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ABSTRACT. We introduce and study a formulation of inpainting
problem for 2-dimensional images which are locally damaged. This
formulation is based on the regularization of the solution of a sec-
ond order variational problem with Dirichlet boundary condition. A
variational approximation algorithm is proposed.

§1. INTRODUCTION

In image restoration the term inpainting denotes the process of filling
the missing information in subdomains where a given image is damaged:
these domains may correspond to scratches in a camera picture, occlusion
by objects, blotches in an old movie film or aging of canvas and colors in
a painting ([3-6,30-32, 38,45]).

Minimization of Blake & Zisserman functional is a variational approach
to segmentation and denoising in image analysis which deals with free
discontinuity, free gradient discontinuity and second derivatives: this sec-
ond order functional was introduced to overcome the over-segmentation of
steep gradients (ramp effect) and other drawbacks which occur in lower
order models as in case of Mumford & Shah functional ( [43, 44]). We
refer to [9,16-18, 20, 22,42, 43] for motivation and analysis of variational
approach to image segmentation and digital image processing.

In this paper, we face the inpainting problem for a monochromatic image
with a variational approach: solving a Dirichlet type problem for the main
part of Blake & Zisserman functional. A similar problem was studied in [25]
with the aim of finding a segmentation of a given noisy image.

Mumford & Shah model has been adapted by several authors to the
inpainting problem, but some inconvenient has been detected in this ap-
proach (see [32] and [38]). In the Mumford & Shah model ( [35,44]), the
preferable edge curves are those which have the shortest length, therefore it
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favours straight edges and it produces the emerging of artificial corners. In
the Blake & Zisserman model, the presence of second derivatives smooths
such corners (see Fig. 3).

About minimization of the Blake & Zisserman functional under Neu-
mann boundary condition we refer to [15-17,19,21]. For a description of the
rich list of differential, integral and geometric extremality conditions we
refer to [22]. The results of the paper [25] were deeply exploited in [23,24]
and [26] to study fine properties of local minimizers of Blake & Zisserman
functional under Neuman boundary condition, particularly about their sin-
gular set related to optimal segmentation; in the present paper they are
applied to the derivation and study of a variational algorithm for image
inpainting.

In general uniqueness of minimizers for this kind of functionals fails due
to lack of convexity. We refer to [7] for explicit examples of multiplicity.
Nevertheless in the 1-D formulation, uniqueness of minimizer is a generic
property with respect to admissible data: in [8] is proven that for a G
(countable intersection of dense open sets) set of admissible data the min-
imizer is unique. Hence the whole picture is coherent with the presence of
instable patterns, each of them corresponding to a bifurcation of optimal
segmentation under variation of parameters related to contrast threshold,
“luminance sensitivity”, resistance to noise, crease detection, double edge
detection.

In this paper, we propose two different second order functionals E° and
F9 to deal with image inpainting. The two functionals respectively focus
on the cases of complete or partial loss of information in a small subregion.

First we focus on the functional F, which is defined as follows:

E(Ko, Ky,v) = / |D%0)? dx + o (Ko N T)
Q\(KoUKl) (]"]')
+BH! (K1 \ Ko) N Q).

To face the inpainting problem we look for minimizers of

EJ = E(K07K17v) +6/ |,U|2 dX,
Q
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with a, 8,5 > 0, among admissible triplets (Ko, K1, v), say triplets fulfilling
Ky, K Borel subsets of R, Ky U K closed,
veC? (ﬁ\(KOUKl)),
v approximatNely continuous in \ Ko,
v=w a.e.in Q\Q,

(1.2)

where Q cC @ cC R? are open sets, 1 with piecewise C? boundary and w
is a given function in O\ 0.

The raw image under processing is damaged due to the presence of
blotches in the set Q: the noiseless brightness intensity w of the image is
known in Q \  while is completely lost in the possibly disconnected set (2.

If (Ko, K),u) is a minimizing triplet of E?, then u provides the in-
painted restoration of the whole image, and Ky U K7 can be interpreted
as an optimal segmentation of the restored image: the three elements of a
minimizing triplet (Ky, K7, u) play, respectively, the role of edges, creases
and smoothly varying intensity in the region Q \ (Ko U K;) for the seg-
mented image.

Our result for monochromatic images is stated below in Theorem 1.1 in
the simplified case when the image is smooth where damage does not occur.
The general statement with non-smooth data is given by Theorem 4.1 and
Remark 4.5 in Sec. 4.

About RGB color images, we refer to a forthcoming paper ( [29]).

