Е. С. Дубцов

ВЕСОВЫЕ ОПЕРАТОРЫ КОМПОЗИЦИИ СО ЗНАЧЕНИЯМИ В ПРОСТРАНСТВАХ ЛИПШИЦА

§1. Введение

Пусть $\mathrm{H}(\mathbb{D})$ обозначает пространство голоморфных функций в единичном круге $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}.$

1.1. Голоморфные пространства Липшица. Для $\alpha > 0$ пространство Липшица $\Lambda^{\alpha}(\mathbb{D})$ состоит из тех функций $f \in \mathrm{H}(\mathbb{D})$, для которых

$$|f^{(J)}(z)|(1-|z|)^{J-\alpha} \le C, \quad z \in \mathbb{D},$$
 (1.1)

где $f^{(J)}$ — производная порядка $J,\ J$ — целое число такое, что $J>\alpha$. Хорошо известно, что определение пространства $\Lambda^{\alpha}(\mathbb{D})$ не зависит от выбора числа J при $J>\alpha$. В действительности оценка (1.1) (в которой $J\in\mathbb{Z}_+$ и $J>\alpha$) определяет шкалу $\Lambda^{\alpha}(\mathbb{D})$ для всех вещественных, а не только для положительных α . Итак, $\Lambda^0(\mathbb{D})$ — это классическое пространство Блоха; $\Lambda^{\alpha}(\mathbb{D}),\ \alpha<0$, является пространством роста.

Если $\alpha \in \mathbb{R}$, $J \in \mathbb{Z}_+$ и $J > \alpha$, то $\Lambda^{\alpha}(\mathbb{D})$ – банахово пространство относительно следующей нормы:

$$||f||_{\Lambda^{\alpha,J}(\mathbb{D})} = \sum_{j=0}^{J-1} |f^{(j)}(0)| + \sup_{z \in \mathbb{D}} |f^{(J)}(z)| (1-|z|)^{J-\alpha}.$$

При разных $J>\alpha$ эти нормы эквивалентны, так что в дальнейшем используется обозначение $\|\cdot\|_{\Lambda^{\alpha}(\mathbb{D})}$ вместо $\|\cdot\|_{\Lambda^{\alpha},J(\mathbb{D})}$.

1.2. Весовые операторы композиции. Для функции $g\in \mathrm{H}(\mathbb{D})$ и голоморфного отображения $\varphi:\mathbb{D}\to\mathbb{D}$ весовой оператор композиции $C^g_{\varphi}:\mathrm{H}(\mathbb{D})\to\mathrm{H}(\mathbb{D})$ задается формулой

$$(C_\varphi^g f)(z) = g(z) f(\varphi(z)), \quad f \in \mathcal{H}(\mathbb{D}), \quad z \in \mathbb{D}.$$

Если $g\equiv 1$, то C_{φ}^g обозначается символом C_{φ} и называется оператором композиции. Разнообразные свойства оператора C_{φ} представлены в монографиях [1, 9].

Каючевые слова: голоморфное пространство Липшица, оператор композиции. Работа поддержана грантом РФФИ No. 11-01-00526.

Отправной точкой для данной статьи является работа [5], где охарактеризованы ограниченные и компактные операторы $C_{\varphi}^g: \Lambda^{\beta}(\mathbb{D}) \to \Lambda^{\alpha}(\mathbb{D}), \ \beta, \alpha < 1.$ В последнее время операторы $C_{\varphi}^g: X \to \Lambda^{\alpha}(\mathbb{D})$ исследовались для различных пространств $X \subset \mathrm{H}(\mathbb{D})$ при $\alpha < 1$ (см., например, [2, 11] и приведенные там ссылки). В настоящей работе получены теоретические описания ограниченных и компактных операторов $C_{\varphi}^g: X \to \Lambda^{\alpha}(\mathbb{D})$ для $\alpha \in \mathbb{R}$.

1.3. Организация статьи. В §2 излагается аксиоматический подход. Основные результаты работы представлены в §3, где рассматривается естественный случай $X = \Lambda^{\beta}(\mathbb{D}), \ \beta \in \mathbb{R}$. Если $\beta \leq 0$, то $\Lambda^{\beta}(\mathbb{D})$ – большое пространство, поэтому можно использовать аксиоматический метод. Если $\beta > 0$, то описания компактных операторов менее прямолинейны; см. теорему 3.3. Безусловно, описания становятся проще, если рассматривается минимальное число $J \in \mathbb{Z}_+$ такое, что $J > \alpha$. Также полученные утверждения сравниваются с известными свойствами невесовых операторов композиции C_{φ} . В частности, показано, как упростить результаты, доказанные в работе [3]. Заключительные замечания приведены в §4.

Благодарность. Автор признателен М. Ф. Гамаль за полезные обсуждения.

§2. Аксиоматический подход

2.1. Предположения о пространстве X. Зафиксируем банахово (или p-банахово, $0) пространство <math>X \subset H(\mathbb{D})$. Пусть $J \in \mathbb{Z}_+$.

Аксиома 1. Существуют невозрастающие функции $\Omega_j^X:[0,1)\to (0,+\infty),\ j=0,1,\ldots,J,\ m$ акие, что

$$|f^{(j)}(z)|\Omega_j^X(|z|) \leq C\|f\|_X \quad ext{distance} \ f \in X, \quad z \in \mathbb{D}.$$

Как обычно, C>0 обозначает абсолютную константу, значение которой может меняться от строки к строке.

Также предполагается, что функции Ω_j^X в определенном смысле являются оптимальными.

Аксиома 2. Существуют тестовые функции $f_{j,w} \in X$, $w \in \mathbb{D}$, $j = 0, 1, \ldots, J$, такие, что

$$||f_{j,w}||_X \le C;$$

 $C|f_{j,w}^{(j)}(w)|\Omega_j^X(|w|) \ge 1;$

если
$$j \geq 1$$
, то $f_{j,w}^{(k)}(w) = 0$ для всех $k = 0, 1, \dots, j - 1$.

