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THE MONGE PROBLEM IN R¢:
VARIATIONS ON A THEME

ABSTRACT. In arecent paper the authors proved that, under natural
assumptions on the first marginal, the Monge problem in R? for cost
given by a general norm admits a solution. Although the basic idea of
the proof is simple, it involves some complex technical results. Here
we will give a proof of the result in the simpler case of uniformly
convex norm and we will also use very recent results by other authors
[1]. This allows us to reduce the technical burdens while still giving
the main ideas of the general proof. The proof of the density of the
transport set given in the particular case of this paper is original.

§1. INTRODUCTION

The Monge problem has origin in the Mémoire sur la théorie des déblais
et remblais written by G. Monge [15]. The problem was stated, more or
less, as follows: given a sand pile and an embankment with the same volume
as the sand pile, is there a way to transport the sand in the embankment
minimizing the work done in the transportation process? We consider the
closure Q of an open, bounded and convex subset of R? as ambient space
for the model. Then, if we use Borel probability measures p and v to model
respectively the sand pile and the embankment, a transport map 7' from
p to v will be a Borel map such that Tyu = v (i.e. v(B) = u(T~*(B)) for
all Borel sets B C Q). If we denote by 7 (u,v) the set of transport maps
from u to v then the problem will take the form

inf /|a: —T(x)|du(z) : T € T(u,v) (L.1)
Q

where | - | is the Euclidean norm on R?.
The natural interest of the problem and the many applications attracted
the interest, through the years, to a generalization in which one considers

Key words and phrases: Monge-Kantorovich problem, optimal transport problem, cycli-
cal monotonicity.

182



THE MONGE PROBLEM 183

a general norm || - || on R?, which leads to the formulation

inf /||x (@) |due) T € T(uv) . (1.2)
Q

A first strategy to prove that the problem (1.2) admits a solution was
devised by Sudakov in [19]. The basic idea in that paper was to reduce the
problem to lower dimensional affine regions. This is quite natural as we
will explain in Section 3. Reducing the problem to lower dimensional affine
spaces requires to consider the restrictions (or conditional probability) of
i and v to the regions of interest. This method unfortunately involved a
crucial step on the disintegration of measures which was not completed cor-
rectly at that time, and has recently been justified in the case of a strictly
convex norm || - || by Caravenna [8]. Meanwhile, the problem (1.1) has
been solved by Evans et al. [12] with the additional regularity assumption
that p and v have Lipschitz-continuous densities with respect to £, and
then by Ambrosio [2] and Trudinger et al. [20] for 4 and v with integrable
density. The more general problem (1.2) for C? uniformly convex norms
has been solved independently by Caffarelli et al. [7] and Ambrosio et al.
[4], and for crystalline norms in R? and general norms in R? by Ambrosio
et al. [3]. As for the original proof of Sudakov, all the proofs of the above
listed existence results are based on the reduction of the problem to a 1-
dimensional problem via a change of variable or area-formula. In [9, 10],
we introduced a different method to prove the existence of a solution for
(1.2) which does not require the reduction to 1-dimensional settings.

1.1. This paper. Althought the aim of this paper is mainly expository
we will try to introduce some technical novelty which should give easier
access to non specialists. In Section §2 we introduce the general theory and
classical facts developed to solve (1.2). Then in Section §3 we introduce
the classical notion of transport sets. Finally in section §4 we will follow
the strategy of proof of existence for (1.2) developed in [9, 10, 11], but

with the additional assumption that the norm || - || is uniformly convex,
ie. || - |? is of class C% on R? with
cidg < D*(||-||*) < Cidq for some 0 < c < C. (1.3)

This considerably reduces the technical burdens of our original proof while
leaving intact the main ideas. Some more simplifications are introduced
thanks to some technical novelty which appeared after [9, 10]. The proof
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of Proposition 4.4, which is a cornerstone of our main existence result
Theorem 4.5, is original. We hope that this paper will make the problem
accessible to a wider audience.

§2. THE MAIN PLAYERS AND THEIR BASIC PROPERTIES

Most of the results of this section and the following section 3 are by now
classical, and may be found for example in [2, 4, 21, 22], unless otherwise
stated. We shall give some proofs for the convenience of the reader.

