 has a number of
interpretations® and relates to a number of deep theorems”. It is related
to the Sperner theory (see, e.g., [8]), to the theory of perfect graphs (see,
e.g., [2]), etc. As a consequence, there are various ways to prove the propo-
sition. Despite the Sperner theory seems to be the most relevant one, we
will prove our proposition in the more general settings of graph theory.

Recall that a simple graph (i.e., an undirected graph without loops or
multiple edges) is a pair I' = (V, E), where V = V(I') is the set of vertices
of I"and E = E(T") (the set of edges) is a subset of the set of all unordered
pairs of elements of V. Two vertices , y of I" are adjacent if {z,y} € E(T).
Throughout this section, by a graph we mean a simple graph. A graph I’
is said to be a comparability graph if there exists a partial order on V(T
such that the vertices of each edge in E(I") are comparable with respect
to this order.

A clique in a graph I"isaset U C V(I') of pairwise adjacent vertices, and
an independent set (stable set, anticlique) is a set of pairwise non-adjacent
vertices. The set of all cliques (resp., anticliques) of a graph T is denoted
by €(I') (resp., A(I")). For a finite graph I, let o(I") be the number of
vertices in the largest independent set of I' (a(T") is called the independence
number or stability number). Let 6(I') denote the clique covering number
of T, i.e., () is the least number of cliques which cover all the vertices
of I'. Clearly, for any finite graph I' we have

a(l') < 6(T) (11)
since every clique of I' has at most one vertex in each independent set of I.
3.2. Theorem (Dilworth). For each comparability graph T' we have

a(l)y = ().

3.3. Remark. The equality a(I') = (T") holds true for every perfect
graph. (This follows from the Perfect Graph Theorem (Lovasz 1972), which
states that a graph is perfect if and only if its complement is perfect.) Every
comparability graph is perfect (Mirsky’s theorem).

Recall that the normal (or strong) product T'm A of two graphs I' and
A is a graph with vertex set V(') x V(A); two distinct pairs (z1,y;) and
(z2,y2), where z1,22 € V([') and y1,y2 € V(A), are adjacent in I'm A if

SSee, e.g., the formula for random walks, which appears in the proof of Proposi-
tion 2.4.
9For example, in the case where d = 1, the proposition is the Sperner theorem.
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and only if x; is equal or adjacent to x5, and y; is equal or adjacent to y-.
Note that the normal product is an associative operation.

3.4. Lemma. LetT and A be finite simple graphs. Then

E1l E2 E3
aDa(A) < a(lsA) < OC=A) < HD)I(A).

Proof. Observe that the product A x B of independent sets A € 2(I") and
B € 2(A) is an independent set in I'=w A. This obviously implies inequal-
ity E1. Inequality E2 is a particular case of (11). In order to check E3, we
observe that the product C; x C of cliques C; € €(T), Cy € €(A) is a
clique in I's A. Consequently, if C; C €(T') and C; C €(A) are minimal
“covering” families of cliques (such that |C;| = 6(T') and |Cs| = 6(A)),
then {C; x Cy : Cy € C1,Cy € Cy} is a family of cliques that covers all
the vertices of I'm A and contains 8(I')8(A) cliques, whence (I'r A) <
O(T)O(A). O

3.5. Corollary. Letd € N andlet 'y, ..., I'y be finite simple graphs with
a(T;) = 0(T;) for each i. Then

d d
[[am) = a@i=...aTy) = 6(I1=...5Ty) = [J6).
i=1 i=1
Proof. This follows from Lemma 3.4 by induction on d. O

For a finite set Z, let Bz denote the graph with the set of vertices
V(Bz) := 2% and the set of edges E(By) consisting of all the pairs {S, T},
S #T €2% for which SCTorT CS.