Аксиома 3. Если $||f_n||_X \leq C$ и $f_n \to f$ равномерно на компактных подмножествах круга, то $f \in X$.

Отметим, что аксиома 3 выполнена для всех пространств X, рассматриваемых ниже.

Аксиома 4 (усиленная аксиома 2). Существуют тестовые функции $f_{j,w} \in X, j=0,1,\ldots,J, w \in \mathbb{D},$ для которых выполнены условия аксиомы 2, а также $f_{j,w} \to 0$ равномерно на компактных подмножествах круга $npu \ |w| \to 1-.$

2.2. Производные весовой композиции. Пусть $J \in \mathbb{Z}_+$. Для $f \in H(\mathbb{D})$ формально вычислим производную $(C_{\varphi}^g f)^{(J)}$. Таким образом, равенство

$$(C_{\varphi}^{g}f)^{(J)}(z) = \sum_{j=0}^{J} G_{j}[g,\varphi,J](z)f^{(j)}(\varphi(z)), \quad z \in \mathbb{D},$$
 (2.1)

задает функции $G_{j}[g,\varphi,J],\,j=0,1,\ldots,J.$ В частности,

$$G_0[g,\varphi,0]=g;$$

$$G_0[g, \varphi, 1] = g', \quad G_1[g, \varphi, 1] = g\varphi';$$

$$G_0[g, \varphi, 2] = g'', \quad G_1[g, \varphi, 2] = 2g'\varphi' + g\varphi'', \quad G_2[g, \varphi, 2] = g(\varphi')^2.$$

2.3. Ограниченные операторы.

Предложение 2.1. Пусть $\alpha \in \mathbb{R}$, $J \in \mathbb{Z}_+$ и $J > \alpha$. Предположим, ито аксиомы 1 и 2 выполнены для пространства $X \subset \mathrm{H}(\mathbb{D})$. Тогда оператор $C_{\varphi}^g: X \to \Lambda^{\alpha}(\mathbb{D})$ ограничен в том и только в том случае, когда

$$\sup_{z\in\mathbb{D}}\frac{|G_j[g,\varphi,J](z)|(1-|z|)^{J-\alpha}}{\Omega_j^X(|\varphi(z)|)}<\infty\quad \text{ dif }j=0,1,\ldots,J. \tag{2.2}$$

Доказательство. Пусть имеет место неравенство (2.2) и $f \in X$. В силу формул (2.1), (2.2) и аксиомы 1, имеем

$$\sup_{z\in\mathbb{D}}|(C_{\varphi}^gf)^{(J)}(z)|(1-|z|)^{J-\alpha}<\infty.$$

Таким образом, аксиома 1 гарантирует, что оператор $C^g_{\varphi}: X \to \Lambda^{\alpha}(\mathbb{D})$ ограничен, по теореме о замкнутом графике.

Теперь предположим, что C_{φ}^g – ограниченный оператор. В силу формулы (2.1) верна оценка

$$\sup_{z \in \mathbb{D}} \left| \sum_{j=0}^{J} G_{j}[g, \varphi, J](z) f^{(j)}(\varphi(z)) \right| (1 - |z|)^{J - \alpha} \le C \|f\|_{X}$$
 (2.3)

для всех $f\in X$. Положим $f=f_{J,\varphi(z)}$, где $f_{J,\varphi(z)}$ — тестовая функция, существующая в силу аксиомы 2. Используя аксиому 2 и оценку (2.3), получаем

$$\sup_{z\in\mathbb{D}} \frac{|G_J[g,\varphi,J](z)|(1-|z|)^{J-\alpha}}{\Omega_J^X(|\varphi(z)|)} \\
\leq C \sup_{z\in\mathbb{D}} |G_J[g,\varphi,J](z) f_{J,\varphi(z)}^{(J)}(\varphi(z))|(1-|z|)^{J-\alpha} \leq C. \tag{2.4}$$

Итак, свойство (2.2) выполнено для j=J. Далее, аксиома 1 и неравенство (2.4) гарантируют, что

$$\sup_{z\in\mathbb{D}} \left| G_J[g,\varphi,J](z) f^{(J)}(\varphi(z)) \right| (1-|z|)^{J-\alpha} \le C \|f\|_X.$$

При $J \ge 1$ из полученного свойства и оценки (2.3) следует, что

$$\sup_{z \in \mathbb{D}} \left| \sum_{j=0}^{J-1} G_j[g, \varphi, J](z) f^{(j)}(\varphi(z)) \right| (1 - |z|)^{J-\alpha} \le C \|f\|_X$$

для всех $f \in X$. Таким образом, применяя аксиомы 2 и 1, по индукции получаем (2.2) для $j = J-1,\ldots,0$.

- **2.4. Компактные операторы.** Хорошо известны различные модификации следующего критерия компактности (ср. с [1, предложение 3.11]).
- **Лемма 2.2.** Предположим, что аксиомы 1 и 3 выполнены для пространства $X\subset \mathrm{H}(\mathbb{D})$. Тогда оператор $C_{\varphi}^g:X{\to}\Lambda^{\alpha}(\mathbb{D})$, $\alpha\in\mathbb{R}$, компактен в том и только в том случае, когда он ограничен и $\|C_{\varphi}^gf_n\|_{\Lambda^{\alpha}(\mathbb{D})}\to 0$ для любой ограниченной в X последовательности $\{f_n\}_{n\in\mathbb{N}}$ такой, что $f_n\to 0$ равномерно на компактных подмножествах круга.

Предложение 2.3. Предположим, что $\alpha \in \mathbb{R}$, $J \in \mathbb{Z}_+$ и $J > \alpha$. Пусть аксиомы 1, 3 и 4 выполнены для пространства $X \subset \mathrm{H}(\mathbb{D})$.