2.1. Relaxation. The first step to solve (1.2) consists in suitably relaxing
the problem. This was done by Kantorovich [13, 14] who introduced the
set

I(p,v) = {v a probability on Q x Q such that Wl}'y =, W?’y =v},
and the cost

e [zl
QxQ
The elements of II(u,v) are called transport plans and, as tools to trans-
port p to v they allow the mass located at a point x to be split among
many points y while a transport map 7" moves all the mass being at x to
T'(z). There is a natural embedding of 7 (u,v) in II(u, ) which associates
to a transport map T the transport plan yr = (id x T')zu, which has the

same cost:
[ =l = [ e = T@)ldn.
Q

QxQ
Then the new problem is

min x — yl|dy. 2.1
i [ eyl (1)
QxQ

The inescapable question is whether or not

inf z—T(x)||[dp = min x —y||dy. 2.2

it [lle=T@ldu= min [ le-ylar. @2
Q QxQ

Since the main result of this work, Theorem 4.5 below, asserts that if

is absolutely continuous with respect to £¢ then some optimal transport

plan for (2.1) is induced by an optimal transport map, the equality follows

in that case. However it can be proved the more general following result.
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Proposition 2.1. If u has no atom then (2.2) holds.

For a proof of Proposition 2.1 in wide generality we refer to [16] and
reference therein.

The assumption that p is non atomic cannot be removed since otherwise
the set 7 (i, v) may be empty, on the other hand pu ® v always belongs to
(g, ).

Example 2.2. Let p := §p and v := %(61 + d_1), in this case the set
T (u,v) is easily seen to be empty.

For general marginals p and v it may happen that 7 (i, v) is non empty
but the inf in (1.2) is not attained, while the problem 2.1 (under the current
assumptions) always has a minimizer.

Example 2.3. In R? let S; = {t} x [0,1] for t € {—1;0;1}. Also set
po= H'[So and v := L(H'|S; + H*[S_1) where by H' we denote the
one-dimensional Hausdorff measure. We consider the case where || -|| is the
Euclidean norm. Then the optimal transport plan for (2.1) will move half
of the mass horizontally to the right and the other half horizontally to the
left, for a total cost equal to 1. This cannot be achieved by any transport
map in 7 (p,v).

Since by Proposition 2.1 the values of the original problem (1.2) and
the relaxed one (2.1) coincide, a natural way to obtain the existence of a
solution for (1.2) is to show that some minimizer for (2.1) is induced by a
transport map. This is indeed the strategy of this paper, which reduces to
prove that some minimizer of (2.1) is supported on a graph. Then a natural
(although technical) question is whether a transport plan supported on a
graph is induced by a transport map or not. This is the topic of Lemma
2.1 in [1], and the aim of this paper being partly expository we report the
short proof below.

Lemma 2.4 ([1]). Let X and Y be compact subsets of R, and v > 0 a
o-finite Borel measure on the product space X XY . Denote the X -marginal
of v by w. If v vanishes outside the graph of T : X — 'Y (in the sense that
the outer measure of X x Y \ (Graph(T")) = 0), then T is u measurable
and v = (id x T)yp.

Proof. First notice that v is a regular measure since it is o-finite and
Borel on a complete and separable metric space. Then since

V(X x Y\ (Graph(T))) = 0
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there exists an increasing sequence (K;); of compact subsets of Graph(T’)
such that

Ko := | JKi C Graph(T)
13
has full measure or equivalently v(X x Y\ K ) = 0. Since K; is compact,
the restriction of T to the compact set 7% (K;) is continuous and then
the restriction T, of T to 7% (K) is a Borel map, and then it is u-
measurable. We now check that v = (id x T' ). Indeed let U x V be any
Borel “rectangle” then

YU XV) = Yf(UxV)NEKx) = f(UNTLHV)) xY)
= wUNTLHV)) = (id x Too)su(U x V).