Theorem 1.1. Let «, 3, 6, 1, Q and w be s.t.
0<pf<a<2B,6>0 (1.3)
Q cc Q cc R?, (1.4)
Q) is an open set with piecewise C boundary 0%,

~ (1.5)
Q is an open set,

w has a C2(Q) extension which fulfils D*w € L>®(). (1.6)

Then there exists a triplet (Co,Cy1,u) which minimizes the functional

Ed(Ko,Kl,'U) = E(KO,Kl,U) + (5/|’U|2 dx (17)
Q

with finite energy, among admissible triplets (Ko, K1, v) according to (1.1),
(1.2).
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Moreover, any minimizing triplet (Ko, K1,v) fulfils:
KoNQ and K1 NQ are (H', 1) rectifiable sets, (1.8)
HY (Ko N Q) = HN(S,), HYEKLNQ) =H'(Sv,\ Sy, (1.9

{ v € GSBV2(Q); hence v and Vv have well defined

1.10
two-sided traces, finite H' a.e. on KoUKy, ( )

where Sy and Sv.,, respectively, denote the singular sets of v and Vv.

The main result of this paper is Theorem 4.1: the statement is quite
technical but it is a more useful tool than Theorem 1.1, since it deals with
discontinuity and gradient discontinuity in Q \ © of the given raw image w
to be processed, together with some additional noisy information denoted
by ¢ in a Borel subset 2 \ U, where

U cc Qcc Q. (1.11)

Theorem 4.1 provides the existence of minimizers for the second functional
proposed in this paper, which is labeled with F and deals with the noisy
part of the image adding a fidelity term to the functional E°. Precisely,
we set

FO(Ko, K1,v) = ES(Ko, K1,v) + / lv—g|* dx (1.12)
Q\U

and we look for minimizers of F°(Ky, Ki,v) among triplets (Ko, K1,v)
verifying (1.2). We apply direct methods of Calculus of Variations to func-
tional (1.12) by proving the partial regularity for solutions of a weak version
F9 of (1.12), which is introduced in (2.3) of Sec. 2.

Fig. 1. Theorem 1.1: the image domain is the rectangle
2, the blotches Q@ CC Q) with complete loss of information
are the black region (2.
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»
)

Fig. 2. Theorem 4.1: the image domain is the rectangle
(NZ, the blotches Q cC Q with some loss of information,
complete loss of information in the black region U, the
partially damaged image is given in the gray region Q\ U.

We emphasize that if (Ko, K;,v) is a minimizing triplet of F° than v fulfils
the Euler equations

A+ p(v—g) =0 in Q\ (UUKyUK)), (1.13)
A?v+d0v=0 in U\ (KoUK,), (1.14)

together with many kind of integral and geometric relationships as like as
minimizing triplet of Blake & Zisserman functional for image segmentation
(see [22,26]).

To achieve the existence of minimizing triplets of F, inspired by the
seminal papers of De Giorgi and Ambrosio [33] and [34], we introduce a
relaxed functional: the weak Blake & Zisserman functional for inpainting
F(v) (see (2.3)). The idea is to deal with a simpler object, just depending
on the function v, and then to recover the set of jumps K; and creases
K1 \ Ky by taking, respectively, the discontinuity set S, and Sy, \ Sy.
The functional class where we set the problem is given by second order
generalized functions with special bounded variation: say GSBV2(Q) (for
the formal definition see (2.1) and (2.2)). The class GSBV2(Q) is the right
functional setting, more appropriate than BH (ﬁ) (bounded hessian func-
tions whose second derivatives are Radon measure). Indeed BH functions
in two variables are continuous with integrable gradient; nevertheless BH
contains too much irregular functions: admissible functions may have gra-
dient with nontrivial Cantor part.

In this framework, compactness and lower semicontinuity Theorems 8
and 10 of [16] give the existence of minimizers for the relaxed functional
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F%(v). The results of Theorem 4.1 are achieved by showing partial regu-
larity of the obtained weak solution with penalized Dirichlet datum (The-
orem 2.1). The novelty here consists in the regularization at the boundary
for a free gradient discontinuity problem with Dirichlet datum (in the set
0R) or transmission condition (in the set U). For a concise summary of
these steps see the proof of Theorem 4.1.

In Sec. 2, is introduced the weak formulation. In Sec. 3 are collected
several estimates in the space GSBV2. In Sec. 4 is stated and proved the
main result. In Sec. 5, we present the variational approximation of the
functional F?: functionals G, defined by (5.1). A numerical scheme, the
convergence analysis and its implementation are contained in forthcoming
papers [11,12].