Тогда оператор $C^g_{\varphi}:X\to \Lambda^{\alpha}(\mathbb{D})$ компактен в том и только в том случае, когда

$$\sup_{z \in \mathbb{D}} |G_j[g, \varphi, J](z)| (1 - |z|)^{J - \alpha} < \infty \quad \text{dis} \quad j = 0, 1, \dots, J, \tag{2.5}$$

а также для любого $\varepsilon > 0$ существует число $r \in (0,1)$ такое, что

$$\frac{|G_j[g,\varphi,J](z)|(1-|z|)^{J-\alpha}}{\Omega_j^X(|\varphi(z)|)} < \varepsilon \quad \text{dif } j = 0, 1, \dots, J$$
 (2.6)

 $npu |\varphi(z)| > r$.

Доказательство. Пусть имеют место соотношения (2.5) и (2.6). Тогда выполнено свойство (2.2), следовательно, рассматриваемый оператор ограничен. Предположим, что $\|f_n\|_X \leq C, n \in \mathbb{N}$, и $f_n \to 0$ равномерно на компактных подмножествах круга. Пусть $\varepsilon > 0$ и $j = 0, 1, \ldots, J$.

Предположим, что $|\varphi(z)| > r = r(\varepsilon)$. Тогда в силу аксиомы 1 и условия (2.6) имеем

$$|G_{j}[g,\varphi,J](z)||f_{n}^{(j)}(\varphi(z))|(1-|z|)^{J-\alpha} \\ \leq C \frac{|G_{j}[g,\varphi,J](z)|(1-|z|)^{J-\alpha}}{\Omega_{j}^{X}(|\varphi(z)|)} < C\varepsilon. \quad (2.7)$$

Далее, предположим, что $|\varphi(z)| \leq r$. Так как $f_n \to 0$ равномерно на компактных подмножествах круга, то $|f_n^{(j)}(\varphi(z))| < \varepsilon$ для всех $n \geq n(r)$. Следовательно,

$$|G_j[g,\varphi,J](z)||f_n^{(j)}(\varphi(z))|(1-|z|)^{J-lpha} < Carepsilon$$
 при $n \geq n(r)$

в силу (2.5).

Итак,

$$\sup_{z\in\mathbb{D}}|(C_{\varphi}^gf_n)^{(J)}(z)|(1-|z|)^{J-\alpha}\to 0\quad\text{при }n\to\infty.$$

Так как $f_n \to 0$ равномерно на компактных подмножествах круга, то

$$|(C_{o}^{g}f_{n})^{(k)}(0)| \to 0$$
 при $n \to \infty, \ k = 0, 1, \dots, J-1.$

Таким образом, $\|C_{\varphi}^g f_n\|_{\Lambda^{\alpha}(\mathbb{D})} \to 0$ при $n \to \infty$. Следовательно, C_{φ}^g – компактный оператор в силу леммы 2.2.

Для доказательства обратной импликации предположим, что оператор C^g_{φ} компактен. Тогда свойство (2.5) имеет место в силу предложения 2.1. Далее, предположим, что неравенство (2.6) не выполняется при j=J. Тогда существуют точки $z_n=z_n(J)\in\mathbb{D}$ такие, что $|\varphi(z_n)|\to 1$ и

$$\frac{|G_J[g,\varphi,J](z_n)|(1-|z_n|)^{J-\alpha}}{\Omega_J^X(|\varphi(z_n)|)} \ge \varepsilon \quad \text{для всех } n \in \mathbb{N}.$$

Пусть $f_{J,w}$, $w \in \mathbb{D}$, — тестовые функции, существующие в силу аксиомы 4. Отметим, что $\|f_{J,\varphi}(z_n)\|_X \leq C$ и $f_{J,\varphi}(z_n) \to 0$ равномерно на компактных подмножествах круга. Следовательно, из компактности оператора C_{φ}^g и леммы 2.2 вытекает, что

$$\left|\left(C_{arphi}^g f_{J,arphi(z_n)}
ight)^{(J)}(z_n)
ight|(1-|z_n|)^{J-lpha} o 0$$
 при $n o\infty.$

Таким образом,

$$\varepsilon \leq \frac{|G_J[g,\varphi,J](z_n)|(1-|z_n|)^{J-\alpha}}{\Omega_J^X(|\varphi(z_n)|)}$$

$$\leq C|G_J[g,\varphi,J](z_n)||f_{J,\varphi(z_n)}^{(J)}(\varphi(z_n))|(1-|z_n|)^{J-\alpha}$$

$$= C\left|(C_\varphi^g f_{J,\varphi(z_n)})^{(J)}(z_n)\right|(1-|z_n|)^{J-\alpha} \to 0 \quad \text{при } n \to \infty.$$

Полученное противоречие гарантирует, что (2.6) имеет место для j=J. Теперь предположим, что (2.6) не выполняется при j=J-1. Тогда существуют точки $z_n=z_n(J-1)\in\mathbb{D}$ такие, что $|\varphi(z_n)|\to 1$ и

$$\frac{|G_{J-1}[g,\varphi,J](z_n)|(1-|z_n|)^{J-\alpha}}{\Omega^X_{J-1}(|\varphi(z_n)|)} \geq \varepsilon \quad \text{для всех } n \in \mathbb{N}.$$

Пусть $f_{J-1,w}, w \in \mathbb{D}$, – тестовые функции, существующие в силу аксиомы 4. Оператор C^g_{φ} компактен, поэтому

$$\left|\left(C_{\varphi}^g f_{J-1,\varphi(z_n)}\right)^{(J)}(z_n)\right|(1-|z_n|)^{J-\alpha}\to 0\quad \text{при }n\to\infty.$$

