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A CONTINUOUS THEORY OF TRAFFIC
CONGESTION AND WARDROP EQUILIBRIA

ABSTRACT. In the classical Monge-Kantorovich problem, the trans-
portation cost only depends on the amount of mass sent from sources
to destinations and not on the paths followed by each particle form-
ing this mass. Thus, it does not allow for congestion effects, which
depend instead on the proportion of mass passing through a same
point or on a same path. Usually the travelling cost (or time) of
a path depends on “how crowded” this path is. Starting from a
simple network model, we shall define equilibria in the presence of
congestion. We will then extend this theory to the continuous set-
ting mainly following the recent papers [8,10]. After an introduction
with almost no mathematical details, we will give a survey of the
main features of this theory.

§1. INTRODUCTION

The understanding of traffic congestion and its effects on the perfor-
mances of a road network has always been an intriguing issue, for the
questions it brings both in modelization and in real life behavior. Prob-
lems like “if I choose this secondary uncongested road it would take less
time, but if everybody does the same it would be much worse” are classical,
and naturally lead to challenging game-theory and optimization issues.

In the 50’s (see [22]) Wardrop formalized the main rule that should
lead the congestion of a network through two principles: first, all the paths
connecting the same two locations which are actually followed by some
vehicles must provide the same travelling time (a time which depends
on their length as well as on congestion); second, all the other possible
paths must provide a larger travelling time. This may be mathematically
translated into the fact that only paths which are geodesics for a certain
metric on the network are used, but this metric is exactly induced by the
the way vehicles use the networks. This gives an equilibrium problem that
one can see as a fixed point (which are the ways of choosing some paths on
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the network, so that, looking at the geodesics induced by this choice, we
find again the same paths?). This concept of equilibrium, called Wardrop
equilibrium, is just a particular case of Nash equilibria, in a game where
the players are the vehicles and the goal of each of them is to minimize its
travelling time.

Soon after Wardrop formulated his principles, Beckmann et al. (see
[2]) discovered that Wardrop equilibria have a variational characterization.
Actually, a traffic configuration (i.e. the set of choices of all paths) is an
equilibrium if and only if it optimizes a global criterion, taking into account
the total congestion. When the quantity of traffic on each path on the
network is considered to be a real number (instead of an integer number
of vehicles), the functions H involved in the optimization problem are
primitives of increasing functions, which gives convexity. The good point,
from the mathematical point of view, is that such an optimization problem
being convex, it allows for powerful duality and numerical methods to
approach it. A discretized version for integer vehicles exists as well. On the
other hand, one could be disappointed that, except in very special cases,
the total cost which is optimized does not correspond to the total travelling
time of all the vehicles, which means that looking for the equilibrium and
for the social optimum is in general not the same, and that the equilibrium
is in general not efficient. The literature on price of anarchy and selfish
routing (see the book [16] and the references therein) precisely addresses
the relations between equilibria and social optima, focusing in particular
in the lack of efficiency of equilibria.

Similar considerations may be extended to the more recent framework
of continuous traffic congestion, where the network is replaced by a domain
in R? and vehicles are allowed to move in every direction, thus giving rise
to a density of traffic congestion, that we will call ¢raffic intensity. In such
a case, one can write a convex optimization problem on the space of these
densities, and then prove, again, that at the optimum the paths which are
actually followed are geodesics for the congested metric induced by the
traffic intensity. It is just for the sake of clarity that in this framework
one usually starts from the optimization and then gets the equilibrium
as an optimality condition (mathematically, the reason is the fact that,
when optimizing, the functional will force the traffic intensity, which will
be defined as a measure, to be absolutely continuous, and its density will
appear in the metric it induces, while geodesics in the case of possibly
singular measures are not well-defined).
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A natural question is whether this continuous counterpart is meaningful
in terms of modeling, since car traffic actually occurs on one-dimensional
networks. And the answer is yes, at least for two reasons: first it fits the
situation of pedestrian congestion (which is usually considered in the liter-
ature as a two-dimensional problem); second, it may be useful to look at
large scale traffic problems, when one only wants to detect average values
of the traffic intensity in different zones of a large congested area. Yet,
we stress that the continuous model that we present in this paper is not
exactly the homogenized limit of the discrete ones on grid networks whose
step goes to zero (see [3] for such limit issues). It is anyway the most natu-
ral model that may play the role of Wardrop’s one in a continuous setting
and it shares its main qualitative features. It will be described through
the formalism of measures on the set of paths (which exactly accounts for
the statistical properties of the set of choices of all the vehicles), which is
a classical tool in transport theory, in connection with optimal transport
(see [20,21] for a recent account of optimal transport theory).