Remark 1.2. Theorem 1.1 holds true if functional E° defined in (1.7) is
substituted by

¢ (Ko, K1, v) == B(Ko, K1, v) +5‘][u2 dx —f w? dx ‘
Q Q\Q

Functional ¢° looks quite satisfactory in the context of image inpainting,
since the penalization term plays a role in Q0 when the average of the
squared gray level intensity in the inpainting region is different from the
average of v? in the undamaged region.

§2. WEAK BLAKE & ZISSERMAN FUNCTIONAL FOR IMAGE
INPAINTING

We denote by B,(x) the open ball {y € R?; |y — x| < 0}, and set
BQ = BQ(0)7 Bg_ = BQQ{(xay) Sy > 0}7 Bg_ = BQQ{(xay) Sy < 0}
We denote by xy the characteristic function of V for any V C R2, by
H! (V) its one-dimensional Hausdorff measure and by |V| its Lebesgue
outer measure.

For any Borel function v : 2 — Rand x € Q, 2 € R := RU{—00, +00},
we set z = ap ;13; v(y) (approximate limit of v at x) if, for every g €

C°(R),

g9(z) = lim £ g(v(x +£)) d§;

0—0

B, (0)
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the function v(x) = ap lim v(y) is called representative of v ; the singular
y—x
set of vis S, = {x € N : 4z s.t. ap lim v(y) = z}.
y—x

A Borel function v : Q@ — R is approximately continuous at x € Q iff

v(x) = ap lim v(y).
y—x

By referring to [1,17,22,40]: Dv denotes the distributional gradient of

v, Vo(x) denotes the approximate gradient of v, say v is approximately

differentiable at z if there exists a vector Vo(z) € R? (the approximate
gradient of v at ) such that

sl [20) = 7(@) ~ Vo(a) - (v — =)
s vl

=0,

and SBV () denotes the De Giorgi class of functions v € BV () such that

/|Dv|:/|Vv|dx+/|v+—v7|d7'(1,
o) o) Sy

where for H! almost all z € S, there exist v(z) € 0B, vi(z) € R,
v_(z) € R with vy (z) > v_(x) such that

e [ ey e @ldy =0,
{yeBg;y-v(z)>0}
lin%) o " / lv(z +y) —v_(z)|dy = 0.
Q—?
{yeBg;y-v(z)<0}
Moreover,
SBVioc(Q) :={v e SBV(QY); VQ' cc Q},
GSBV () := {v : @ — R Borel function; 2.1)
—kVoAk € SBVioc(R) Vk € N}. '
GSBV?(Q) := {v € GSBV(Q), Vv € (GSBV(2))°}. (2.2)

In order to study the functional F° by direct methods in Calculus of Vari-
ations, we introduce the weak Blake & Zisserman functional for inpainting
F?, which is similar to the one introduced in [16] for image segmentation,
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but with a fidelity term which acts only on a portion 2\ U of the domain
and a penalty term which acts only on U:

Fo(v) ::/|V2v|2dx+5/|v|2dx+u / |v—g|2 dx
Q U Q\U (2.3)
+aH (S, NQ) + BH' ((Sve \ Sy) N1QY) .

We emphasize that F? is still a non convex functional, but has the ad-
vantage of depending only on the function v and the sets Ky and K; are
recovered by the singular sets S, and Sv,.

About the functional defined by (2.3) we will often use the short nota-
tion F?; nevertheless, whenever required by clearness of exposition about
interchange of various ingredients (function, parameters, Dirichlet datum,
domain A) we will use several different (self-explaining) notation:

'7:6(1})7 fgw(v)a fgw(vauaaaﬂaA)'

Theorem 2.1 (Minimizers of weak Blake & Zisserman functional
F? for inpainting). Assume (1.3), (1.4), (1.5),

S,u>0, UCQ isan open set, g L*(Q\U), (2.4)
we C?*(Q\ (SwUSvu) ),
(2\u USvn) ) ) 25
w approzimately continuous in '\ Sy,
Fo(w) < +o0 (2.6)
H ((Sw U SVw) \ (Sw U SVw)) =0, (2'7)

H! ((sw U Sva) N an) — 0  (or(SyUSva)NOQ finite). (2.8)
Set

~, def

X(Q) = {v € GSBV?(Q) st v=w a.e. in Q\Q} (2.9)

Then there ezists u minimizing the functional F°(v) in X (Q) with finite
enerqy.

Proof. Obviously, F°(v) > 0 Vv € X(1).
Assumptions (2.4)-(2.8), the interpolation Theorem 6 in [16], and Lem-

ma 2.3 in [35] entail w € X (Q) and inf F°(v) < +oc.
veX(Q)
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Let vp, € X be a minimizing sequence for F°. By Theorem 8 in [16],
there is veo in X(SN)) and a subsequence s.t., without relabeling, v, — v
a.e. in Q.