В силу аксиомы 4 имеем

$$(C_{\varphi}^{g}f_{J-1,\varphi(z_{n})})^{(J)}(z_{n})$$

$$=G_{J-1}[g,\varphi,J](z_{n})f_{J-1,\varphi(z_{n})}^{(J-1)}(\varphi(z_{n}))+G_{J}[g,\varphi,J](z_{n})f_{J-1,\varphi(z_{n})}^{(J)}(\varphi(z_{n})).$$

Отметим, что

$$|G_J[g,arphi,J](z_n)||f_{J-1,arphi(z_n)}^{(J)}(arphi(z_n))|(1-|z_n|)^{J-lpha} \ \leq Crac{|G_J[g,arphi,J](z_n)|(1-|z_n|)^{J-lpha}}{\Omega_J^X(|arphi(z_n)|)} o 0$$
 при $n o\infty,$

так как оценка (2.6) имеет место при j=J. Следовательно,

$$|G_{J-1}[g,\varphi,J](z_n)||f_{J-1,\varphi(z_n)}^{(J-1)}(\varphi(z_n))|(1-|z_n|)^{J-\alpha}\to 0 \quad \text{при } n\to\infty.$$

С другой стороны, по предположению

$$\varepsilon \leq \frac{|G_{J-1}[g,\varphi,J](z_n)|(1-|z_n|)^{J-\alpha}}{\Omega_{J-1}^X(|\varphi(z_n)|)} \\ \leq C|G_{J-1}[g,\varphi,J](z_n)||f_{J-1,\varphi(z_n)}^{(J-1)}(\varphi(z_n))|(1-|z_n|)^{J-\alpha}.$$

Полученное противоречие гарантирует, что (2.6) имеет место при j=J-1. По индукции доказываем свойство (2.6) для $j=J-2,\ldots,0$. \square

- **2.5.** Примеры. Для классических пространств $X \subset \mathrm{H}(\mathbb{D})$ функции Ω_j^X обычно известны. В частности, различные примеры приведены в статье [11] для j=0,1. Ниже рассматриваются иные иллюстрации: пространства Харди $H^p(\mathbb{D}),\ 0< p\leq \infty,$ весовые пространства Бергмана $A_\beta^p(\mathbb{D}),\ 0< p<\infty,\ \beta>0,$ а также логарифмические пространства Блоха $\mathcal{B}_{\log_k}(\mathbb{D}),\ k\in\mathbb{N}.$
- **2.5.1. Пространства Харди.** Для $0 пространство Харди <math>H^p(\mathbb{D})$ состоит из тех функций $f \in \mathrm{H}(\mathbb{D}),$ для которых

$$||f||_{H^p(\mathbb{D})}^p = \sup_{0 < r < 1} \int_{\partial \mathbb{D}} |f(r\zeta)|^p dm(\zeta) < \infty,$$

где m — нормированная мера Лебега на окружности $\partial \mathbb{D}$. Относительно указанной нормы пространство $H^p(\mathbb{D})$ является банаховым при $p\geq 1$ и p-банаховым при 0< p<1.

Пусть $X=H^p(\mathbb{D}),\ 0< p<\infty.$ Хорошо известно, что аксиома 1 выполнена для $\Omega^X_i(t)=(1-t)^{j+\frac{1}{p}}.$ Чтобы проверить аксиому 4, положим

$$f_{j,w}(z) = \frac{(z-w)^j (1-|w|)}{(1-z\overline{w})^{j+1+\frac{1}{p}}}, \quad j=0,1,\ldots,J, \quad w,z \in \mathbb{D}.$$

Имеем $|z-w| \leq |1-z\overline{w}|$, поэтому предложение 1.4.10 из монографии [7] гарантирует, что $\|f_{j,w}\|_{H^p(\mathbb{D})} \leq C$. Остается заметить, что

$$C|f_{j,w}^{(j)}(w)| \ge (1-|w|)^{-j-\frac{1}{p}}, \quad w \in \mathbb{D},$$

и $f_{j,w}(z) \to 0$ равномерно на компактных подмножествах круга при $|w| \to 1-.$

Пусть $X=H^{\infty}(\mathbb{D}).$ Тогда аксиома 1 выполнена для $\Omega_{j}^{X}(t)=(1-t)^{j}.$ Для проверки аксиомы 4 достаточно положить

$$f_{j,w}(z) = \frac{(z-w)^j (1-|w|)}{(1-z\overline{w})^{j+1}}, \quad j = 0, 1, \dots, J, \quad w, z \in \mathbb{D}.$$

2.5.2. Пространства Бергмана. Для $0 и <math>\beta > 0$ пространство $A^p_\beta(\mathbb{D})$ состоит из тех функций $f \in \mathrm{H}(\mathbb{D})$, для которых

$$||f||_{A_{\beta}^{p}(\mathbb{D})}^{p} = \int_{\mathbb{D}} |f(z)|^{p} (1-|z|)^{\beta-1} dm_{2}(z) < \infty,$$

где m_2 — нормированная мера Лебега на круге $\mathbb D$. Пусть $X=A^p_\beta(\mathbb D)$. Хорошо известно, что аксиома 1 выполнена для $\Omega^X_j(t)=(1-t)^{j+\frac{\beta+1}{p}}$. Положим

$$f_{j,w}(z) = \frac{(z-w)^j (1-|w|)}{(1-z\overline{w})^{j+1+\frac{\beta+1}{p}}}, \quad j=0,1,\ldots,J, \quad w \in \mathbb{D}.$$

Аксиома 4 имеет место в силу предложения 1.4.10 из [7].