A key element in transport theory is the concept of transport plan, i.e.
a probability measure v on the product space of pairs origin-destination,
which is the main unknown in Monge-Kantorovitch theory. Here, as it is
the case in other path-dependent problems (branched transport, see [?],
fluid mechanics, see [9],...), v may also be fixed a priori, since the main
unknown is the way the traffic distributes over the multiple paths connect-
ing the same pair origin-destination. This is what we call the short-term
problem, since for immediate applications one usually knows the propor-
tion of commuters moving every day between two given points. On the
other hand, one can also consider the problem where « is allowed to vary,
and only its marginals g and p; are prescribed (which means that we
know the total number of paths leaving every origin, and the total arriv-
ing at each destination, without any information on the coupling between
them). This may be interpreted as long-term®problem: think for instance
of a urban area where people move from home to work; it is quite clear
that the addresses of those who work in a certain spot may change from
year to year, but that, globally, the population density of all the neigh-
borhoods and the distribution of offices and working places will stay the
same for much more time. The problem where we optimize also over 7 is
not at all specific to the continuous framework, it may also be considered
in networks, and leads to an extra equilibrium optimality condition. Ac-
tually one gets that the optimal configuration must realize a coupling ~y



72 G. CARLIER, F. SANTAMBROGIO

which optimizes a Monge-Kantorovitch transport cost, computed accord-
ing to the metric induced by the traffic intensity itself. It is once more an
equilibrium problem!

On the other hand, a peculiar feature of this long-term problem which
is very specific to the continuous formulation is its tight connection with
a minimal flow problem. This problem (minimizing a total integral cost
J H(Jv(z)|)dz among vector fields v with prescribed divergence V - v =
to — 1) is also due to Beckmann [1]. It is strongly related to the Monge-
Kantorovitch transport cost (in the case H(t) = t) with the possible addi-
tional effect that, due to congestion, “where the flow is stronger the cost
is proportionally higher”. It is clear, from the fact that the data on origins
and destinations appear only through pg — w1, that this problem may not
be linked to the short-term one. On the contrary, we will explain that in the
long-term case this problem is actually equivalent to the traffic optimiza-
tion giving Wardrop equilibria. Indeed, the optimal traffic intensity turns
out to be equal to |v| and the paths actually followed by the commuters
are integral curves of a vector field obtained from the optimal v.

The fact that one can equivalently look, at least in the long-term case,
at Beckmann’s minimization leads to a more classical calculus of variations
problem. In particular, it is possible to write down the optimality condi-
tions for such a minimization as a PDE. This PDE, of the form v = G(Vu),
with V- G(Vu) = pp — p1, may be strongly degenerate, depending on the
function G = VH?* that one chooses. Even if simple choices lead to the
Laplace or to the p—Laplace equation, it turns out the cases that are
realistic in congestion modeling are exactly those leading to much more
degenerate PDEs (for instance one can find a G that vanishes on a whole
ball around the origin). This has motivated the study of the regularity
properties of the solutions of these equations, since, by the way, some reg-
ularity is needed so as to properly define the integral curves of the optimal
vector field (see [8,19]).

Notice anyway that the equations which are involved in this formulation
are elliptic PDEs, and no variable playing the role of time appears in them.
This is due to the fact that our model is stationary: it only accounts for
sort of a cyclical, neverending movement, where every path is constantly
occupied by the same density of vehicles, since those who arrive are im-
mediately replaced by others. This point is in common with the models
on networks, where one can think that the traffic intensity stands for an
average occupation ratio of each road during a period. This is a difference
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with respect to other recent mathematical models involving congestion ef-
fects, like what one can see in Mean Field Games. In these continuous
non-atomic differential games, introduced by J.-M. Lasry and P.-L. Lions
(see [14]), a continuum of agents moves in a domain, minimizing some cri-
teria taking into account lengths and travelling times as well as congestion
ratios they meet at every time. Due to the explicit presence of time, the
PDE describing the optimal evolutions (or the equilibria, since here as well
some equivalences are available) are given by a system coupling a trans-
port equation and an Hamilton-Jacobi equation, which is very different
from the framework we are going to describe in the next sections.

The last point that we want to stress in this introduction concerns the
methods for numerical approximation. Exactly as in the discrete network
case, these methods are mainly based on the dual problem of the convex
optimization giving the equilibrium as an optimum. This is for dimen-
sional reasons: indeed, the primal problem has as many variables as pos-
sible paths, while the dual has only one variable per edge in the network,
standing for the metric at every edge. In the continuous case, this intro-
duces a dual variable &, which is a positive function on the domain and is
used as a metric on it. One needs to optimize a convex criterion on £ (like
an L? norm), perturbed by a combination [ c¢(z,y)dy of the distances
c¢, defined as the Riemannian distances with the conformal metric given
by & times the identity matrix, computed on the pairs origin-destinations.
Obviously this is much easier in the short-term problem, since the trans-
port plan « is fixed, and requires instead an optimization over 7 for the
long-term one.