And this implies the thesis. O

2.2. Dual problem and Kantorovich potentials. Problem (2.1) is a
linear minimization problem with convex constraints then an important
tool to deal with it is duality theory. In our case, as the Proposition below
shows, the classical convex dual problem for (2.1) is given by

max u(z)d —/u dv 2.3
s Q/ @ — [ uly) (2.3)

Q

where Lip: (Q, || - [|) = {u : u(z) —u(y) < ||z —y| forall z,y € Q}. We
call a maximizer u of that dual problem a Kantorovich potential for (2.3).
The existence of such maximizers and the link between (2.1) and (2.3) are
formalized in the next Proposition.

Proposition 2.5. Under the current assumptions one has
min (2.1) = max (2.3)

Moreover if u is a maximizer for (2.3), then v € I(u,v) is optimal for
(2.1) if and only if u(x) — u(y) = ||x — y|| on the support of .

Proof. We first notice that the existence of a maximizer for (2.3) is eas-
ily obtained by the direct method of the Calculus of Variations. In fact,
after observing that adding a constant to an admissible v does not change
the value of the functional, one can apply the Ascoli-Arzela theorem to a
bounded, maximizing sequence.
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To prove the equality between the extremal values of (2.1) and (2.3) we
use the convex duality theory. We first write

max(2.3) = sup /ud,u+ /’l)dl/ :Vz,y, uw(z)+o(y) <llz—1y

(2.4)
It is indeed clear that the maximum of (2.3) is lower than the sup of the
right hand side. The proof of the reverse inequality is as follows: if one
associates to a function u the function w : y — inf, {||z — y|| — u(x)},
then the sup of the right hand side of (2.4) is also realized with couples of
functions of the form (u, @), and then of the form (@, u) = (—u,u), from
which the reverse inequality follows.
Then we consider p € C(€2 x Q) and we perturb the problem of the right
hand side of (2.4) as follows:

=inf{— /udu /vdu su(r) +oly) +plz,y) < lz—yll}

Notice in particular that h(0) = —max(2.3). Moreover the function h
is convex. Let us compute the Moreau-Fenchel conjugate h*(vy) for v €
M4 (2 x Q) (we notice that h*(y) = +oo if the measure 7 is not non-
negative):

h*(y) = Sl;p{<%p> —h(p)}

sup <%p>+/udu+/vdv su(z)+o(y)+p(z,y) <[z -yl
Q Q

u,v,p

= sup / ||x—y||d7+<7,—u—v>+/udu+/vdy
“ lake Q Q
[ le=slar ity e g,
~ Y axe
400 otherwise.
Then
h*™(0) = — min / lz —y|ldy = —min(2.1).
yE(p,v

Q><Q
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We just need to prove that h is lower semicontinuous at 0 and it will
follow that h**(0) = h(0). Since  is compact, then h is bounded in a
neighbourhood of 0 for the uniform convergence: since h is also convex,
it follows that it is Lipschitz continuous in a neighbourhood of 0. The
equality between the extremal values of (2.1) and (2.3) follows.

To prove the last part of the statement, take a maximizer u for (2.3)
and v € I(u,v) optimal for (2.1). Since u(z) — u(y) < ||z — y| for all =
and y then, by definition of marginal measures, the equality

[u@au~ [uar=[ 2~ ylar

Q Q QxQ

holds if and only if u(z) — u(y) = ||z — y|| for y-a.e (z,y). A final remark
is that by continuity of u this last equality is also satisfied on the support
of ~. O

Remark 2.6. The optimality for the Kantorovich problem has a remark-
able consequence on the structure of the support of an optimal measure
~ which we may call 2-points cyclical monotonicity, i.e. for any couples of
points (z1,y1), (z2,y2) € support(y) it holds

21 = y1ll + 22 — yall < llz1 — yal| + [lz2 — w1l|-

Indeed, by the previous theorem if w € Lip(Q,] - ||) is a Kantorovich
potential for (2.3) then the above characterization of optimality for v yields

lz1 =yl + llz2 — yall = u(z1) — ulyr) + u(@2) — u(y2)
=u(ry) — u(y2) +u(r2) —u(y:)
< lz1 — yoll + |72 — y1 -

The monotonicity property illustrated in the previous remark is a par-
ticular case of the so called cyclical monotonicity. Here we will not discuss
cyclical monotonicity in its full generality. It is worth to note that in a
quite general setting cyclical monotonicity characterizes the optimality of
7, see [17].