2.5.3. Логарифмические пространства Блоха $\mathcal{B}_{\log_k}(\mathbb{D})$. При $k \in \mathbb{N}$ пространство $\mathcal{B}_{\log_k}(\mathbb{D})$ состоит из тех функций $f \in \mathrm{H}(\mathbb{D})$, для которых

$$||f||_{\mathcal{B}_{\log_k}(\mathbb{D})} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|(1 - |z|^2) \prod_{m=1}^k \log_{(m)} \frac{e^{(k)}}{1 - |z|^2} < \infty,$$

где $e^{(1)} = e, \, e^{(k+1)} = \exp(e^{(k)})$ и $\log_{(1)} = \log, \, \log_{(k+1)} = \log\log_{(k)}.$

Пусть $X=\mathcal{B}_{\log_k}(\mathbb{D}).$ В силу леммы 7 из работы [2] аксиома 1 выполнена для

$$\Omega_0^X(t) = \frac{1}{\log_{(k+1)} \frac{e^{(k+1)}}{1-t^2}}.$$

По определению пространства X

$$\Omega_1^X = (1 - t^2) \prod_{m=1}^k \log_{(m)} \frac{e^{(k)}}{1 - t^2}.$$

Следовательно,

$$\Omega_j^X = (1 - t^2)^j \prod_{m=1}^k \log_{(m)} \frac{e^{(k)}}{1 - t^2}, \quad j \ge 1.$$

Отметим, что функции Ω_j^X убывают на промежутке [0,1). Наконец, для $w\in\mathbb{D}$ положим

$$f_{w,0}(z) = \frac{\left(\log_{(k+1)} \frac{e^{(k+1)}}{1-z\overline{w}}\right)^2}{\log_{(k+1)} \frac{e^{(k+1)}}{1-|w|^2}}, \quad z \in \mathbb{D};$$

$$f_{w,j}(z) = \frac{(1-|w|^2)(z-w)^j}{(1-z\overline{w})^{j+1} \prod_{m=1}^k \log_{(m)} \frac{e^{(k)}}{1-z\overline{w}}}, \quad z \in \mathbb{D}, \quad j \ge 1.$$

Итак, аксиома 4 выполнена

§3. X ЯВЛЯЕТСЯ ПРОСТРАНСТВОМ ЛИПШИЦА

3.1. Общие результаты.

Предложение 3.1. Пусть $J \in \mathbb{Z}_+$ и $X = \Lambda^{\beta}(\mathbb{D})$, $\beta \in \mathbb{R}$. Зафиксируем минимальное число $N \in \mathbb{Z}_+$ такое, что $\beta \leq N$. Тогда аксиомы 1 и 2 выполнены для следующих функций Ω_i^X :

$$\begin{array}{lll} ec \textit{nu} & N>0, & \textit{mo} & \Omega_j^X \equiv 1 & \textit{dis} & j=0,1,\ldots, \min\{N-1,J\}; \\ ec \textit{nu} & \beta < N \leq J, & \textit{mo} & \Omega_j^X(t) = (1-t)^{j-\beta} & \textit{dis} & j=N,\ldots,J; \\ ec \textit{nu} & \beta = N < J, & \textit{mo} & \Omega_j^X(t) = (1-t)^{j-\beta} & \textit{dis} & j=N+1,\ldots,J; \\ ec \textit{nu} & \beta = N \leq J, & \textit{mo} & \Omega_N^X(t) = \frac{1}{\log \frac{e}{1-t}}. \end{array}$$

Доказательство. 1. Пусть N>0 и $j=0,\dots,N-1$. Так как $\beta>N-1\geq 0$, то

$$|f^{(j)}(z)| \leq C \|f\|_{\Lambda^{\beta}(\mathbb{D})}$$
 для всех $f \in \Lambda^{\beta}(\mathbb{D}), \ z \in \mathbb{D}.$

Для $w\in\mathbb{D}$ положим $f_{j,w}(z)=(z-w)^j,\,z\in\mathbb{D}.$ В частности, если N>J, то $\Omega_j^X\equiv 1$ для всех $j=0,\ldots,J.$

2. Пусть $\beta < N \leq J$. По определению пространства $\Lambda^{\beta}(\mathbb{D})$ справедливо неравенство

$$|f^{(N)}(z)|(1-|z|)^{N-eta}\leq \|f\|_{\Lambda^{eta}(\mathbb{D})}$$
 для всех $f\in\Lambda^{eta}(\mathbb{D}),\ z\in\mathbb{D}.$

Следовательно, если N < J, то для $j = N+1, \ldots, J$ имеем

$$|f^{(j)}(z)|(1-|z|)^{j-\beta}\leq C\|f\|_{\Lambda^{\beta}(\mathbb{D})}$$
 для всех $f\in\Lambda^{\beta}(\mathbb{D}),$ $z\in\mathbb{D},$ (3.1) по формуле Коши.

Далее, для $w \in \mathbb{D}$ и $j = N, \dots, J$ положим

$$f_{j,w}(z) = \frac{(z-w)^j}{(1-z\overline{w})^{j-\beta}}, \quad z \in \mathbb{D}.$$

Выполняя непосредственные вычисления и используя неравенство

$$|z - w| \le |1 - z\overline{w}|, \quad z, w \in \mathbb{D},$$

получаем $|f_{j,w}^{(N)}(z)|(1-|z|)^{N-\beta}\leq C,\ z\in\mathbb{D}.$ Если $N\geq 1,$ то $|f_{j,w}^{(k)}(0)|\leq C$ для $k=0,1,\ldots,N-1.$ Напомним, что $N>\beta,$ следовательно, $||f_{j,w}||_{\Lambda^{\beta}(\mathbb{D})} \leq C.$

Непосредственные вычисления показывают, что

$$C|f_{j,w}^{(j)}(w)|(1-|w|)^{j-eta}\geq 1$$
 для всех $w\in\mathbb{D}.$

- Наконец, если $j \geq 1$, то $f_{j,w}^{(k)}(w)=0$ для $k=0,1,\ldots,j-1$. 3. Пусть $\beta=N$ < J. Для j = N+1 оценка (3.1) выполнена по определению пространства $\Lambda^{\beta}(\mathbb{D})$. Следовательно, (3.1) имеет место для j = N + 1, ..., J. Остается повторить для j = N + 1, ..., J рассуждения, использованные в случае $\beta < N \leq J$.
- 4. Пусть $\beta = N \leq J$. По определению пространства $\Lambda^N(\mathbb{D})$ справедливо неравенство

$$|f^{(N+1)}(z)|(1-|z|) \leq \|f\|_{\Lambda^N(\mathbb{D})}$$
 для всех $f \in \Lambda^N(\mathbb{D}), z \in \mathbb{D}.$