In order to do numerics, it is hence necessary (see [5,6]) to be able
to compute the distances c¢ on a discretization grid and to differentiate
the results with respect to £ (the problem being convex, a simple gradient
descent can be used to approximate the optimum). This is done thanks
to the so-called Fast Marching Method (FMM), a numerical discretization,
endowed with a very efficient way of computing the discretized solutions,
which is suitable for some Hamilton-Jacobi equations. It is somehow the
way how Hamilton-Jacobi strikes back in the problem, and here the equa-
tion we have to deal with is the Eikonal equation |Vu| = &, which is solved
by u = c¢(z,-). The numerical method, based on a variation of the FMM,
which allows to differentiate c¢ with respect to £ is one of the new con-
tributions in this subject and has been studied in [6]. It is likely to be



74 G. CARLIER, F. SANTAMBROGIO

interesting in itself and has also been applied to other problems, different
from traffic congestion.

Numerics will shortly be addressed at the end of Section 4, which is de-
voted to the duality in the short-term case (since, as we underlined above,
the duality formulation is easier when 7 is fixed). This section follows two
general sections on the models and the relations between equilibria and
optimization in the network (Section 2) and in the continuous (Section 3)
cases, respectively. Section 5, on the contrary, is specific to the long-term
problem and presents the equivalences with Beckmann’s minimal flow op-
timization as well as the PDE issues which arise from this formulation.

§2. WARDROP EQUILIBRIA IN A SIMPLE CONGESTED NETWORK
MODEL

The main data of the model are a finite oriented connected graph G =
(N, E) modelling the network, and edge travel times functions g. : w €
Ry +— ge(w) giving, for each edge e € E, the travel time on arc e when the
flow on this edge is w. The functions g. are all nonnegative, continuous,
nondecreasing and they are meant to capture the congestion effects (which
may be different on the different edges, since some roads may be longer or
wider and may have different responses to congestion). The last ingredient
of the problem is a transport plan on pairs of nodes (z,y) € N? interpreted
as pairs of sources/destinations. We denote by (Vz,y)(a,y)en? this transport
plan: 7, , represents the “mass” to be sent from z to y. We denote by C ,
the set of simple paths connecting z to y, so that C' := U, ,)en2Cr,y is
the set of all simple paths. A generic path will be denoted by ¢ and we
will use the notation e € o to indicate that the path o uses the edge e.

The unknown of the problem is the flow configuration. The edge flows
are denoted by w = (we)ecr and the path flows are denoted by ¢ =
(¢s )oec: this means that w, is the total flow on edge e and ¢, is the mass
traveling on the path o. Of course the w.’s and ¢,’s are nonnegative and
constrained by the mass conservation conditions:

Yo,y = Z 9o, V(:U,y) € NZ (1)
o€Cy, .y
and
we = Z q-, Ve€ E. (2)

oceC : eco
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Given the edge flows w = (w,)eck, the total travel-time of the path o € C

is
= Z ge(we). (3)
eco
In [22], Wardrop defined a notion of noncooperative equilibrium that
has been very popular since among engineers working in the field of con-
gested transport and that may be described as follows. Roughly speaking,
a Wardrop equilibrium is a flow configuration such that every actually used
path should be a shortest path taking into account the congestion effect
i.e. formula (3). This leads to

Definition 1. A Wardrop equlibrium is a flow configuration w = (we)cep,
q = (¢5)sec (all nonnegative of course), satisfying the mass conservation
constraints (1) and (2), such that, in addition, for every (z,y) € N? and
every o0 € Cpy, if g > 0 then
T = in T,(d").
w(0) ,min w(o’)
A few years after Wardrop introduced his equilibrium concept, Beck-
mann, McGuire and Winsten [2] realized that Wardrop equilibria can be
characterized by the following variational principle:

Theorem 1. The flow configuration w = (We)eck, ¢ = (ds)occ 5 a
Wardrop equilibrium if and only if it solves the convex minimization prob-
lem

(1nf) ZH (we) s.t. nonnegativity constraints and (1)—(2) hold  (4)
O eer

where, for each e, we take H to be the primitive of ge, i.e. He(w) =
w

J ge(s)ds

0

Proof. Note that due to (2), one can deduce w from ¢ so that (4) is an
optimization problem on ¢ = (¢, ),ec only. Assume that ¢ = (¢ )oec (with
associated edge flows (w,)ecr) is optimal for (4) then for every admissible
1 = (s )sec with associated (through (2)) edge-flows (u.)ccp, one has