2.3. Selection of particular solutions. It is a well known fact that the
problem (1.2) may have several solutions, in which case the problem (2.1)
admits solutions that are not induced by a transport map. We recall this
in the following example.
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Example 2.7. Consider the case where u = £1|[0,1] and v = £!|[1,2],
then Ty : ¢ — x + 1 and T_ : ¢ — 2 — x are both solutions of (1.2), and
then the transport plan v := 1[(id x Ty )sp + (id x T )zp] is optimal for
(2.1) but is not associated with any transport map. Notice that in this
case an explicit Kantorovich potential may be computed and it is given by
u(z) =1—u.

As a consequence of the above example, we can not expect to show
that any solution of (2.1) is indeed induced by a transport map, so we
have to select particular solutions of (2.1) that achieve this property. Here
we adopt the strategy of [4] that consists in selecting those solutions of
(2.1) that are monotone non-decreasing (in a sense that we precise below)
through an auxiliary problem. In the above example, this reduces to isolate
the monotone non-decreasing transport map 77 .

We denote by O;(u, ) the set of optimal transport plans for (2.1), and
consider the auxiliary problem:

min {n |y - $|Zd7(way) S Ol (//'7 V) ) (25)
xQ

where we remark the fact that the cost in consideration involves the Eu-
clidean norm | - | of R%. This procedure of choosing particular minimizers
is the root of the idea of asymptotic development by I'-convergence (see
[5] and [6]) . Notice that (2.5) admits solutions since the set Oy (u,v) is a
weakly compact subset of II(u, v).

The fact that the solutions of (2.5) do satisfy some sort of non-decreasing
monotony comes from the following. As a solution of (2.5), a transport
plan v enjoys a cyclical monotonicity property inherited from the cost
(z,y) — |ly—=|? (see remark 2.9 below), stated in the following proposition,
whose proof may be derived from that of Lemma 4.1 in [3] and is given in
[9] (see Proposition 3.2 therein).

Proposition 2.8. Let v be a solution of (2.5), then 7y is concentrated on
a Borel set T with the following property:

V(:U,y), (wlay/) € F: US [wlay/] = (ZL“ - :U/) : (y - y/) > 07 (26)

where - stands for the usual scalar product in R<.
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Remark 2.9. To explain condition (2.6) above, we notice that for a min-
imizer A of

min / ly — z[2d\(z,y) : A€ l(u,v)p, (2.7)
Q2xQ

the support of A satisfies a 2-cyclical monotonicity condition with re-
spect to the cost |z — y|?>, which states that for any couple of points
(x1,y1), (x2,y2) € support(\) one has

o0 — g1 |” + w2 — yol® < w1 — 2l + |22 —0n
which is equivalent to

(w2 — 1) - (y2 —y1) = 0.
The measure v involved in Proposition 2.8 is a minimizer for the con-

strained version (2.5) of (2.7) and the additional request = € [z/,y'] in
(2.6) is a consequence of the constraint v € Oy (u,v) .

§3. TRANSPORT SETS

3.1. Definitions of transport sets. Given a Kantorovich potential u for
(2.3), the duality result given in Proposition 2.5 shows that an admissible
transport plan 7 is optimal for (2.1) if and only if

u(z) —uly) = [z -yl (3.1)
for all (z,y) in the support of 7. In this respect, the optimality of v is
characterized by its support, and a necessary condition for optimality may
be written in the following way:

T (support(y)) € T({(z,y) : z #y, u(z) —uly) =z —yl}) (3.2)
where the open transport set 7 (X) associated to a subset ¥ of Q2 is given
by

