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A. L. Chistov

EFFECTIVE CONSTRUCTION OF A NONSINGULAR
IN CODIMENSION ONE ALGEBRAIC VARIETY
OVER A ZERO-CHARACTERISTIC GROUND FIELD

ABSTRACT. Let k be a field of zero-characteristic finitely generated over a
primitive subfield. Let f be a polynomial of degree at most d in n variables
with coefficients from k and irreducible over an algebraic closure k. Then
we construct a nonsingular in codimension one algebraic variety V' and a
finite birational isomorphism V' — Z(f) where Z(f) is the hypersurface
of all common zeroes of the polynomial f in the affine space. The working
time of the algorithm for constructing V' is polynomial in the size of the
input.

Let f be a polynomial of degree less than d in n variables with co-
efficients from a field k finitely generated over a primitive subfield and
irreducible over an algebraic closure k of k. Then we construct an affine
nonsingular in codimension one algebraic variety V' (i.e., the set of sin-
gular points Sing(V') of V' has codimension at least one in V') which is
birationally equivalent to the hypersuface Z(f) of all common zeroes
of the polynomial f. Moreover, the constructed birational isomorphism
V — Z(f) is finite. The working time of the algorithm for constructing
V' is polynomial in the size of the input. The degree of the variety V is
(deg Z(f))°W) with an absolute constant in O(1). This algorithm is based
on the polynomial-time bounds for the complexity of the Newton-Puiseux
algorithm [1] and important additional constructions from [2].

In the case of a nonzero characteristic ground field to obtain a similar
algorithm with the same (or similar) working time is an open problem.
Still the results analogous to those obtained in [1] and [2] also valid for
a finite constant field. They can be obtained on the basis of the author’s
papers [4] and [5]. However, the fundamental problem here is not in esti-
mating the sizes of the coefficients (as in [1], [2]), but in the presence of a
higher-order ramification for extensions of fields of formal power series of
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nonzero characteristic, where it becomes impossible to select in advance
a uniformizing element in the extension (in the case of local and global
fields of zero—characteristic we have here similar difficulties and even more
of them). I would like also to notice that in the English translation of [4]
two pages are given in the wrong order: one must permute pages 1913
and 1914. The detailed version of [5] was planned for publication in one of
the volumes of Zapiski Nauchn. Semin. LOMI in the series “Complexity
Theory of Computation”(as all the other my results of the of that time)
but not appeared by the reasons independent of the author.

The problem considered in this paper is the first part of our algorithm
for effective normalization of an algebraic variety in zero—characteristic.
If we got V' then the normalization of Z(f) can be constructed using the
algorithm from [3] (it can be applied in arbitrary characteristic) and all
is reduced to solving a linear equation aX + bY + ¢Z = 0 over a ring of
polynomials.

As far as I know so far there have not been obtained or published other
algorithms of polynomial complexity similar to the one from [2] (probably
the main difficulty here is to estimate the size of coefficients from the
ground field of the obtained objects). In spite of their importance we have
not presented the results of [2] at any conference in detail. So it is a high
time to do it in a slightly new situation. In [2] we present also at length
with the proofs all the estimates for the result of [1]. Recently I have looked
through [2] and found minor corrections. In the Introduction there must
be F = Q(T4,-..,T;)[n] in place of F = Q(T1,...,T;) as it is seen from
the context. In the assertion of Lemma 2.1 one must add & # ; (notice
that in [1] in the same lemma this condition is not absent, everything is
correct). Further, one should delete in [2] one wrong sentence on page 147,
line 18 from below (respectively in English translation of [2] on page 866,
line 18 from below): “If elements w; and w; coincide...”. Actually all these
and several other corrections are straightforward if one reads the paper
attentively (and to understand the paper one needs to do it). Due to the
importance of Lemma 2.1 [2] we formulate it in the Appendix at the end
of the paper for the convenience of the reader.

At present we would like to apply the results from [2] but we have an
(n—1)-dimensional variety Z(f) at the input of the algorithm in place of a
curve in [2]. Still we can replace our variety Z(f) by the curve considering,
say, the first n — 2 variables as elements of the new ground field and after
that apply the results of [2]. If we apply the results of [2] directly we get
slightly less strong estimates than the ones from Theorem 1, see below.
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So one need at present following the method of [2] carefully analyze all
the estimations again.