0< Y Hi(wo)(ue —we) =Y ge(we) Y. (06— do)

ecE ecE oceC : eco

= Z(no - qo) de(we)

oceC eco
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so that
Z 4o Tw(0o) < Z Mo Lw(0)
oceC oceC
minimizing the right-hand side thus yields

Z Z ¢ Tw(o) = Z %ﬂalrg(i;n Tw(o")

(z,y)EN20€Cy, y (z,y)eN? i

which exactly says that (¢, w) is a Wardrop equilibrium. To prove the con-
verse, it is enough to see that problem (4) is convex so that the inequality
above is indeed sufficient for a global minimum. O

The previous characterization actually is the reason why Wardrop equi-
libria became so popular. Not only, one deduces for free existence results,
but also uniqueness for w (not for ¢) as soon as the functions g, are in-
creasing (so that H, is strictly convex). The variational formulation (4)
also admits a dual formulation. Another major advantage of (4) is that
the techniques of numerical convex optimization can be used to compute
Wardrop equilibria, however there are as many variables as the number of
paths which obviously restricts computations to small networks, the dual
formulation has much less variables but involves nonsmooth terms. Let us
also mention an interesting extension of the model to a stochastic setting
by Baillon and Cominetti [4].

Remark 1. It would be very tempting to deduce from theorem 1 that
equilibria are efficient since they are minimizers of (4). One has to be
cautious with this quick interpretation since the quantity >, .. He(w.)
does not represent the natural total social cost measured by the total time
lost in commuting which reads as

S wege(w.). (5)

eckE
The efficient transport patterns are minimizers of (5) and thus are different
from equilibria in general. Efficient and equilibria configurations coincide in
the special case of power functions where g.(w) = a.w®, but this case is not
realistic since it implies that traveling times vanish if there is no traffic...
Moreover, a famous counter-example due to Braess shows that it may be
the case that adding an extra road on which the travelling time is aways
zero leads to an equilibrium where the total commuting time is increased!
This illustrates the striking difference between efficiency and equilibrium,
a topic which is very well-documented in the finite-dimensional network
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setting where it is frequently associated to the literature on the so-called
price of anarchy (see [16]).

Remark 2. In the problem presented in this paragraph, the transport
plan 7 is fixed, this may be interpreted as a short-term problem. Instead,
we could consider the long-term problem where only the distribution of
sources o and the distribution of destinations p; are fixed. In this case,
one requires in addition, in the definition of an equilibrium that + is efficient
in the sense that it minimizes among transport plans between o and
the total cost
Z%wdw(az,y) with dy(z,y) ;== min T,(0).
c€C, .y

In the long-term problem where one is allowed to change the assignment
as well, equilibria still are characterized by a convex minimization problem
where one also optimizes over 7.

§3. OPTIMAL TRANSPORT WITH CONGESTION AND EQUILIBRIA IN
A CONTINUOUS FRAMEWORK

The aim of this paragraph is to generalize the previous analysis to a
continuous framework. In the continuous setting, there will be no network,
all paths in a certain given region will therefore be admissible. The first
idea is to formulate the whole path-dependent transport pattern in terms
of a probability measure () on the set of paths (this is the continuous
analogue of the path flows (g, ), of the previous paragraph). The second
one is to measure the intensity traffic generated by @) in a similar way as one
defines transport density in the Monge’s problem (this is the continuous
analogue of the arc flows (w.), of the previous paragraph). The last and
main idea will be in modelling the congestion effect through a metric that
is monotone increasing in the traffic intensity (the analogue of g.(w.)).

We will deliberately avoid to enter into technicalities so the following
description will be pretty informal (see [10] for details). From now on,
denotes an open bounded connected subset of R? (a city say), and we are
also given :

e cither two probability measures po and p; (distribution of sources
and destinations) on 2 in the case of the long-term problem,

e or a transport plan <y (joint distribution of sources and destina-
tions) that is a joint probability on  x Q) in the short-term case.
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Given an absolutely continuous curve o; [0,1] — Q and a continuous
function ¢, let us set

Lo(0) == / (o (1) [6(1) . (6)

A transport pattern is by definition a probability measure @ on C :=

C(]0,1], ) concentrated on absolutely continuous curves that is compati-
ble with mass conservation, i.e. such that either

eox® = po, €140 = 1

(where, as usual, fxu denotes the push forward of the measure p through
the map f) in the case of the long-term problem, or

(€0, e1)#Q =, with e,(0) := o(t), Yt € [0,1]

in the case of the short-term problem. We shall denote by Q(uo, 1) and
Q(y) the set of admissible transport patterns respectively for the long-term
and for the short-term problem:

Q(po, 1) ==1Q : eoxl) = po, €140 = o}

and
Q) :=={Q : (eo,€1)%Q =7}

In the remainder of this paragraph, we will focus for simplicity on the
long-term problem. We are interested in finding an equilibrium i.e. a @ €
Q(po, 1) that is supported by geodesics for a metric {; depending on @
itself (congestion).