The properties v, = w in Q \ Q entail voo = w in Q \ 2. By Theorem 10
in [16]:

F°(veo) < limhinf F°(vp);

hence, Fo(vy) = inf  F°(v). O
veEX(Q)

If we set

E(w) = / [V20]? dx + aH' (S, N Q) + BH' ((Sve \ Sy) N Q) ,
Q

then the following statement holds true and can be proven as like as The-
orem 2.1.

Theorem 2.2. Assume 6 > 0, (1.3), (1.4), (1.5), (2.5), E(w) < +oo,
(2.7), (2.8), and (2.9), then there is u minimizing the functional

E(v) + 6/ |v]? dx
Q

in X(Q) with finite energy. The same statement holds true for the func-

tional
E(w)+46 fv2dx—f w? dx | .

Q Q\Q

§3. TRUNCATION, POINCARE INEQUALITIES AND COMPACTNESS
IN GSBV?

In the present section, we list the key tools in the regularity theory for
the minimizers in GSBV? of the functional F.

We state a Poincaré-type inequality in the class GSBV which was proven
in [17] allowing surgical truncations of non integrable functions of several
variables and we refine its statement with the aim of taming blow-up at
boundary points in case of functions vanishing in a sector of positive mea-
sure. About this inequality we emphasize that v € GSBV?(Q2) does not

even entail that either v or Vv belong to L{, .(€2). For an overview on this
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subject in functional settings whose elements lack summability we refer
to [27].

Let B be an open ball in R2. For every measurable function v : B — R
we define the least median m. (v, B) of v in B as follows (see [27])

m. (v, B) = inf{ teR; {v<t}nB|> %|B|} .
We note that m. (-, B) is a non linear operator and in general it has no
relationship with the averaged integral [ -dy /|B|.
For any measurable set E C B we hzfve
m.(vxp\g + m«(v, B)XE, B) = m.(v, B).
For every v € GSBV (B) and a € R with (292 H*(S,))? < a < 1|B|, we set
7 (v,a,B) =inf{t e R; {v <t} NB| > a},
" (v,a,B) =inf {t e R; [{v >t} NB| < a};
here ~y, is the isoperimetric constant relative to the balls of R?, i.e.,
min{|EN B|z,|B\ E|2} < % P(E,B) for every measurable set E,
and P(E, B) denotes the perimeter of E in B: P(E,B) = [ |Dxg|.
For n > 0 we define the truncation operator N
T(v,a,n) = (r'(v,a, B) —n) Vo A (7" (v, a, B) + 7). (3.1)
Then
T(T(v,a,n),a,m) =T (v,a,n), |VT(v,a,n)| <]|Vv|ae.onB, (3.2)
me(T(v,a,7), B) = m. (v, B),
T(M\v,a,An) = AXT'(v,a,n) YA>0,

{v # T(v,a,m}| < 2a. (3.4)

The operators m. and T are defined component-wise in case of vector-
valued v.

(3.3)

For any given function in GSBV, we define an affine polynomial correc-
tion such that both median and gradient median vanish.
Let B,.(x) C Q and v € GSBV (B, (x)); for every y € R? we set

(Mx,r v)(y) = ma(Vo, B (x)) - (y — x) (3.5)
(Px,r 'U)(Y) = (Mx,r 'U)(Y) + m*(v - Mx,r v, By (X)) (36)
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Since m.(v — ¢, Bp(x)) = ms (v, Br(x)) — c for every ¢ € R and V(Px , v)
= V(M v) = m.(Vv, B,(x)) then we have Py , (v — Px, v) = 0, say

m*(U — me U;Br(x)) = 07 m*(V('U - PXJ‘ ’U), B"’(X)) =0.

We notice that there are v such that m. (v, By(x)) # m.(Px,r v, By(x)),
take e.g. v(z,y) = (¢* — z)H(—z) — £H(x), where H is the Heaviside
function.

Theorem 3.1 (Poincaré inequality for GSBV functions in a ball).
Let B C R? be an open ball, v € GSBV (B) and a € R with

(292H'(S.))* < a < %|B|, (3.7)

let n >0 and T'(v,a,n) as in (3.1). Then

[V

/ IDT(v,a,7)| < 2/B} / VT(@,am)2dy | +2H'(S).  (3.8)
B B

We have also, for every s > 2,
/ |T(U>a;77) - m*(va B)|de
B

s (3.9)

< 2571 (1y5)° / NT(0,a,0)2dy | |B| +(2n)°a.
B

Proof. See [17], Theorem 4.1. O

Theorem 3.2 (Classical Poincaré inequality in BV). For any x €
R2, r >0, and 0 < ¥ < 1 there is Ky such that

loll2s,0 < Ko /|DU| Vo€ BV(B,(x)) st (3.10)
B,.(x)