7(2) = U l=yl.
(z,y)ex
Intuitively, 7 (support(7)) is the union of all the open segments ]z, y[ along
which some mass is transported by the transport plan ~ (this obviously
excludes the points (x,x) € support~ which correspond to the part of the
mass that is not moved by ), so that it is understood to be the transport
set for . As we shall see in Section §4, a cornerstone for the existence proof
of our main result Theorem 4.5 is that this transport set 7 (support(y))
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satisfies some regularity property whenever v is a solution of (2.5) (see
Proposition 4.4 hereafter).
In fact, it is more convenient to study the regularity of the transport
set
Ty = T({(z,y) : 2 #y, w(z) —uly) = llz—yll})
associated to a Kantorovich potential v € Lip, (€, - ||)- By (3.2), the set
7., contains the transport set 7 (support(7y)) of any solution of (2.1).
The transport set 7, is also classically defined as the union of all the
transport rays :
7, = U ]JJ, y[
ley[€R
where R,, is the set of transport rays for u : following [12], a non-empty
open segment |z, y[ is called transport ray for w if it is a maximal, open
and oriented segment whose end-points satisfy the condition (3.1). In the
following, we study the slightly larger set 7, (where e stands for end-
points) :
e = |J [l
Je,y[€RY
for which we obtain Lemma 3.2 and Proposition 3.4 below.

3.2. Dual mapping in (R%, | -||). In this paper, R? is always considered
as endowed with its classical Euclidean norm |- | and scalar product -,
nevertheless the definitions of the transport set above via the identity
(3.1) indicates that the dual norm || - ||, for || - || shall also play a role. The
dual norm is given by

§ = [l€ll = max{§ -z : [|z]| <1}

where the maximum is uniquely attained (when £ # 0) because of the strict
convexity of the unit ball {|| - || < 1} which follows from (1.3). Therefore
we can define the duality mapping £ — £* on the unit sphere {|| - ||« = 1}
which associates to £ the unique &* in {|| - || = 1} such that £ - & = 1. We
now state a useful regularity result for this mapping.

Lemma 3.1. Under (1.3), the duality mapping £ — & is Lipschitz on
LI [l = 13

Proof. For convenience, we shall denote || - |[|> by f in the following. It
then follows from (1.3) that for any z,y one has

cly—a < [Vf(y) - Vf@)] (y—2) < Cly—af (3.3)
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Moreover we notice that if £ € {|| - ||« = 1} has image £* by the duality
mapping then £* is the unique solution to

max{€- 7 : f(z) <1},
so that we infer .
= — v * .
$= Srey e )
Now take £ and ( in {||- ||« = 1}, and assume that Vf(£*)-&* > Vf(¢*)-¢*
(both being positive by (3.3)), then we compute

-0 € - =5 f(;) S (VAE) = VIED) - (€ = ¢)
& vAE) e vy ¢ e
2
> gl ¢
because Vf({*) - (¢* — &%) > f(¢*) — f(€*) = 0. As a consequence
g -ct < O g <
where m denotes the maximum of |.| on the unit sphere {|| - || =1}. O

3.3. Regularity of u over 7. The Lemma 3.2 below shows that when-
ever u is differentiable at some z in 7,7, the image —[Vu(2)]* of its gradient
by the dual mapping indicates the direction of the transport ray whose clo-
sure contains z (this transport ray being then unique). The Proposition
3.4 is a regularity result for [Vu]|* (which exists a.e. since u is Lipschitz)
on 77.

Lemma 3.2. Let u € Lip1(Q, ] - ||) and z € T.f. If u is differentiable at z
then

IVu(@)« =1 and  —[Vu(2)]" = IIZ:;I

for the unique transport ray |z,y[ € R, such that z € [z, y].

Proof. Let ]z,y[ be a transport ray for u such that z € [z,y]. Without
loss of generality we may assume that z € [z, y[. Since (3.1) holds, we get
that

vtelo,lz—yll, u(z) = u<z+t”y “) +t
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and then —Vu(z)- ﬁ = 1. In particular —Vu(z) # 0. Since also u(z) <
u(z + t¢) + t for all ¢ sufficiently small and ¢ in the unit ball {|| - || < 1},

we infer that —Vu(z) - < 1 for any such (. The conclusion of the Lemma
follows from the definition of || - ||« and (1.3). O

Remark 3.3. Proposition 2.5 and Lemma 3.2 indicate that in the case
of a strictly convex norm the transport happens along lines of maximal
slope for a transport potential . This is at the root of the 1—dimensional
decomposition strategies followed by the other authors cited in the intro-
duction. When the norm is not strictly convex one needs to consider the
regions on which the transport potential u is affine and these regions may
be higher dimensional affine submanifolds of R?.