The intensity of traffic associated to @ € Q(po, pt1) is by definition the
measure ig € M(1), defined by

[edio= [ / PO OI)dQ) = [ La(0)d0(0).

c([0,1],Q) C

for all p € C(Q,Ry). This definition is a generalization of the notion of
transport density and the interpretation is the following: for a subregion
A, ig(A) represents the total cumulated traffic in A induced by @, it is
indeed the average over all paths of the length of this path intersected
with A.
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The congestion effect is then captured by the metric associated to @Q:
&) = g(m,ig(x)), for ig < L? (+00 otherwise)

for a given increasing function g(z,.) : Ry — Ry. The fact that there
exists at least one Q € Q(uo, 1) such that ig < L£? is not always true
and depends on pg and p; but again we do not wish to enter the details, let
us only indicate that this condition is satisfied when po and py are “well
behaved” (this is a nontrivial fact for which we refer to the regularity
results of De Pascale and Pratelli [12] and to the more recent paper [18]).
Let us now describe what a reasonable definition of an equilbrium should
look like. If the overall transport pattern is (), an agent commuting from x
to y choosing a path o € C, , (i.e. an absolutely continuous curve o such
that 0(0) = x and o(1) = y) spends time
1

Lea(0) = [ glo®sio®)lo0)at
0
She will then try to minimize this time i.e. to achieve the corresponding
geodesic distance.

Ceo (,y) = Ueigf Leq (o)

Paths in C, , such that cg, (x,y) = L¢,(0) are called geodesics (for the
metric induced by the congestion effect generated by @)). A first require-
ment, in the definition of an equilibrium therefore is that @-a.e. path o is a
geodesic between its endpoints (0) and o(1). The transportation pattern
may be disintegrated with respect to v = (ep, €1)#Q:

Q=@ (")
.e. /@(U)dQ(U): / (/Q(J)dpx,y(g))d,)/@(x,y)j VP
(&)

aOxQ Cay
In other words, 7g(A x B) is the probability that a path has starting
point in A and a terminal point in B. Denoting by II(uo,p1) the set of
transport plans between po and p; (that is the set of probability measures
on Q x Q having po and p; as marginals), the requirement that @ €
Q(po, 1) obviously translates into vg € II(po, p1). Given starting and
terminal points (z,y), p™¥ is a probability on C,,, that represents the
probability over paths conditional on (z,y). The requirement that @ gives
full mass to geodesics says that for yg-a.e. (z,y), p™¥ is supported on
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the set of geodesics between x and y but this does require any particular
property on the coupling vgo. We thus supplement the definition of an
equilbrium by the additional requirement that g should solve the optimal
transportation problem:

inf y)dy(z,y). 7
it [ @i g

QxQ
This yields:

Definition 2. A Wardrop equilbrium (for the long-term problem) is a
Q € 9Q(po, p1) such that

Qo ¢ Ley(0) = g (0(0),0(1)) =1 (8)
and g = (ep,e1)xQ solves the optimal transport problem (7).

Of course in the short-term case, yg is fixed equal to y so that Wardrop
equilibria are defined by condition (8) only.

Let us then consider the (convex) variational problem

inf /H (x,ig(x 9)

QEQ(1o,11)

where H'(z,.) = g(z,.), H(x,0) = 0. We shall refer to (9) as the congested
optimal mass transportation problem for reasons that will be clarified later.
Under some technical assumptions that we do not reproduce here, the main
results of [10] can be summarized by:

Theorem 2. Problem (9) admits at least one minimizer. Moreover Q €
Q(po, p1) solves (9) if and only if it is a Wardrop equilibrium. In particular
there exist Wardrop equilibria.

The full proof is quite involved since it requires to take care of some
regularity issues in details. But the intuition of why solutions of (9) are
Wardrop equilibria can be understood easily from the following formal
manipulations. By convexity arguments, it is easily seen that Q = FRp*Y €
Q(po, p1) solves (9) if and only if it satifies the variational inequalities

/Zia = inf /Zz‘Q D Q€ Quo, ) ¢ with &(x) := H'(z,ig(x)), (10)
Q

Q
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which we may rewrite as

/fz / (0)dQ (o)
// (0) | d7(z,y)

QxQ
— inf / o)ap™(a) | d(w,y)
(%p)ﬁ _
QxQ
= f f L:(0)d dy(x,
Veﬂ(rﬁlbo#l)/ peMln(C’” y) / 6(0—) p(o) (=)

e} Y

QxQ

- f f L dv(z,
Venl(rﬁl"oyﬂl) / <aelgwy ( )> ’Y(:U y)

X

2
2

Let us then define the geodesic distance cg by

cgle,y) = Inf Lg(o),

we firstly get

/ cg(z, y)dy(z,y) < /L—da
xQ
inf cz(z,y)dy(z,y)

’YEH (posu1) J
axQ

so that 7 solves the Monge-Kantorovich problem:

inf / cg(@,y)dv(z,y).