3.6. Theorem (Sperner). For every finite set Z we have
4
a(Bz) = PZPAJ '
2

Proof of Proposition 3.1. Consider the graphs By, ..., Bx, and their
normal product Bx, ®...x By,. We have a natural one-to-one correspon-
dence between sets 2% and V(Bx, ®...8 Bx,). Observe that, under this
correspondence, the family A of the proposition is an anticlique in the
graph Bx, ®...x® Bx,. Consequently, we have

|A] < «a(Bx, ®...2Bx,). (12)
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Since Byx,, ..., Bx, are comparability graphs, it follows by Dilworth’s
theorem (Theorem 3.2) and Corollary 3.5 that

d
a(Bx,%...uBx,) = [[a(Bx). (13)

i=1

By Sperner’s theorem (Theorem 3.6) we have

ﬁa(BXi) = HQQP (14)

i=1 =1

The desired inequality follows from (12)—(14). O

§4. PROOF OF PROPOSITION 2.4

Proof. Our proof consists of two parts.

Part 1. First, we prove that the proposition holds true in the case where
the measure v is uniform on the set Y =Y, U---UYjy (i.e., v(a) =
v(Y)/|Y| for each a € Y).

Part 2. We show that the general case reduces to the case where v is
uniform on Y.

Part 1. Assume that v is uniform on Y and adopt the following notation:

L) vy
S Y 2d ’
Yo =AN(Y),

vo :=v(Yp) =1—2d\

Let us show that for each n € N and for every set L. C A™ without
Y-special pairs the following inequality holds:

v*(L) < C(d,n,wn), where C(d,n,vp) :=

d
no \n—no . " ) : ( i > . (15
n077;,7nd <V0 <n0, ni,...,Ng H {—”;w (13)

no+ni+---+ng=n
no,ni,-...,nd>0

It is sufficient to consider the case where Yy # @ (i.e., A # Y') because
the case A =Y transforms to the former one via passing to the set A’ :=
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AU {w} with a new element w ¢ A and assigning v(w) = 0. In order to
prove (15), we split A™ into (d 4+ 1)™ classes of the form

Y, xY;, x---xY;, where i; €{0,1,...,d}.

(This is possible because we assume that Y;’s are pairwise disjoint, while
A=Yy UY; U---UYy by definition of Yp.) f K =Y;, xY;, x--- xY; is
a class of this partition and £ € {0,1,...,d}, we set
L(K):={je{l,...,n} : i =},
ne(K) = 1K)
In order to prove (15), let us show that for an arbitrary class K of the
above partition of A™ we have

VI (LNK) < vyt ynmmolo) H <L” K)+1J> (16
In order to prove (16), we split K into subclasses in the following way:
we let two sequences (w1, ..., w,) and (w},...,w),) from K be in one and

the same subclass if and only if w; = w} for each i € Iy(K). (Thus, each
subclass of K consists of 27~ "0(K) elements. If A is finite, then K splits
into |Yp|™ (¥) subclasses.) If .J is a subclass of K and W = (w1, ..., w,) €
J, then the elements w;, i € Iy(K), are determined by J and do not depend
on W € J. It follows that the value [[;c, (x)v(w;i) is determined by J.
We set v (J) := [[;ep, (k) ¥(wi). Then we have

vI(LNJ) = vi(J) N L L) (17)

Proposition 3.1 implies that for each subclass J of the class K we have

ILNJ| < H(V K)“J> (18)

(In order to see this in terms of Proposition 3.1, assign X; := I;(K) for
each i € {1,...,d}. Then, for each i € {1,...,d}, choose an element y; in
the pair Y;, and let .7 : J — 2% be the bl_]eCtIOIl defined by

Lg-('wla"'a’wn) :{Z EII(K) UId(K) Wi € {yla"'ayd}}'

Since L has no Y-special pairs, it follows that the image A := Z(L N J)
satisfies the requirement of Proposition 3.1 (cf. the definition of Y-special
pairs with this requirement). Therefore, the inequality of Proposition 3.1
gives us inequality (18).)
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Let K denote the set of all subclasses of the class K. Then (17) and (18)
yield

d
. nm ni(K)
senK) = Y orwan s [ Y v | et ] Q.WWJ)'
JeK JeK i=1 2
(19)
At the same time, we clearly have

S = I D vw) = v, (20)

JeK i€lp(K) wEYy

Inequality (16) directly follows from (19) and (20). The required esti-
mate (15) readily follows from (16) by summing over all classes of the
partition.