Now we proceed to exact statements. Let the field & = Q(¢y, ... ,#)[6]
where t1, ... ,#; are algebraically independent over the field Q, [ > 0,
and 6 is algebraic over Q(t1, ... ,#;) with the minimal polynomial F €
Q[t1, ... ,t;, Z], and leading coefficient lcz F' of F is equal to 1. Let
f € k[X1,...,Xp], n > 2, be a polynomial irreducible over the algebraic
closure k. Denote by lcx, (f) the leading coefficient of the polynomial
f with respect to X,,. We shall suppose additionally that lcx (f) = 1.
This is a condition of general position which can be easily satisfied per-
forming a nondegenerate linear transformation of the coordinate func-
tions with coefficients from Z (but notice that after a linear transfor-
mation of the coordinates one can get a polynomial with the upper
bound for the degree nd; so, may be, it is more natural to consider in
a statement a polynomial of total degree at most d, see Corollary 1).
The ring of regular functions defined over k of the algebraic variety
Vo = Z(f) is k[Vo] = k[X1,...,Xn]/(f). The field k(Vp) of rational
functions defined over k of the variety V; is the field of fractions of
the ring k[X1,...,X,]/(f). Put x, = X, mod f € k[Vp]. Denote by
A = Resy, (f,0f/0X,) the discriminant of the polynomial f with re-
spect to X,,.

We shall represent the polynomial f in the form

1 S )
— 2 tn
f=0 X2 X e agt XX M
O i1 in 0<j<deg, F
where ag, @iy ... 3,5 € Z[tl,... ,tl], GCDihm,imj(ao,ail,,,,JMj) = 1. De-

fine the length 1(a) of an integer a by the formulal(a) = min{s € Z :: |a| <
25711, The length of coefficients 1(f) of the polynomial f is defined to be
the maximum of lengths of coefficients from Z of polynomials ag, a;, ,... i, ,j
and the degree
deg; (f) = max {deg, (ao),deg; (i, . i..;)},
21,---50n,]
where 1 < v < [. In the similar way we shall define degrees and lengths
of integer coefficients of other polynomials, in particular deg; F'and 1(F)
are defined.
We shall suppose that we have the following bounds

degx, (f) < d, deg, (f) <d2,1(f) <M,
degy (F) < di, deg, (F) <dy, I(F) < M, (2)
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forall 1 <i<mn,1<+v<I. The size L(f) of the polynomial f is defined
to be the product of 1(f) to the number of all the coefficients from Z of f
in the dense representation. We have

L(f) < (d"d, + 1)d\M
Similarly L(F) < d™* M;.

Theorem 1. Under previous conditions one can construct an element
z € k(Vp) integral over the subalgebra k[ X, ... , X,_1] and satisfying the
following properties.

(i) z is a primitive element of the extension k(Vp) D k(X1,...,X,—1).

(ii) Let usrepresent z = ( 5.  za!)/A where all
0<i<degy, f

z; € k[X1,...,Xn_1]. Then the degrees and the lengths of integer
coefficients

degy zi = dO(l), deg, z; = dz(dld)o(l),
1(z;) = (My + My + 1 + n)dy(dyd)°V

foralli and 1 < m <n—1,1 < a <1 with absolute constants in
o(1).

(iii) Suppose that degy, x , f<d. Thendegy, y, 2= d'd®®
foralll <i< degyx f.

(iv) The working time of the algorithm for constructing elements z;, zo
is polynomial in My, My, (dyd»d)'*', d*. Hence it is polynomial in
L(f), L(F) ifl is fixed (i.e., if l is considered as a constant; notice that
it is general situation for all our algorithms). Denote by V the defined
over k affine algebraic variety with the ring of defined over k regular
functions k[X1,... , X,—1][Tn,2]. Hence V. C A"*1(k) and there is
a finite birational isomorphism of defined over k affine algebraic
varieties V' — Vj induced by the inclusions of the rings of regular
functions. Denote by D the degree of the affine algebraic variety
Vo = Z(f) (by definition the degree of an affine algebraic variety is
the degree of its closure with respect to the Zariski topology in the
corresponding projective space), hence D < nd. Finally, we have

(v) the degrees of the algebraic variety degV = DU) with an absolute
constant in O(1).