WGH(umm)_ _
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Secondly, we obtain

and since Lz(o) > cz(0(0), 0
Lg(0) = cg(0(0),0(1))  for Q-a.e. 0.
or, in an equivalent way, for J-a.e. (z,y) one has:
L¢(o) = cg(w,y) for p*Y-ae. o
which exactly proves that @ is a Wardrop equilibrium.

Remark 3. The use of the weighted length functional Lz and thus also the
geodesic distance 3 above is purely formal since defining these quantities

actually makes sense only if £ is continuous or at least Ls.c.. We therefore
refer the interested reader to [10] for details on how to define these objects
when £ is just an L7 function. Let us also mention that a recent regularity
result (see [19]) actually proves that £ is in fact a continuous function (in
dimension 2 and under reasonable assumptions on the data).

Remark 4. For the short-term problem, a similar variational characteri-
zation holds, namely that ) € Q(v) is a (short-term) Wardrop equilibrium
if and only if it solves

inf H(z,ig(z))dz. 11
o, | Heiate) (1)

We have proved that, as in the finite-dimensional network case, Wardrop
equilibria have a variational characterization which is in principle easier
to deal with than the definition. Unfortunately, the convex problems (9)
and (11) may be difficult to solve since they involve measures on sets of
curves that is two layers of infinite dimensions! The next two paragraphs
are precisely intended to consider different formulations that turn out to
be much more tractable:

e for the short-term problem (11), we will see that the equilibrium
metrics solve a kind of dual problem that can be solved numeri-
cally,
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e for the long-term problem (9), we will deduce optimal @’s from
a minimal flow problem & la Beckmann and a construction a la
Moser, in other words, the problem will amount to solve a certain
nonlinear elliptic PDE (which turns out to be quite degenerate in
realistic congestion models).

§4. DUALITY FOR THE SHORT-TERM PROBLEM

The purpose of this Section is to give a dual and tractable formulation of
the variational problem for the short-term problem (11). For every z €
and & > 0, let us define

H*(x,§) == sup{&i — H(z,i), i 2 0}, &o(z) :=g(z,0).

By our assumptions on g, one has H*(z,£) = 0 for every x € Q and
& < &(x). Let us recall Young’s inequality:
H(x,t) + H*(2,§) = &, Vi=0, V¢ > &) (12)

Notice that the inequality (12) is strict unless £ = g(z,i) > &(x). In
particular, for @ € Q(v), we have the identity

H(z,iq(z)) + H(z,§q(z)) = {q(2)iq() (13)
and
H(z,iq(z)) + H(z,8) > Lig(x), V€= &(z), E# &olz)  (14)
(for &g(x) == g(z,ig(x))). Let us now define the functional

/ H' (2 ¢@)ds ~ [ celan)dr(a,y) (15)
axQ
where, as usual, c¢ is the geodesic distance associated to the metric ¢ i.e.

ce(zy) = inf Le(o).

Consider now:

sup{—J(&) : £ = &o} (16)
Theorem 3. The following duality formula holds
min(11) = max(16) (17)

and & solves (16) if and only if £ = &g for some Q € Q(v) solving (11).
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Proof. Let ) € Q(v) (so that £ > &) and let £ > &; from (12) and

[ e@io do= [ L) aqto). (18)
Q C
we first get:

/H(w,iQ(x))dx > /giQ —/H*(:c,f(:c))d:c
Q Q Q

— [ L)) - [ # (s gl
C Q

Using the fact that
Le(o) = cg(0(0),0(1)) (19)
and @ € 9(y) we then have

[ re@1a00) = [ celo).0)d@0) = [ celmpiria).

C ¢ axQ
Since @) € Q(vy) and & > & are arbitrary and since we already know that
the infimum of (11) is attained we thus deduce

min(11) > sup(16). (20)

Now let @ € Q(v) solve (11) and set £ := &g (recall that {; does not
depend on the choice of the minimizer (). From the equivalence between
Wardrop equilibria and solutions of (11), we know that

L¢(0) = ce(0(0),0(1)) for Q-a.e. o € C.