In order to complete the proof of Part 1, it suffices to show that there
exists a constant C' := C(v) such that for each n € N we have C(d, n,vp) <
Cn~9/2, This property may be easily derived from well-known facts of
the theory of random walks on integer lattices. Let 8§ = 6(d,vo) be the
probability measure on Z¢ defined by

9(6,‘) :9(_91') :)\, 1= ].,...,d;
8(0) = vo(= 1 — 2d)),

and let
D:={(z1,...,29) €Z% : 2z, € {0,1} for each i € {1,...,d}}.

Then it is obvious that for each n € N we have 68*"*(D) = C(d, n, 1), i.e.,
the value C(d,n, ) is equal to the probability that the random walk in
Z4 with distribution # will hit D at the nth step. Since # is nondegenerate
in 79, there exists a constant N > 0 such that 6*"(z) < Nn~9/2 for all
z €74 n €N (see, e.g., [20, p. 72]). Since D consists of 2¢ elements of Z,
we have C(d,n,vp) < 2¢Nn~9/2 for each n € N.

Part 2. Let Y =: {{a1,b1},...,{aq,bq}} so that Y = {a1,b1,...,aq,b4}.
Let Y := {a},b],...,a},b,} be aset of 2d elements not in A, and let A" :=
AUY’. Let vy, := mingey v(z). (Note that v, > 0 since supp(v) D Y.)
Let v/ be the probability measure on A’ defined by

Vi) =v(z)ifze ANY,

Vi(z) :=vy ifz €Y, and
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Vi(z') :=v(x) — vy if @/ € Y, where z is the element in Y that corre-
sponds to z’.

Let f denote the map A’ — A of “forgetting the primes” for elements
(i.e., flw) =wifw € Aand f(w') =wifw € Y’ and wis the element in Y’
that corresponds to w’). Let F' : (A’)® — A™ denote the map of “forgetting
the primes” for sequences (i.e., F(w1,...,wy) = (f(wi),..., f(wy))). (If
W = (w1, ..., wy,) is a sequence over A with precisely ¢t € Ny occurrences
of elements from Y, then F~1(W) is a set of 2! sequences over A’.)

The following two claims are obvious. (In order to check the second one,
it is enough to notice that F sends each Y-special pair to a Y-special pair.)

Claim 2.1. For any n € N, S C A®, we have (v')*(F~1(S)) = v™(S).

Claim 2.2. If L C A" is a subset without Y-special pairs, then F~'(L)
C (A" is also a subset without Y-special'® pairs.

Since v’ is homogeneous on Y, it follows by Part 1 of this proof that
there exists a constant C’ := C’(v') such that for each n € N and for any
subset L’ C (A’)" without Y-special pairs we have

(I//)n(L/) < Clnfd/Z.

Therefore, by Claims 2.1 and 2.2, for each n € N and for any subset L C A"
without )-special pairs we have

v'(L) = (V)"(F1(L)) < C'n 92
Proposition 2.4 is thus proved. (I

4.1. Remark. The statement of Proposition 2.4 holds true in the (more
general) case where the family Y = {Y1,..., Yy} consists of d pairwise dis-
tinct (not necessarily disjoint) subsets. This may be proved by an argument
similar to the one from Part 2 above.

Let A, d, Y ={Y1,...,Y4}, v be as in Proposition 2.4, and assume that
Y1, ..., Yy are pairwise distinct but not disjoint (]Y| < 2d). Let Zy be the
set of d|Y| elements not in A that contains the elements wy, ..., wq for
each w € Y. Set AT := AN Y U Zy. Let v! be the probability measure
on A' defined by

vi(z) =v(z)ifz e AT Zy = A\Y,

vi(zyy) := v(z)/d if 2 € Zy, where  is the element in Y that corre-
sponds to z[;.