We now state that the direction of transport (which is individuated as
—Vu by Lemma 3.2) enjoys some regularity property. The proof follows [4].

Proposition 3.4. Let u € Lip1(Q, || - ||), then there exists a sequence of
Borel sets Fy, such that LYTE\ U, Fn) = 0 and such that the gradient
map [Vu]* restricted to F}, is Lipschitz for any h.

z:= J =yl

[z,y[€R
and we show that Vu has the countable Lipschitz property claimed by the
statement on Z.
Let £ € {| -| = 1} be a direction in R? and a € R. We define the sets

Yeo :={y: &y >a and Tz € Q, |z,y[€ Ry}

Proof. We first set

and
Zeog:={z€Z:£ 2<a, z€[z,y] for some |z,y[c€ R, with y € Ye,},

that is Y¢ , is the set of the right-ends of transport rays contained in the
hyperplane {z : £ -z > a}, and Z¢, is the union of the parts of the
half-closed transport rays which end in Y¢ , and belong to the hyperplane
{z : €z < a}. We first show the countable Lipschitz property for Vu
on Zgq.

Since BV, functions have this countable Lipschitz property, it is suf-
ficient to prove that Vu coincides a.e. with a function in BVj,e(Z¢ o, RY).
Consider the function

i) = min uly) + |z -yl
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Since w and u coincide on Y , and w is the largest 1—Lipschitz extension
of ujy, , we have u > u. On the other hand by definition of transport rays
it holds

w=u on Z£7a.
For b < a there exists a constant K, (b) such that
u— Ka(b) | ’ |2

is concave in Z¢p. Indeed in for every z € Z¢p and y € Y, we have
|z —y| > a — b, and then it follows from (1.3) that for all y € Y , the
function

2= u(y) + [z =yl = Ka(b)]2]?

is concave in Z¢  for K, (b) large enough. Since gradients of concave func-
tions are BV,. we obtain that

Vi = V(i — Ko (b)|.2) + 2K.(0)V(].]?)

is BVjoc and then it enjoys the countable Lipschitz property in Z¢ ;. Tak-
ing a sequence b,, — a~, we conclude that Vu has the countable Lipschitz
property in Z¢ ,. Finally, if remains to consider countable and dense se-
quences of directions (&), and of real numbers (a,), to obtain that Vu
has the countable Lipschitz property in Z.

By a similar construction, using the lowest Lipschitz extension instead
of the largest one as above, one can take into account the right ends of
transport rays that form 7, and then conclude that Vu has the countable
Lipschitz property in 7,¢. It remains to notice that [Vu]* inherits this
property from Vu by Lemmas 3.1 and 3.2. O

§4. FINER PROPERTIES AND PROOF OF THE MAIN THEOREM

4.1. Regular points of the support of a transport plan. Beside the
“functional analytic” properties studied in the previous section, optimal
transport plans and Kantorovich potentials enjoy some finer properties
which belong to the realm of Geometric Measure Theory. The properties
of the transport plan we introduce below were first applied in [11] to deal
with some optimal transport problem with cost in non integral form. When
considered as multivalued maps, transport plans (not necessarily optimal)
are measurable, then one expect some approximate continuity property to
hold. And in fact this is the content of the next Lemma. First we introduce
some basic definition.
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Definition 4.1. Let v € (u,v) be a transport plan, and T' C support(vy)
be a Borel set on which it is concentrated. For y €  and r > 0 we define

I (B(y,r) = 7 (TN (Q x B(y,r).

In other words I'"*(B(y, r)) is the set of those points whose mass (with
respect to p) is partially or completely transported to B(y,r) by the re-
striction of 7 to I'. We may justify this slight abuse of notations by the
fact that v should be thought of as a device that transports mass.