Hy € B.(x) : v(y) =0}/ [B.(x)| > 9. (3.11)

Proof. See [39], Theorem 5.6.1(iii). O
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Theorem 3.3 (Poincaré inequality for GSBV functions vanishing
in a sector). Let B C R? be an open ball, v € GSBV (B) s.t. (3.11) holds
true and a € R with

1
(202H'(S.))" <a < 3IBI, (3.12)
let n >0 and T(v,a,n) as in (3.1). Then

2

[107@am <2 [IVT@anPay| +2ms). 613
B B

We have also, for every s > 2,

/ (v, a, )| dy
B
s (3.14)

<271 (Ky5)* / VT (0,a,0)dy | |B|+ (2n)a.
B

Proof. Similar to the proof of Theorem 4.1 in [17] except for the use of
Theorem 3.2 instead of Poincaré inequality (4.12) in [17], since we do not
need to force vanishing of least median of v. O

Theorems 3.1 and 3.3 have been used for estimating also first derivatives
of functions v € GSBV?(B), as in the following theorem.

Theorem 3.4 (Compactness and lower semicontinuity for GSBV 2
functions vanishing in a set of positive Lebesgue measure). As-
sume B, (x) C R?, u € GSBV?(B,(x)), 0 <9 < 1,

{y € Br(x) = un(y) =0} / |Br(x)| = 9, (3.15)
sup / |V2up|* dy < +o0, (3.16)
h
B,.(x)
and
li’ILn Ly, =0, where Ly =H"(Su, USvu,)- (3.17)

Then there are a positive constant ¢ (dependent on the left-hand side of
(3.16) ), use € W22(B,.(x)) and a sequence z, € GSBV?(B,(x)) (whose
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construction is given by (3.25)—(3.30) ) s.t., up to a finite number of indices,

[{zn #ur}| < CLh2 (3.18)
P({zn #un}, Br(x)) < cLy, (3.19)
and there is a subsequence zp, such that
lilgn Zh, = Uso Strongly in LP(B,(x)), Vp > 1, (3.20)
lilrcn V zp, = Dus,  strongly in  LP(B,(x)), Vp > 1, (3.21)

/|D2uoo|2dYSlimkin/ V221, |? dy

By (x) By (x) (3.22)
< lim inf / |V2up, |* dy,
Br(x)
111?1 Up, = Uso G.€. in Bp(x), (3.23)
lilgn Vup, = Dus a.e. in  Bp(x). (3.24)

Proof. The proof can be achieved by the same procedure exploited in the
proof of Theorem 4.3 in [17], except for the fact that we can avoid forcing
least median of up and Vu, to vanish since we can use Theorem 3.3 for
functions vanishing in a sector instead of Poincaré inequality in GSBV
given by Theorem 4.1 in [17].

The construction of the extracted sequence zj is described in the fol-
lowing.

By setting aj, = 4v,°Ly?, we have a;, < |B,|/2 for large h. Hence there
is ¢ dependent on the left-hand side of (3.16) and there are nf € (0,1),
heN k=1,2 s.t.

| {T (N un,an, ) # Veun}| < cLn®, (3.25)

P ({T(Viun,an,nf) # Veun}, B;) < ¢(Ln+H (Svew)) - (3.26)

Referring to definition (3.1) of truncating operator T', we set

En=J {yveB: T(Veun,an,nf) # Veuwn},  (3.27)
k=1,2

§h = Un XB,\E, (3.28)
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: 1
by, = 4K,92 (Hl(S£h @] Svgh))z < B |BT|, (3.29)
zn = T(&n, by nn)- (3.30)
O

§4. STRONG BLAKE AND ZISSERMAN FUNCTIONAL
FOR IMAGE INPAINTING

In this section, we state and prove our main result about image inpaint-
ing via Blake & Zisserman functional.