10m (A’)™, we consider special pairs with respect to Y, not with respect to Y U Y.
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Let V' = {Y;‘, e ,YdT} be the family of d two-element subsets of Zy
defined as follows: we set Y;r = {v, wyy } if Vi = {v,w}. It is obvious that
the set YT := YlT u---u YdT consists of 2d elements and YT consists of d
pairwise disjoint subsets. (Observe also that supp(vf) D Zy D Y1)

Let f denote the map AT — A of “forgetting the indexes” for elements
in Zy (i.e., f(wy) = w if wy) € Zy and w is the element in Y that
corresponds to wy;); f(w) =wif w € AT\ Zy = ANY). Let F : (AT)* —
A* denote the corresponding map for sequences (i.e., F(wy,...,wg) =
(f(w1), ..., f(wg))).

Here, we can use claims, similar to Claims 2.1 and 2.2:

Claim 3.1. For anyn € N, S C A", we have (vI)"(F~1(S)) = v™(9).

Claim 3.2. If L C A™ is a subset without Y-special pairs, then F~*(L) C
(AN™ is a subset without V' -special pairs.

Claim 3.1 is obvious. Let us prove Claim 3.2. It is enough to show
that F sends each )f-special pair to a Y-special pair. If V = (vy,..., ),
W = (wy,...,wy) is a Yi-special pair in (A)”, then by definition we have

(a) v; = w; whenever {v;, w;} ¢ VT,
(b) there are no ¢,j € {1,...,k} such that v; = wj, w; = v;, and
{vi,wi} = {vj,w;} € YT,
The definition of V' yields that f sends Y to ) (bijectively). In view of (a)
this implies that

(A) F(vi) = flws) whenever {f(v:), f(wi)} ¢ V.

Furthermore, condition (a) implies that {v;,w;} is in YT if and only if
{f(vy), f(w;)}yisin Y. (Indeed, if {v;, w;} isin YT then { f(v;), f(w;)} isin Y
by definitions of YT and f; if {f(v;), f(w;)} is in Y then {v;,w;} is in YT
because otherwise we have v; = w; by condition (a) whence f(v;) = f(w;).)
This fact shows that condition (b) directly implies the following

(B) There isno @ # j € {1,...,k} such that f(v;) = f(w;), f(w;) =
F0), and {1 (v3), f(we)} = L£{vy), flwy)} € V.

Conditions (A) and (B) mean exactly that F(V) = f(v1)...f(vg),
F(W) = f(wy) ... f(wg) is a Y-special pair. Claim 3.2 is thus proved.

Since YT consists of d pairwise disjoint subsets and supp(v') > Zy D
YT, it follows by Proposition 2.4 that there exists a constant CT := CT(vT)
such that for each n € N and for any subset LT C (A")™ without )T-special
pairs we have

whrrh) < ctn=9/2



230 A.V. MALYUTIN

Therefore, by Claims 3.1 and 3.2, for each n € N and for any subset L C A"
without )Y-special pairs we have

v (L) = WH™FHL)) < CTn=9/2

§5. PROOF OF PROPOSITION 2.5

In order to prove Proposition 2.5, we introduce the following auxiliary
notion.

5.1. Definition. Let d,m € N, and let (vi,...,vy) be an m-tuple of

vectors in RY. We define the characteristic V (vy,...,vy) as follows:
m
oty
V(Vi, oo, Vi) == M_
(t1eestm) €R™ {0} || (E1, - tm) Iy