Since this notion is important in the sequel, we recall that when A is
L% measurable, one has

lim LYANB(z,r)) _

r—0  LYB(x,r))
for almost every x in A: we shall call such a point z a Lebesgue point of
A, this terminology deriving from the fact that such a point may also be
considered as a Lebesgue point of y 4. In the following, we shall denote by
Leb(A) the set of points & € A which are Lebesgue points of A. We also
define the lower density of A at x as:

:= lim in M
b-(A @) = liminf — Gy

The following Lemma details the meaning of approximate continuity

for a transport plan. Its statement and proof are simplifications of that of
Lemma 5.2 from [11] and we report it for the convenience of the reader.

Lemma 4.2. Let v € II(u,v) and I’ C support(y) be a Borel set on which
it is concentrated. If p << L2, then 7y is concentrated on a subset R(T)
of T' such that for all (z,y) € R(T) the point x is a Lebesque point of
r~Y(B(y,r)) for all r > 0.

Proof. Let
A= {(x,y) € support(y) : =z ¢ Leb(T"*(B(y,r))) for some r > 0};

we intend to show that v(A) = 0. To this end, for each positive integer

n we consider a finite covering 2 C U B(y;',ry) by balls of radius
iel(n)

I'n := 3-. We notice that if (z,y) € support(y) and z is not a Lebesgue

point of I'"*(B(y,r)) for some r > 0, then for any n > L and y! such that
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ly? —y| < 1, the point = belongs to '~ (B(y?,r,)) but is not a Lebesgue
point of this set. Then

A ¢ U U @B \ LebT (B!, r))) -
n>1 i¢el(n)

Notice that the set on the right hand side has Lebesgue measure 0, and

thus p-measure 0. It follows that v(A4) < y(7*(4) x Q) = u(xt(4)) = 0.

In conclusion the set R(I') = '\ A has the desired property. O

The above Lemma yields us to introduce the following notion:

Definition 4.3. The couple (z,y) € support(7y) is a I'-regular point if
is a Lebesgue point of =1 (B(y,r)) for any positive r.

Notice that any element of the set R(I') of Lemma 4.2 is a I'-regular
point. Lemma 4.2 above therefore states that any transport plan « is con-
centrated on its I'-regular points: this regularity property turns out to be
a powerful tool in the study of the support of optimal transport plans for
problem (2.1), as the proof of Proposition 4.4 below illustrates.

4.2. Regularity of the transport sets of the solutions of (2.5). In
the next proposition we prove that, for a solution v of (2.5), if the mass
lying at xg is partly moved to yo by the transport plan v, then the transport
set from a neighborhood of zy to a neighborhood of yo has positive density
at xg.
Proposition 4.4. Let v € O1(u,v) by a solution of (2.5) and I' Csupport(7)
be a Borel set on which it is concentrated. Let u be a Kantorovich potential
and let {Fp,}p, be the sets associated to the countable Lipschitz property of
[Vul]* by Proposition 3.4.

Assume that (xo,yo) is a I'-reqular point with xo # yo and zo € Leb(F},)
for some h, then for all s > 0

0.(T(T N[(Fy, N B(xo,s)) x B(yo,s)]),z0) > 0.

Proof. We need to estimate from below the quantity
LYT (T N [(Fy, N B(zo, s)) x B(yo,s)]) N B(wxg,T))

lim inf
o L7(Blao,7)) ’
then without loss of generality we may assume r < s and B(zg,s) N
B(y07 S) =0.
We first set

Py = F [T (B(yo, 9))-



THE MONGE PROBLEM 197

For any t such that 0 < t << ||zp — yo|| and any = € P, N B(xp,s), it
follows from Lemma 3.2 that
x —t[Vu(x)]* € T(T' N [(Fy N B(zo,s)) x B(yo, s)]).
Furthermore, denoting by m the maximum of |.| on the unit sphere {||- || =
1}, if t < QL and z € B(wo, 3) it follows that z — t[Vu(z)]* € B(xo,7).
m
At this step, we have obtained that for r sufficiently small and for any
t < —— it holds
2m