Theorem 4.1 (Minimizers of strong Blake and Zisserman func-
tional F° for inpainting). Assume «, 3, p, 6, g, U, Q, 0, and w fulfil

0<B<a<28, 6,u>0, geL™(Q\U), (4.1)
U ccQcc Qcc R?, (4.2)

Q and U open sets with piecewise C* boundary, Q open set, (4.3)

To, Ty Borel sets , ToUT, closed subset of R?,

H! ((T0 UTy)N ﬁ) < 400, (44)

(ToUTL) N O s a finite set (4.5)

w e C? (ﬁ \ (ToU Tl)) . w approzimately continuous in Q\ Ty, (4.6)

D*we L*(Q\ (TyUTh)), D*w e L®(A\ (To UTh))

with A open set s.t. 00 C A C ﬁ,

3C >0 : ||w|gee, [V L, ||Viw| L~ < C in A, (4.7)
Lip(7') < C with v arc-length parametrization of 052,

Jo>0 : H'(00NB,(x)) <Cpo Vx€09Q, Yo <o,
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there is no triplet (%o, %1,w) fulfilling: (4.4), (4.6), (4.8)
w = aplimw in Q\ To, and (ToUT,) Cx(Ty UTh), '
and set
P (Ko, K1) = B (Ko Kayo) 4 [ o= gl dx
o\U
= / |D2v‘2 dx+5/|v|2dx+u / lv—g|* dx (4.9)
Q\(KoUKl) U Q\U

+aH' (KonQ) + gH' (K1 \ Ko)N Q).
Then there is a triplet (Co,Ch,u) which minimizes the functional
F°(Ko,K1,v) among admissible triplets (Ko, K,,v) as in (1.2), with
Fd(CO,Cl,’U/) < +oo.
Moreover any minimizing triplet (Ko, K1,v) fulfils:

KonQ and KiNQ are (H',1) rectifiable sets, (4.10)

HY (Ko N Q) = HY(S,), HY KL NQ) = H (Sv, \ S.), (4.11)

(4.12)

v € GSBV2(SY), hence v and Vv have well defined
two-sided traces, finite H' a.e. on Ko U Kj,

where Sy and Sv, respectively denote the singular sets of v and Vv.

Before proving Theorem 4.1 we state:

e a decay estimate in L2-norm of second derivatives for bi-harmonic
functions in a half-disk which vanish together with normal deriv-
ative on the diameter (Theorem 4.2);

e a blow-up property for a sequence of local minimizers at Dirichlet
boundary points (Theorem 4.3);

e a decay estimate of the functional F(v) = E(w)+p [ |v—g|* dx

Q\U
at points x where the quotient ¢~!F(u, B,(x)) is smaller than a
suitable threshold £; > 0 (Theorem 4.4).

The following Theorems 4.2, 4.3, and 4.4 are proven in [25].
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Theorem 4.2 (L2-hessian decay for bi-harmonic functions in
half-disk which vanish together with normal derivative along
diameter). Set B} = By(0) N {(z,y) € R? : y > 0} Cc R?*, T =
B1(0) N {(x,y) € R? : y = 0}. Assume z € H*(B;), A*2 = 0 on B,
z=0z/0y=0 onI. Then

|1D? < o ||D? Vo< 1. (4.13)

Z”iZ(B;) ZH%2(B;r)

Moreover there exists an unique extension Z of z in whole By such that
A2Z =0 and both z, Z have the following expansion in polar coordinates,
which is strongly convergent in L*(By) and strongly convergent in H?(B;"):

Z(x,y) = kZ:O (ax cos(kd) + by, sin(kd) (4.14)

+ (ay, cos(kd) + By sin(kd)) %) r¥.

Theorem 4.3 (Blow-up of the functional F at 0Q). Assume (4.1)—
(4.6). We focus a generic point where Q) is C? (it is not restrictive to
assume that such point is 0) and

0c0Q, B.(0)CQ, ¢y € C*(—r,r), ¢¥n(0)=0,

¥, (0) =0 Lip (¢) < 1,9, — 0 in W2 (—r,r),

wp, € C?(B,) with wy, — we =0 in W3(B,(0)),

B S B,(0) N {y > ¢n(a)}, (4.15)

def

B~ B.(0)n{y < vn(z)},

By ={x=(z,y): |x| <o, y>7)} for 0<T<o<r

vn, € L®(Q), let ay, Br, pn, three sequences of positive numbers with B, <
ap, and let vo, € H2(€r(0)) s.t. Voo =0 in B, (0).
Assume v, € GSBV?(Q), v, = wp, a.e. in BY»~ and

(i) wp are Q local minimizers of F, w, (-, tbhs Qn, Br, Br(0));

(ii) limp H! ((Sv, U Sve,) N B.(0)) = 0;

(iii) 3 Yy Fop wp (vh, s any By By ) 2 6(0,7) < 1

for a.e. o,7 € (0,7) with 7 < ¢, and set §(o,7) = 0
if o< Ty
(iv) limp vp = v  a.e. in B(0);
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(v) limp pp =0, limy, Hh“’Yh“iZ(B,,(o)) =0.
Then, for every o € (0,7),7 € (0, 0), voo minimizes the functional
/ | D% |” dx (4.16)
BZ(0)
over {v € H*(B(0)) : v = vy in B.(0)\By; in particular, v = 0 in
B; (0)}. Moreover,

d(o,7) = / ‘DZ'UOO ‘2 dx for almost all o,7: 0 <7 <p<r. (4.17)
B7(0)
In particular, A?vo = 0 in B (0). voo = 0 = Ovee /Oy in B,(0) N {y = 0}
and vo € CH(B,(0)).