5.2. Properties of V. We give several simple properties of the charac-
teristic V.

1. For any vi,...,v;, € RY and t1,...,t,, € R we have, by definition,
m
S tvil| = Vi) [ty )l
=t 1 - (21)
=V(vi,. -, vm) D Itil-
i=1
2. V(v1,...,vm) = 0 if and only if the vectors vy,..., v, are linearly

dependent.
3. For any vq,...,v,, € RY and 6y,...,8,, € {+1,—1} we have

V(01 ViyeeoyOm Vi) = V(Vi,..., Vi)
5.2. Claim. Let d,m € N, let vi,...,v,, € RY, and let (x1,...,%z),

k € N, be a sequence of vectors in RY such that x; € {vy,..., V., } for each
i€{l,...,k}. Then we have

k
>_xi
i=1

> k-V(vi,.. o, Vi) > V(Vi,.. o, Vi)

1

Proof. This readily follows from (21). O
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5.3. Lemma. Let G be a group and let ® : G — R? be an RY-quasimor-
phism with defect dg. Let k € N and let go ¢1, ..., gk, b1, ..., hg be
elements of G. Then

k

> o(hi)

i=1

H(}(gOhlgl"'hkgk) —CI>(9091"'91«)H1 > — 3kds.

1

Proof. From the definition of defect, it follows by induction that we have
k k

®(gohigr -+ huge) — Y B(gi) = Y B(h)|| < 2kda,

Consequently, we have

k
H‘I’(goh1g1 s higr) — (gogr - gx) — Y B(hi) | S Skde,
i=1
which obviously implies the statement of the lemma. O

5.4. Lemma. Let G be a group and let ® : G — RY, d € N, be an
RY-quasimorphism with defect dg. Let ¢y, ..., ¢y be elements of G. Let
k € N and let (go,91,---,9k), (h1,...,hg) be sequences of elements of G
such that h; € {¢1,...,em} for each i € {1,...,k}. Then we have

H‘P(gohlm---hkgk)—Q(gogl---gk)Hl > k-(V(®(cr),...,2(cm)) — 3da),
(22)
whence it follows that
H‘P(gohlgl---hkgk) —<I>(gog1---gk)H1 > V(®(c1),..., Plem)) — 3de.
(23)

Proof. By Lemma 5.3, we have

k

> a(hi)

i=1

Y

— 3kdg. (24)
1

H(P(gomgl - higr) — (9091 - --gk)H1
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By Claim 5.2 we have

k
do@hi)| = k-V(R(cr), .., Bem)) (25)
i=1 1
Inequality (22) follows from (24) and (25). Inequality (23) follows from (22)
because ||®(goh191 - - hrgr) — P(gog1 -+ - gx)|l1 = 0 and k € N. O

5.5. Lemma. Let G be a group and let
P:G—RY deN,
be a homogeneous RY-quasimorphism with defect dz. Let

Y= {{a17 bl}: LK {aTm bm}}:
m € N, be a family of two-element subsets of G. Set

V() =V (®(a; 'b1), ..., ®(a;, bn)) -

Then for each t € N and for every Y-special pair {(g1,-.-,9¢), (h1,.-., he)}
C Gt we have

19(g1 - ge) — (- he)ll, = Vg(V) — 3dg.

Proof. Setg:=g¢g;---g:and h := hy - - - he. Since {(g1, ..., 9¢), (h1, ..., ht)}
is V-special, there exists a family (zy,...,7,,) with z; € {a; 'b;,b; "a;} for
each ¢ such that for some k € N and gj,...,g;, € G we have
9=9091""" 9k
and
h = goz191 " 2k

where z; € {z1,...,x,} for each j € {1,...,k}.
By Lemma 5.4 we have

Hi(h)—i(g)H1 >V (®(x1),...,8(zm)) — 3dg.

It remains to observe that, since ® is homogeneous and z; € {a;lbi, b, La;}
for each i, we have V (®(z1),..., ®(z,)) = Vg (V) (see properties of V
in 5.2). O
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5.6. Lemma. Let G be a group and let ® : G — RY, d € N, be a
nondegenerate RA-quasimorphism. Then for any r > 0 there exists a d-set
{91,---,94} C G such that

Va(gi,.--,9d4) > (26)

Moreover, if S C G is a subset generating G as a semigroup, then for any
r > 0 there exist p € N and a d-set {g1,...,94} of elements from SP such
that (26) holds.