All the constants O(1) in this theorem can be computed explicitly. It
would be interesting to find the minimal values of the constants O(1) in
this theorem, especially in assertion (v) related to degrees of algebraic
varieties. In (ii) using [2] one can obtain more precise bounds.



EFFECTIVE CONSTRUCTION 171

Corollary 1. Let us replace the conditions degy, f <d, 1 <m <n by
degy, . x, f <d. Then a new version of Theorem 1 holds true. Namely,
to obtain this version one must replace in (i) degy z; = d°W) for all

I1<i<n—1lbydegy, . x, %= d°M) and in (iv) d" by (”'Hiom) with
an absolute constant in O(1).

Sketch of the proof. Let us replace n by n + 1, X;,...,X,, by
Xo, ..., Xy, the polynomial f by its homogenization

F=xg T p X X, X Xo)

and apply Theorem 1 to the polynomial f. Since f is homogeneous all
the elements appearing in the proof of Theorem 1, see Section 1, can be
chosen to be homogeneous and they have the degrees d°(!) with respect to
Xo, ... , Xy Using, e.g., the criterion of irreducibility from [6] one can sug-
gest a version of the algorithm for factoring homogeneous polynomials of
degree d’ in n + 1 variables with the complexity polynomial in (n+(d7;)0(1)

and the maximum of lengths of its coefficients from the ground field. All
the other algorithms applied in the proof of Theorem 1 are also have the
similar bounds for complexity for homogeneous polynomials at the input.
Thus by Theorem 1 with f in place of f we get an element Z within the
required working time. Now it is sufficient to put z = Z|x,=1. ]

Corollary 2. Let us replace in the statement of Corollary 1 n by n + 1,
X1,..., X, by Xo,...,X,, and assume that f is homogeneous. Then the
assertion of Corollary 1 holds and all the elements z; and z (i.e., the poly-

nomial 33 ; _qeg 7 #iX,,) are homogeneous. Let v = deg( > zX,)—
0<i<deg f
deg A be the homogeneous degree of z, hence v = d°Y), Denote by B the
subring of k[V] generated by all the homogeneous elements of degree v of
k[V]. So B is a graded ring. Put the new homogeneous degree of a homoge-
neous element b € B to be (degb)/v where degb is the (old) homogeneous
degree of b. Thus, we introduce the new graduation on B, and B be-
comes a homogeneous ring of a projective algebraic variety V; C PN (k),
N = (":n) The variety V; is nonsingular in codimension one and there is a
finite birational isomorphism of projective algebraic varieties Vi — Z(f)
(here Z(f) C P"(k)) induced by the inclusions of rings B C k[V] and
k[Vo] C k[V]. By the Bézout theorem the degree degV; = d°". Further,
one can construct a linear projection = : PN (k) — P**2(k) inducing the
finite birational isomorphism Vi — w(Vy) = Vi of projective algebraic
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varieties and the variety V5 is nonsingular in codimension one, the degree
deg Vo = d°™, The working time of the algorithm for constructing the
variety V5 is polynomial in d"” and the size of the input, i.e., in d"” and
My, My, (dydyd)! L.

Proof. It is not difficult to construct a linear projection 7’ : PN (k) —
P+ (k) inducing the finite birational isomorphism V; — 7/(V}) = Va.
Now V3 = Z(f3) € P**1(k) is a hypersurface. Let P**'(k) have homo-
geneous coordinate functions Xp,... ,X,. We compute the polynomial
f3. We can suppose without loss of generality performing if necessary a
nondegenerate linear transformation of the coordinates that the leading
coefficient lcx, f3 = 1. Let us replace in the construction of Section 1
(f,k[V']) by (fs,k[Vi]) where k[V1] is a homogeneous ring of the projec-
tive algebraic variety Vi. Then we obtain at the output of this construc-
tion the homogeneous ring of some projective algebraic variety in place
of k[X1,...,Xn_1][®n, z]. By definition V5 is the last projective algebraic
variety. The estimation of the working time for constructing Vo now fol-
lows immediately from Theorem 1 (and the construction of Section 1).
O

I would like also to note that one can suggest a version of the algorithm
for Theorem 1 which does not use factoring polynomials over Q (or over
any finitely generated extension of Q). Finding square-free parts of polyno-
mials over such fields is sufficient. Even the condition that f is irreducible
over k can be omitted and then at the output we get equidimensional
algebraic varieties (i.e., all the irreducible components of the varieties at
the output have the same dimension) nonsingular in codimension one.