Theorem 4.4 (Decay of the functional F at 0). Assume (4.1)—(4.6).
Then, for suitable g > 0 and ¢y > 0,

Vk > 2, Vn,0 € (0,1), Fe; >0, I >0 (4.18)
such that for all € € (0,&1], for any x € OQ with 0N € C? near x, for any

v which is an QN By(x) local minimizer of Fy (-, , 3, N By(x)), for
any o S.t.

Byx) € (A\U), 0<o<(Fnanteovn™), / gl < et
B, (x)

and

aH' (S, N (N By(x))) + BH ((Svu \ So) N (AN By(x))) <eo, (4.19)
we have

fgw(UaBnQ(X))

‘ ‘ ‘ ‘ (4.20)
<0~ 7 max { Fyw (v, By(x)), 0* 91 ((Lip(¢"))* +(Lip(Dw))?) } .

Proof of Theorem 4.1. The proof is achieved via direct methods by per-
forming several steps which entail the partial regularity for a minimizer u
of F° (weak Blake and Zisserman functional for inpainting introduced in
Sec. 2 by (2.3)). This is done following a scheme similar to the one used
in [25], but here we have to deal also with the transmission condition at
OU since the fidelity term p [ |u — g|? acts in @\ U and not in U.
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A concise summary of these steps is given in the following.
The regularity is proven at points which have vanishing one-dimensional
density of F?, by performing:

(1) the same procedure of [17] at points in Q\ U;
(2) the same procedure of [17] at points in U;
(3) the proof of partial regularity at points of 92 via

e blow-up at points of 9Q (Theorem 4.3) taking into account
the two parameters describing the lunulae B} (see the last
line in (4.15));

e suitable joining along lunulae filling half-disk in order to take
into account Dirichlet condition at 0€2;

e a decay estimate of the weak functional evaluated at local
minimizers (Theorem 4.4).

(4) the proof of partial regularity at points close to 012 via

e blow-up at points close to 992 (Theorem 5.1 in [17])

e [? hessian decay for bi-harmonic functions in a portion of a
disk (Theorem 3.4 and Figure 1 in [24]) taking into account
the two parameters describing the lunulae;

e a decay estimate of the weak functional evaluated at local
minimizers (Theorem 3.8 in [24]);

(5) the proof of partial regularity at points of OU via

e blow-up at points of OU (see [28)]);

e standard joining along disks;

e the decay estimate of the weak functional evaluated at local
minimizers which follows by the previous blow-up.

By summing up the blow-up argument in all the previous cases, we
can show that if a sequence of local minimizers has vanishing length of
jumps and creases, then a subsequence (which is provided by Theorem
3.4), converges to a bi-harmonic function in the whole disk in cases (1),
(2), (4), and (5), and in a half-disk in case (3). If the decay property is
false we can construct a sequence of local minimizers which contradicts
the previous statement, thanks to the classical estimates of the hessian in
cases (1), (2), (4), and (5), while achieving the contradiction in case (3) is
more difficult.

The usual approach to regularity at Dirichlet boundary points requires
a smooth extension with suitable estimates of the blown-up solution: this
method is satisfactory for first order problems since in that case one can ex-
ploit the extension of a harmonic function. Performing regularity analysis
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at Dirichlet boundary points in case (3) requires a smooth extension with
suitable estimates of the blown-up solution. The extension of bi-harmonic
functions is quite different from extension of an harmonic function vanish-
ing at the diameter, the last one is based on classical Schwarz reflection
principle and doubles L? norm of the gradient in the whole disk: this
doubling property was exploited in [14] to prove decay property for lo-
cal minimizers of Mumford and Shah functional with Dirichlet boundary
condition (see also [41]); unfortunately bi-harmonic extension lacks this
doubling property. We overcome this difficulty by a new tool, precisely an
L? decay estimate of hessian for a bi-harmonic function in a half-disk van-
ishing together with its normal derivative on the diameter (Theorem 4.2):
proving this decay requires a careful application (as in [25]) of Duffin ex-
tension formula [37] and Almansi decomposition, since the bi-harmonic
extension in the whole disk may increase a lot the L? norm of the hessian
in the complementary half-disk.

In cases (1) and (2) we can conclude the proof as like as in the last
section of [17]; in case (3) as in [25]; in case (4) as in [24]; in case (5) as
in [25] but exploiting a different blow-up (see [28]) which takes into account
transmission conditions at OU.