Следовательно,

$$|f^{(N)}(z)| \leq \|f\|_{\Lambda^N(\mathbb{D})} \log rac{e}{1-|z|}$$
 для всех $f \in \Lambda^N(\mathbb{D}), \quad z \in \mathbb{D}.$

Положим

$$f_{N,w}(z) = (z - w)^N \log \frac{e}{1 - z\overline{w}}, \quad z, w \in \mathbb{D}.$$

Тогда $\|f_{N,w}\|_{\Lambda^N(\mathbb{D})} \leq C$ и $C|f_{N,w}^{(N)}(w)| \geq \log \frac{e}{1-|w|}$. Наконец, если N>0, то $f_{N,w}^{(k)}(w) = 0$ для $k = 0, \dots, N-1$.

Предложение 3.2. Пусть $J \in \mathbb{Z}_+$ и $X = \Lambda^{\beta}(\mathbb{D}), \ \beta \leq 0$. Тогда аксиомы 1 и 4 выполнены для функций $\Omega_j^X, \ j = 0, \ldots, J,$ введенных в предложении 3.1.

Доказательство. Пусть $\beta<0$ и $j=0,\ldots,J$ или пусть $\beta=0$ и $j=1,\ldots,J$. Для $w\in\mathbb{D}$ положим

$$f_{j,w}(z) = \frac{(1-|w|)(z-w)^j}{(1-z\overline{w})^{j-\beta+1}}, \quad z \in \mathbb{D}.$$

Если $\beta=0$, то для $w\in\mathbb{D}$ положим

$$f_{0,w}(z) = \frac{\left(\log \frac{e}{1-z\overline{w}}\right)^2}{\log \frac{e}{1-|w|}}, \quad z \in \mathbb{D}.$$

Прямые вычисления показывают, что аксиомы 1 и 4 выполнены для $\Omega_0^X(t)=1/(\log\frac{e}{1-t})$ при $\beta=0$, а также для $\Omega_j^X(t)=(1-t)^{j-\beta}$ при $\beta<0$ и $j=0,\dots,J$ или при $\beta=0$ и $j=1,\dots,J$.

Если $X=\Lambda^{\beta}(\mathbb{D})$ при $\beta>0,$ то предложение 2.3 неприменимо. На самом деле, результаты и рассуждения несколько отличаются в этом случае.

Теорема 3.3. Предположим, что $\alpha, \beta \in \mathbb{R}$, $J \in \mathbb{Z}_+$, $J > \alpha$ и $N \in \mathbb{Z}_+$ – минимальное число такое, что $N \geq \beta$. Положим $X = \Lambda^{\beta}(\mathbb{D})$ и рассмотрим функции Ω_j^X , $j = 0, \ldots, J$, определенные в предложении 3.1. Тогда оператор $C_{\varphi}^g: X \to \Lambda^{\alpha}(\mathbb{D})$ компактен в том и только в том случае, когда выполнены следующие условия:

$$\sup_{z \in \mathbb{D}} \frac{|G_j[g, \varphi, J](z)|(1 - |z|)^{J - \alpha}}{\Omega_j^X(|\varphi(z)|)} < \infty$$

$$\partial$$
ля $j = 0, \dots, \min\{N - 1, J\};$ (3.2)

$$\sup_{z\in\mathbb{D}} |G_j[g,\varphi,J](z)|(1-|z|)^{J-\alpha} < \infty \quad \text{dif } j=N,\dots,J;$$
 (3.3)

для любого $\varepsilon > 0$ существует число $r \in (0,1)$ такое, что

$$\frac{|G_j[g,\varphi,J](z)|(1-|z|)^{J-\alpha}}{\Omega_j^X(|\varphi(z)|)} < \varepsilon \quad \partial_{\mathcal{M}} j = N,\dots, J$$
 (3.4)

 $npu |\varphi(z)| > r$. Если N > J, то условия (3.3) и (3.4) отсутствуют.

Доказательство. Если N=0, то достаточно применить предложения 2.3 и 3.2. Для N > 0 ниже видоизменены рассуждения, использованные при доказательстве предложения 2.3.

Предположим, что N>0 и выполнены условия (3.2)–(3.4). Безусловно, рассматриваемый оператор ограничен. Пусть $||f_n||_X \leq C$ и $f_n o 0$ равномерно на компактных подмножествах круга. Заметим, что $f_n^{(j)} \to 0$ равномерно на круге $\mathbb D$ для $j=0,\ldots,N-1$. На самом деле, это наблюдение объясняет, почему результат отличается при $\beta > 0$.

$$\sup_{z\in\mathbb{D}}|G_j[g,\varphi,J](z)||f_n^{(j)}(\varphi(z))|(1-|z|)^{J-\alpha}\to 0$$
 при $n\to\infty,\quad j=0,\dots,N-1,$

в силу (3.2). Повторяя рассуждения, использованные при доказательстве предложения 2.3, получаем

$$\sup_{z\in\mathbb{D}}|G_j[g,\varphi,J](z)||f_n^{(j)}(\varphi(z))|(1-|z|)^{J-\alpha}\to 0$$
 при $n\to\infty,\quad j=N,\dots,J,$

в силу (3.3) и (3.4). Так как $f_n \to 0$ равномерно на круге, то

$$\left| (C_{\omega}^g f_n)^{(k)}(0) \right| \to 0$$
 при $n \to \infty, \ k = 0, \dots, J - 1.$

Таким образом,

$$\|C_{\alpha}^g f_n\|_{\Lambda^{\alpha}(\mathbb{D})} \to 0$$
 при $n \to \infty$.