With (18), integrating the previous identity and using ) € Q(v) we then
get:

[éio= [ L)) = [ cwnney.
Q C QxQ
Using (13), (20) and the fact that Q € Q(v) solves (11) yields:

sup(16) < min(11) = /H(w,iQ(x))dx - /giQ _ /H*(:c,f(:c))d:c
Q Q Q

= / c,g(:c,y)dv(:v,y)—/H*(fl?af(fﬂ))dfC
Q

axQ
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so that £ solves (16) and (17) is satisfied. Finally if £ solves (16) and
Q@ € Q(v) solves (11), then with (18) and (19), one has

[dio- [H @t [ cwpirey - [H @)
Q Q oxQ Q

= max(16) = min(11) = /H(:c,iQ(:v))dx
Q

and thus we deduce from (12) and (14) that £ = &p. O

Remark 5. Under reasonable continuity and strict monotonicity assump-
tions on the congestion function g, the dual problem (16) has a unique
solution so that the equilibrium metric {g and the equilibrium intensity of
traffic ¢g are unique although Wardrop equilibria ) might not be unique.

Numerics. In [5, 6], we designed a consistent numerical scheme to ap-
proximate the equilibrium metric {g by a descent method on the dual
which can be done in an efficient way by the Fast Marching Algorithm.
One can recover the corresponding equilibrium intensity ig by inverting
the relation &(z) = g(z,ig(z)).

The goal is to find a method to approximate the minimizers of functional
J in (15). This is done by means of a discretization grid, and the values
of ¢ are considered as defined at the nodes of the grid. The first integral
becomes a sum on all the points of the grid, while, for the second, one
needs to replace the transport plan v with a discretized one defined on
pairs of points (z,y) on the same grid, and to define ¢¢(z,y) consequently.

To define such a distance c¢ (o, -), for a fixed source xg, as a function
of the second variable, one uses the fact that it is the unique viscosity
solution of the Eikonal non-linear PDE

{nvu%mnzf,

UE () (o) = 0, 21

The computation of U¢(x) thus requires the discretization of (21) so
that a numerical scheme captures the viscosity solution of the equation.
By dropping the dependence on ¢ and xg of the distance map U¢ = U to
ease the notations, the geodesic distance map ¢ is discretized on a grid of
n X n points, so that U; j for 0 < i,j < n is an approximation of U (ih, jh)
where the grid step is A = 1/n. The metric £ is also discretized so that
&5 = £ih, jh).
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Figure 1. Traffic intensity at equilbrium in a city with a
river and a bridge.

Classical finite difference schemes do not capture the viscosity solution
of (21); upwind derivative should be used instead

DiU; j = max{(U; j —Ui—1 ), Ui j — Uit1,5),0}/h,
DgZ/{m- = max{(ui,j — ui,j—l): (Z/{i,j — Z/{i7j+1), 0}/h

As proposed by Rouy and Tourin [17], the discrete geodesic distance map
U = (U;,j)i; is found as the solution of the following discrete non-linear
equation that discretizes (21)

DU = f where DZ/{i,j = ,/D1L{i27j + D2ui27j- (22)

Rouy and Tourin [17] showed that this discrete geodesic distance U con-
verges to U when h tends to 0. The Fast Marching Algorithm exactly uses
a clever way of ordering the points of the grid so as to solve recursively all
the equations in (22).

Once we are able to compute the value of J(§) for every discrete metric
¢ on the grid, we want to differentiate it w.r.t. £, so as to to take advantage
of a gradient descent algorithm. Actually, one can see that J is not always
differentiable in ¢, but, since all the terms c¢(z,y) may be proven to be
concave in &, we face a convex function, and we can look for its sub-
differential. Differentiating the equations in (22) (see [6]) one gets a new
set of equations on the gradient Vece(x,y). The same loop of the Fast
Marching Algorithm allows to solve them in a quite efficient way, thus
giving an element of the sub-differential. Afterwards, usual subgradient
algorithms allow to approximate the optimal solution £.

An example is given in the following figure:
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In a symmetric configuration of two sources S; and S>3, and two targets
T, and T5; we consider a river where there is no traffic and a bridge linking
the two sides of the river (see the map on the left in Figure 1, where the
grey scale and the level lines are meant to show the equilibrium traffic
intensity). We chose the traffic weights such that v 1 +v1,2 = 2(y2,1 +72,2)
and % = % = 2. The traffic intensity going out from S; is twice Sa’s.
One can note; in the picture at the right in Figure 1, the two hollows on
each side of the river appearing because of the inter-sides and intra-sides
crossed traffics, together with the traffic peaks close to the bridge ant do
the points S; and T}.