L4z — t{Vu(@)]* : & € Py N Blzo, g)})

< LYT(CN[(Fh N B(xo,5)) x B(yo,s)]) N B(wo,r)))

Now since on F}, the map —[Vu]* coincides with a Lipschitz map G,
(with Lipschitz constant denoted by Lj) we also have that for any ¢ the
map = — t[Vu]*(z) coincides with the Lipschitz map Id + tG}, on Fy,. For
t < LL;, the Lipschitz function Id+tG}, is injective, and we may also choose

1
t sufficiently small so that 3 <|det(Id +tDGy)| on P,. Then by the area

formula

1
SL4PLN Blan, 1) < / \det(Id + tDGy)|de
PhﬂB(Jto,g)
= L'({e ~t{Vu(@)]" : « € PN B(ao, 3)}).
Finally, since zo is a Lebesgue point for both Fj, and I'"*(B(yo,s)) it is
also a Lebesgue point for Py, so that
- LYPyNB(xo, §) 1
r—0 Ed(B(.’I,'[),’I")) B 2d ’

Summing up the previous observations, we get that

0.(T(T N [(Fy 1 Blao. ) x Bl )])z0) > i
O

4.3. The main existence result. We are now in position to state and
prove our main result, from which it directly follows that (1.2) has at least
one solution, to which is associated the unique solution of (2.5). Its proof
follows the lines of that of Theorem 6.1 in [9].



198 THIERRY CHAMPION, LUIGI DE PASCALE

Theorem 4.5. Assume that p << L2, then problem (2.5) admits a unique
solution vy which is induced by a transport map T, i.e. v = (id x T,)sp.

Proof. We first show that any solution «y of (2.5) is induced by a transport
map. By Lemma 2.4 it is enough to prove that 7 is concentrated on a graph.

Fix a Kantorovich potential u, and let (F}), be the sequence of sets
given by Proposition 3.4. Since ! (support (7)) is included in 7,¢ and p <<
L4, we infer that v is concentrated on

D(y) :== R(I)() lULeb(Fh) xQ}
h

where I is the set given in Proposition 2.8 and R(I") is given in Lemma 4.2.
We show that D(7) is included in a graph, that is if (zo,yo) and (o, y1)
both belong to D(7y) then yo = y;. By contradiction assume that yo # y;.
Then one either has (y1 — yo) - (yo — o) < 0 or (yo —y1) - (Y1 — o) < 0.
Without loss of generality, we assume that

(Yo —v1) - (y1 —m0) < 0, (4.1)

which in particular implies y; # zo.
We fix s > 0 small enough so that

Vo € B(J"U:S)a Vy € B(y07s)7 Vy/ € B(y1,8), (y - y/) ! (y/ - J") < 0.
(4.2)
By definition of D(v) and by Proposition 4.4 we know that

e 1 is a Lebesgue point for the set I'~!(B(yo, s)),

e 7 is a Lebesgue point for the set I'"1(B(y, s)),

e the set T[I'N([F,NB(zo,s)] X B(y1, s))] has positive lower density
at xg.

As a consequence, for r small enough there exist T € B(xo,r) which
belongs to the intersection of these three sets. In other words there exists
(Z,7,), (T,90) and (z,y1) in [ such that T € Fj, N B(xo, s), ¥, € B(y1,s),
z €)T,9,], Yo € B(yo,s) and y1 € B(y1,s). Since Z lies on the segment
between T and 7, it follows from (2.6) applied to (Z,7,) and (Z,yo) that

@0—?1)'(%_@ >0

Since T belongs to |Z,7,[ we have T — T = %(yl — ) and thus get

contradiction with (4.2). Thus D(v) is included in a graph, so that 7 is
induced by a transport map.
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of

Finally we prove the uniqueness part by a standard method (see Step 5
the proof of Theorem B in [3]): if 71 and 7, are two solutions of (2.5),

then 1(y1 + 72) is also a solution of this convex problem. It follows from
the preceding that these three plans are all induced by transport maps,

which must then coincide p almost everywhere. O
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