 Лемма 2.2 гарантирует, что C_{φ}^g — компактный оператор. Для доказательства обратной импликации предположим, что N>0и оператор C^g_ω компактен. Тогда (3.2) и (3.3) имеют место в силу предложений 3.1 и 2.1. Пусть $N \leq J$. Ниже доказано свойство (3.4).

Если $\beta < N$, то для $w \in \mathbb{D}$ положим

$$f_{N,w}(z) = \frac{(1-|w|)(z-w)^N}{(1-z\overline{w})^{N-\beta+1}}, \quad z \in \mathbb{D}.$$

Если $\beta=N$, то для $w\in\mathbb{D}$ положим

$$f_{N,w}(z) = \frac{\left(\log \frac{e}{1-z\overline{w}}\right)^2 (z-w)^N}{\log \frac{e}{1-|w|}}, \quad z \in \mathbb{D}.$$

Если N < J, то для $w \in \mathbb{D}$ положим

$$f_{j,w}(z) = \frac{(1-|w|)(z-w)^j}{(1-z\overline{w})^{j-\beta+1}}, \quad z \in \mathbb{D}, \ j=N+1,\dots,J.$$

Функции $f_{j,w} \in X, j = N, \ldots, J, w \in \mathbb{D}$, удовлетворяют требованиям аксиомы 4. Итак, для проверки свойства (3.4) достаточно повторить индукционные рассуждения, использованные при доказательстве предложения 2.3.

3.2. Операторы композиции. Хорошо известно, что теорема 3.3 существенно упрощается при $g\equiv 1.$ В частности, имеет место следующий результат.

Теорема 3.4. Пусть отображение $\varphi: \mathbb{D} \to \mathbb{D}$ голоморфно и $0 < \alpha < 1$. Тогда следующие свойства эквивалентны:

onepamop
$$C_{\varphi}: \Lambda^{\alpha}(\mathbb{D}) \to \Lambda^{\alpha}(\mathbb{D})$$
 компактен; (3.5)

$$\varphi \in \Lambda^{\alpha}(\mathbb{D}) \ u \lim_{|\varphi(z)| \to 1} |\varphi'(z)| \left(\frac{1 - |z|}{1 - |\varphi(z)|}\right)^{1 - \alpha} = 0; \tag{3.6}$$

$$\varphi \in \Lambda^{\alpha}(\mathbb{D}) \ u \ \|\varphi\|_{\infty} < 1. \tag{3.7}$$

Отметим, что $(3.5)\Leftrightarrow(3.6)$ в силу теоремы 1.4 из статьи [10] или в силу теоремы 3.3; эквивалентность свойств (3.5) и (3.7) доказана в [8]. Так как оператор C_{φ} отсутствует в условиях (3.6) и (3.7), то естественно задать вопрос о прямом доказательстве импликации $(3.6)\Rightarrow(3.7)$. В работе [4] эта импликация получена с помощью теоремы Жулиа–Каратеодори. Следующая лемма показывает, что (3.6) влечет (3.7) в силу леммы Шварца.

Лемма 3.5. Пусть отображение $\varphi : \mathbb{D} \to \mathbb{D}$ голоморфно и $0 < \alpha \le 1$. Тогда следующие свойства несовместимы:

- (i) cymecmeyem moura $\zeta \in \partial \mathbb{D}$ maras, umo $\lim_{t \to 1-} |\varphi(t\zeta)| = 1;$
- (ii) для любого $\varepsilon > 0$ существует число $r \in (0,1)$ такое, что

$$|\varphi'(z)| \left(\frac{1-|z|}{1-|\varphi(z)|}\right)^{1-\alpha} < \varepsilon \quad npu \ |\varphi(z)| > r.$$

Доказательство. Пусть имеют место оба свойства (i) и (ii). Заметим, что

$$\left| \frac{\partial}{\partial \overline{z}} (1 - |\varphi(z)|^2)^{\alpha} \right| = \left| \frac{\partial}{\partial z} (1 - |\varphi(z)|^2)^{\alpha} \right|$$

$$\leq \frac{\alpha |\varphi'(z)|}{(1 - |\varphi(z)|^2)^{1-\alpha}}, \quad z \in \mathbb{D}.$$
(3.8)

Положим

$$\varepsilon = \left(\frac{1 - |\varphi(0)|}{1 + |\varphi(0)|}\right)^{\alpha} > 0.$$

Применяя (ii), зафиксируем $r=r(\frac{\varepsilon}{2})$. Используя (i), выберем число $R=R(r)\in (0,1)$ такое, что $|arphi(t\zeta)|>\stackrel{ au}{r}$ для всех $t\in [R,1)$. Тогда в силу (3.8) имеем

$$(1 - |\varphi(R\zeta)|^2)^{\alpha} = \left| (1 - \lim_{t \to 1^-} |\varphi(t\zeta)|^2)^{\alpha} - (1 - |\varphi(R\zeta)|^2)^{\alpha} \right|$$
$$< \varepsilon \int_{R}^{1} \frac{\alpha}{(1 - t)^{1 - \alpha}} dt = \varepsilon (1 - R)^{\alpha} < \varepsilon (1 - R^2)^{\alpha}.$$

Однако лемма Шварца, примененная к композиции подходящего преобразования Мёбиуса и φ , гарантирует, что

$$\left(\frac{1-|\varphi(R\zeta)|^2}{1-R^2}\right)^{\alpha} \ge \varepsilon.$$

Полученное противоречие завершает доказательство леммы.

3.3. Дифференцирование композиции. Пусть *D* – оператор дифференцирования. Весьма замысловатые описания для ограниченных и компактных операторов $DC_{\varphi}: H^{\infty}(\mathbb{D}) \to \Lambda^{1}(\mathbb{D})$ были недавно получены в работе [3]. В силу теоремы 3.3 или леммы 3.5 такие операторы характеризуются простыми явными условиями.