§5. BECKMANN-LIKE REFORMULATION OF THE LONG-TERM
PROBLEM

In the long-term problem (9), we have one more degree of freedom since
the transport plan is not fixed. This will enable us to reformulate the
problem as a variational divergence constrained problem a la Beckmann
and ultimately to reduce the equilibrium problem to solving some nonlinear
PDE. For Q € Q(uo, i11), let us define the vector-field og through

VX € C(Q,RY)

/Mmmmm: /' /Xmmwwmdmw
Q c([0,1],Q) \0

which is a kind of vectorial traffic intensity. Taking a gradient field X = Vu
in the previous definition yields

/wmz /hmm%wwwmm
Q

c([0,1],Q)

Z/U(Ml — Ho)

Q
which means that
Y 0Q = Mo — M1,

moreover it is easy to check that

logl <ig-
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Since H is increasing, it proves that the value of the scalar problem (9)
is larger than that of the minimal flow problem a la Beckmann:

inf / H(o(x))da (23)

o :Vo=po—pm

where H(o) = H(|o|) and H is taken independent of x only for simplicity.
Conversely, if ¢ is a minimizer of (23) and @ € Q(uo, n1) is such that
i@ = |o| then @ solves the scalar problem (9) (i.e. is an equilibrium).

To build such a @, we can formally use the following construction a la
Moser (see Moser [15] and Dacorogna and Moser [11]). Assuming o smooth
and po and p; absolutely continuous, with nice densities bounded away
from 0, let us consider the nonautonmous ODE

o(X(t,x))
(1= o (X (t, 7)) + tpa (X (t,2))

X(t,z) = X(0,z)=x

and define @ by
Q= 0x(.,2) ® Ho-

Set p¢ = (1 — t)po + tpr and

o(x)

e ()

then by construction p; solves the continuity equation:
Ot + V- (uev) =0

By construction we also have 60#@ = uo and, because of the uniqueness
in the continuity equation, X (¢,.)xpo = pe = (1 —t)po +tpy. In particular
the image of po by the flow at time 1, X(1,.) is p1, which proves that
e14Q = pu1 hence Q € Q(uo, p1). Moreover for every test-function ¢:

/wsz // X (&, 2))o(t, X (£, 2))|dtdpo ()

1

:/Q/(p 2)|o(t, ) |jue () dadt

p(@)|o(z)|dz

u(t,z) =

O ©

so that iz = |o| and then @ is optimal.
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The previous argument works as soon as ¢ is regular enough (say, Lip-
schitz continuous). To get regularity, one needs to look at the optimality
conditions satisfied by o as a minimizer of (23). By duality, the solution
of (23) is 0 = VH*(Vu) where H* is the Legendre transform of H and u
solves the PDE:

V- (VH*(VU)) = Mo — M1, in Q;
{ VH*(Vu)-v = 0, on 012,

This equation turns out to be a standard Laplace equation if H is qua-
dratic, or it becomes a p—Laplace equation for other power functions. In
these cases, regularity results are well-known, under regularity assump-
tions on ug and pi. Yet, let us recall that H' = g where g is the congestion
function, so it is natural to have g(0) > 0 : the metric is positive even if
there is no traffic! This means that the radial function H is not differen-
tiable at 0 and then its subdifferential at 0 contains a ball. By duality, this
implies VH* = 0 on this ball which makes (24) very degenerate, even worse
than the p—Laplacian. For instance, a reasonable model of congestion is
g(t) =1+ P~ for t > 0, with p > 1, so that

(24)

1 1 . p
H(o) = =|o|” + |o|, H*(2) = =(]z| = 1)%, with ¢ = — 25
()pll lol, H*(2) q(ll )+ P (25)
so that the optimal o is
-1 Vu
= (vl 1)
7 (' | + |Vu|
where u solves the very degenerate PDE:
-1 Vu
V-((Vu—l) —): — 26
Vul=1) Fu]) T (26)
with Neumann boundary condition
-1 Vu
Vul 1) Zhv=0.
(| | + |Vul

Note that there is no uniqueness for u but there is for o.

For this degenerate equation (more degenerate than the p-laplacian
since the diffusion coefficient identically vanishes in the zone where |Vu| <
1), getting Lipschitz continuity on ¢ is not reasonable. Yet, Sobolev regu-
larity of o and Lipschitz regularity results for solutions of this PDE can be
found in [8]. This enables one to build a flow d la DiPerna-Lions [13] and
then to justify rigorously the construction above, even without a Cauchy-
Lipschitz flow. Interestingly, in two dimensions it is also available (see [19])
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a C

ontinuity result on the optimal o, obtained as a consequence of a fine

analysis of this degenerate elliptic PDE. Besides the interest for this regu-
larity result in itself, we also stress that continuity for o implies continuity

for

the optimal i, and this exactly gives the regularity which is required

in the proof of Theorem 2 (the main difficulty being defining cg for a non-
continuous &, and this is the reason why our proof in Section 3 is only
formal).
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