Proof. By Lemma 1.2, the image ®(G) is cobounded in RY. This means
that there exists ¢ > 0 such that for each w € RY there is v € ®(G)
with ||w — v||; <e. Let vy,...,vq4 be points from ®(G) such that

Ivi—(r+e) el <e (i=1,...,d).

Then for any t,...,tq € R we have

d d d
Zt,-~v,- > Zti(r+5)'ei — Z(ti(T-i-é‘)'ei—t,"V,')
i=1 1 i=1 1 i=1 1
d d d
> (rte)) [tl—ed |t = r> [t
i=1 i=1 i=1
This means that V(vy,...,vg) > r. It remains to choose g; € ®~1(v;) for

each i € {1,...,d}.

Now, let S C G be a subset generating G as a semigroup. Let us show
that for each m € N the image ® (|, oy S™*) is cobounded in RY. Observe
that the set m - ®(G) is cobounded in R? since ®(G) is cobounded in RC.
Recall that for any g € G we have

[@(g™) —m-2(g)l, < (m—1)das,

where dg is the defect of ®. Therefore, the set (J, ., ®(¢™) is also cobounded
in RY, Since S generates G as a semigroup, we have

Us= U st=a
keN keNU{0}
Therefore, we have

Uem= U ¢ cUEH™ = U™

9eG 9€U pen S* keN keN
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It is thus shown that for each m € N the image ® ([, ey S™*) is cobounded
in RY.

Obviously, there exists mg € N such that S™° contains the identity of
the group. By the above, the image ® (UkeN Smok) is cobounded in RY.
Then the argument from the first part of the proof shows that there exists
a d-set {g1,...,94} of elements from (J, .y S™°* such that (26) holds. At

the same time, we have S™° C §?mo0 C §3mo C ... because S™° 3 e.
Therefore, there exists ¢ € N such that S?™° contains all the elements
gi,-..,9d4. It remains to set p := qgmy. (I

Proof of Proposition 2.5. It is clearly enough to prove the second state-
ment of the proposition, which is stronger than the first one. Let S C G
be a subset generating G' as a semigroup. Let @ be the homogeneous qua-
simorphism corresponding to ® (see Lemma 1.1). By Lemma 5.6, there
exist p € N and a d-set {g1,-..,94} C SP? such that

V(®(g1),-.-,P(g9a)) > R+ 3dg + 2do, (27)

where dg and dg are the defects of ® and ®, respectively. From the proof
of Lemma 5.6 it is clear that we may assume without loss of generality
that SP contains the identity e of G. Then S?P contains the set ¥V :=

{g1,---,94,9%,.-.,93}. We set
y = {{glagf}a .. 7{gdagj}}

and show that 2p and ) meet the requirements of the proposition. Indeed,
suppose that £k € N and

{(mla"'7wk)7(y17"'7yk)} - Gk

is a YV-special pair. Set ¢ := x1 - - - wp and y := y1 - - - Y- Then by Lemma 5.5
we have

o _ _ 27)
[@(z) — W), = V(2(gigr "), -, ®l93g5 ")) —3dg > R+2de. (28)

Since @ is the homogeneous s quasimorphism corresponding to ®, we have
| ®(z) — <I>(:1:)||1 < dg and ||®(y) — ‘I>(y)||1 < dg (see Lemma 1.1). Conse-
quently,

18(@) - 2@)l, > [F) - )|, -2 > R

It remains to show that the elements g1,...,94,97,...,95 are pairwise
distinct. In order to see this, observe that for any i,5 € {1,...,d} and
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T,

s € Z such that (i,r) # (j, s) we have

|®(aig;)

‘1 > |Ir-®(g:) — s - B(g))|, — dg

_ _ (27)
>V (®(g),...,B(ga) ~dg = R > 0,

whence it follows that g # g7 (because, due to the homogeneity of ®, we

have ®(e) = 0 and ||<I>(e)H1 =0). O
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