Следствие 3.6. Пусть отображение $\varphi:\mathbb{D}\to\mathbb{D}$ голоморфно. Тогда следующие свойства эквивалентны:

- (i) one pamop $DC_{\varphi}: H^{\infty}(\mathbb{D}) \to \Lambda^{1}(\mathbb{D})$ ограничен; (ii) one pamop $DC_{\varphi}: H^{\infty}(\mathbb{D}) \to \Lambda^{1}(\mathbb{D})$ компактен;
- (iii) $\varphi \in \Lambda^2(\mathbb{D}) \ u \ \|\varphi\|_{\infty} < 1.$

Доказательство. Пусть имеет место условие (i). Полагая f(z)=z, получаем $DC_{\varphi}f=\varphi'\in\Lambda^1(\mathbb{D}),$ т.е. $\varphi\in\Lambda^2(\mathbb{D}).$ В силу свойства (i) ограничен оператор $DC_{\varphi}:H^{\infty}(\mathbb{D})\to H^{\infty}(\mathbb{D}).$ Используя тестовые функции

$$f_w(z) = \frac{(z-w)(1-|w|)}{(1-z\overline{w})^2}, \quad z, w \in \mathbb{D},$$

получаем, что

$$\sup_{z \in \mathbb{D}} \frac{|\varphi'(z)|}{1 - |\varphi(z)|} < \infty.$$

В силу леммы 3.5 имеем $\|\varphi\|_{\infty} < 1$. Итак, (i) влечет (iii). Проверка импликации (iii) \Rightarrow (ii) стандартна. Наконец, из (ii) следует (i).

§4. Заключительные замечания

4.1. Смежные интегральные операторы. Для $g\in \mathrm{H}(\mathbb{D})$ и голоморфного отображения $\varphi:\mathbb{D}\to\mathbb{D}$ оператор типа Вольтерра $V_{\varphi}^g:\mathrm{H}(\mathbb{D})\to\mathrm{H}(\mathbb{D})$ задается формулой

$$(V_{\varphi}^g f)(z) = \int\limits_0^z f(\varphi(w))g'(w)\,dw, \quad f\in \mathrm{H}(\mathbb{D}), \ z\in \mathbb{D}.$$

Если $\varphi(z)\equiv z$, то оператор V_{φ}^g обозначается символом J_g и его называют обобщенным оператором Чезаро (см. [6]). Так как $(V_{\varphi}^g f)'=C_{\varphi}^{g'}f$, то рассуждения, использованные в данной работе, применимы к операторам типа Вольтерра $V_{\varphi}^g:X\to\Lambda^{\alpha}(\mathbb{D})$ при $\alpha\in\mathbb{R}$.

4.2. Обобщенные пространства Липшица. Пусть $J \in \mathbb{Z}_+$ и функция $\Phi:[0,1) \to (0,+\infty)$ является невозрастающей. По определению, пространство $\Lambda^{J,\Phi}(\mathbb{D})$ состоит из тех функций $f \in \mathrm{H}(\mathbb{D})$, для которых

$$||f||_{\Lambda^{J,\Phi}(\mathbb{D})} = \sum_{j=0}^{J-1} |f^{(j)}(0)| + \sup_{z \in \mathbb{D}} |f^{(J)}(z)| \Phi(|z|) < \infty.$$

Например, $\mathcal{B}_{\log_k}(\mathbb{D}) = \Lambda^{1,\Phi_k}(\mathbb{D})$, где

$$\Phi_k(t) = (1 - t^2) \prod_{m=1}^k \log_{(m)} \frac{e^{(k)}}{1 - t^2}.$$

Отметим, что предложения 2.1 и 2.3, а также их доказательства переписываются с минимальными изменениями для весовых операторов композиции $C^g_{\varphi}: X \to \Lambda^{J,\Phi}(\mathbb{D}).$

Литература

- C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions. — Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
- S. G. Krantz, S. Stević, On the iterated logarithmic Bloch space on the unit ball.
 Nonlinear Anal. 71 (2009), no. 5-6, 1772-1795.
- 3. Y. Liu, Y. Yu, Composition followed by differentiation between H^{∞} and Zygmund spaces. Complex Anal. Oper. Theory, published online: 22 May 2010; doi:10.1007/s11785-010-0080-7.
- P. J. Nieminen, Compact differences of composition operators on Bloch and Lipschitz spaces. — Comput. Methods Funct. Theory 7 (2007), no. 2, 325-344.
- S. Ohno, K. Stroethoff, R. Zhao, Weighted composition operators between Blochtype spaces. — Rocky Mountain J. Math. 33 (2003), no. 1, 191-215.
- Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. — Comment. Math. Helv. 52 (1977), no. 4, 591-602.
- 7. У. Рудин, Теория функций в единичном шаре из \mathbb{C}^n . Мир, М., 1984.
- J. H. Shapiro, Compact composition operators on spaces of boundary-regular holomorphic functions. Proc. Amer. Math. Soc. 100 (1987), no. 1, 49-57.
- 9. J. H. Shapiro, Composition operators and classical function theory. Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.
- 10. J. Xiao, Composition operators associated with Bloch-type spaces. Complex Variables Theory Appl. 46 (2001), no. 2, 109–121.
- Z. Zhou, R. Chen, Weighted composition operators from F(p,q,s) to Bloch type spaces on the unit ball. — Internat. J. Math. 19 (2008), no. 8, 899-926.

Dubtsov E. S. Weighted composition operators into Lipschitz spaces.

We investigate bounded and compact weighted composition operators that map into holomorphic Lipschitz spaces.

Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, наб. р. Фонтанки, 27, Санкт-Петербург 191023, Россия E-mail: dubtsov@pdmi.ras.ru

Поступило 23 мая 2011 г.