In all cases, we deduce that H* ((Su USvu)N BQ> decays faster than o.

By iterating the decay estimate of the functional in smaller and smaller
balls, we get

Hl((suusw\suusw) mﬁ) —0.
So we can define a minimizing triplet as follows:
KOZS_ua KIZSVU\K()a u=u.

Hence (1.13), (1.14) hold true. O

Proof of Theorem 1.1. The statement about E° can be proven exactly
as was done in [25], Theorem 2.1, in the context of image segmentation. [

Remark 4.5. Theorem 1.1 holds true even if assumption (1.6) is substi-
tuted by assumptions (4.4)—(4.8). This claim can be proven by the same
procedure used for Theorem 1.1.
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§5. VARIATIONAL APPROXIMATION AND NUMERICAL TESTS

An important problem is the one of finding effective numerical methods
suitable for the determination of the solutions given in Theorem 4.1.

A variational approximation of Blake & Zisserman functional for im-
age segmentation and denoising under Neumann boundary condition has
been studied in [2] and [13]. Here we propose a variational approxima-
tion of Blake and Zisserman functional for image inpaiting under Dirichlet
boundary condition, by defining a suitable sequence of elliptic functionals.

All these variational approximations are obtained in the framework of
the notion of I'-convergence, introduced by De Giorgi and Franzoni in [36],
whose definition is recalled below for reader’s convenience.

Definition 5.1. Let (X, d) be a metric space and let Fp,, F' : X — [0, +00]
be functions. We say that (F}) I'-converge to F' if the following two con-
ditions are satisfied:

(1) for any sequence (xp) in X converging to z, then liminf, Fj,(x,) >
F(z);

(2) for any x € X there exists a sequence (zj,) converging to x such
that
lim sup, Fy(zp) < F(z).

The importance of this notion relies on the fact that it implies the
convergence of minimizers of the approximating functionals to minimizers
of the limiting functional.

Coming back to the Blake and Zisserman functional, it is clear that
dealing numerically with the terms H! (Ko N Q) and H* (K \ Ko) N Q)
can be quite difficult. Moreover, for the functional F? defined in (2.3), the
argument of [2] must be suitably adapted, in order to approximate it with
a sequence of (simpler) functionals not involving surface energies. This
is studied in the paper [28] while the formulation and implementation of
related numerical algorithms are performed in [11].

In order to obtain the variational approximation of the functional F°,
we introduce the elliptic functionals G, as follows:



112 M. CARRIERO, A. LEACI, F. TOMARELLI

Gr(s,o,v) : :/(02 +nh)|D2v|2dx

Q

+5h/ (82 + Ch) |Dvl* dx

Q

+a— ﬁ)/ (%|Ds|2 +h %) dx

@ 2
+ﬁ/ (%IDUI2 + h%) dx (5.1)

Q
+pu / |v—g|2dx+5/|v|2dx
U

o\U
+h / lv — w|? dx
Q\Q B B
if v e H?(Q), s,0 € H(9;]0,1]) and h € N;
Gr(s,o,v) :== +o0 otherwise.

Functionals G, are to be minimized on triplets of functions (s, o,v). We
emphasize that the minimization acts not only on the restored image v
but also on two auxiliary functions: s which is a control function for Vv
and o which is a control function of the Hessian of v.

To understand heuristically why this approximation works, we observe
that if (sp,on,vy) is a sequence of minimizers of G, then the function sy
assumes value 1 where v is continuous and it is close to 0 in a tubular
neighborhood of discontinuity set S, of thickness 1/h. As h — +o00, this
neighborhood shrinks and then, for h large enough, s, yields an approxi-
mate representation of discontinuity set of v.

The function oy, instead, assumes value 0 only in a tubular neighbor-
hood of Sy, of thickness 1/h. As h — 400, this neighborhood shrinks and
o, yields an approximate representation of creases of v.

The last term in (5.1) forces v to assume the value w in Q\ Q.

We conclude by showing some pictures obtained in numerical experi-
ments which exploit the variational approximation (5.1) of the functional
(2.3): Figures 3, 4 and 5 where the inpainting algorithm removes masks or
overlapping text.
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We refer to [10] for a different approach to the approximation of second
order free discontinuity functionals.

Input image with mask  Output inpainted image Jumps segmentation

(@

Fig. 3. Inpainting of a circle without introducing artificial corners.

Input image with mask  Output inpainted image Jumps segmentation

Fig. 4. Inpainting of 4 circles.

Input image with mask Output inpainted image
|"I' a3

Fig. 5. Text removal.
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