Remark 1. Theorem 1 slightly strengthen Theorem 1 from [7]. To get
the last theorem it is sufficient to take zy = z,,, 20 = z and V;, =V where
V and z are from Theorem 1.

In Remark 1 of [7] we wrote that in the homogeneous case the degree of
the obtained projective algebraic variety is the same as in the affine case.
It is not true in general. Actually we meant there the degree of the affine
algebraic variety with the ring of regular functions k[X,... , X,—1][zn, 2]
which is a graded ring if f is homogeneous. The required projective alge-
braic variety can be glued using affine algebraic variety of degrees d°)
but to obtain an embedding into the projective space in the case degz > 1
we need a kind of the Veronese mapping and get the degree d°(™ see
Corollary 2.
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REDUCTION TO THE CASE OF A CURVE

The aim of this section is to prove Theorem 1 reducing everything to
the case of a curve which will be considered in Section 3.
Let 1 <i¢ < n—1 be an integer. Put the multiplicatively closed set

Si=k[X1,..., Xi—1, Xig1,. .., Xp1] \ {0},

the field
kl’ - Sz_lk[Xl, ;Xi—laXi—i-l;--- 7Xn—1]-

Let A2(k;) have coordinate functions X;, X,, Denote by C; € A2(k;) the
affine curve defined over the field k; with the ring of regular functions
ki[Ci] = S; k[Vo] = ki[Xi, X,/ (f)- Notice that the curve C; is irreducible
over k; by the Gauss lemma since f is irreducible over k.

Denote by B; the integral closure of k;[C;] in its field of frac-
tions, i.e., in the ring of rational functions k(Vp). For every 1 < i <
n — 1 let us apply Theorem 3, see Section 3 replacing T4,...,T,
by X1,...,X;—1,Xi4+1,...,Xpn_1, and construct a system of generators
Yils--->Yim: of the k;[C;]-module B;. We shall suppose without loss of
generality in what follows that

vii = D, Yieeh)/A (3)

0<g<degy, f

where y; ;4 € k[X1,... ,X,—1] for all 4, j,q.

Denote by yi,...,ym the family consisting of all the elements y; ;,
1<j<my 1 <7< n—1, and the element z,,. From Theorem 3 we
get immediately m = nd°®. Put A = k[X1,...,Xp 1,01, ,Ym] C
k(Vp). Denote by V' the algebraic variety with the ring of defined over
k regular functions A’. From the described construction and the Zariski
main theorem we get immediately.

Lemma 1. The algebraic variety V' C A"~1*™(k) is nonsingular in codi-
mension one, and the inclusion of rings of regular functions induces the
finite birational morphism V' — Vj. O

Let us compute the discriminant A € k[X;,...,X,,_1] of the polyno-
mial f with respect to X,,. Using the algorithm for factoring polynomials
from [8] we decompose A = Ao [[;c; (5? where all §; € k[X4,... , Xpn1]
are irreducible, pairwise distinct, ¢; > 1 are integers and Ag € k.
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Notice that for every irreducible factor § = d; dividing A there is ¢ such
that S; C k[Xy,...,X,-1]\(0) and hence the localization k[V]5) D k:[C;].
We choose such an index i = i(j) for every j € J. Applying Theorem 3
from Section 3 we construct all the maximal ideals m, C k;[C;], v € T
such that m, D (d;). Moreover, m, = (J;,7) for an element 7, € B;
which is constructed.

Denote by p : V' — A" (k) the finite projection induced by the
inclusion of ring of defined over k functions k[V'] D k[X1,...,X,-1]
Notice that the irreducible over k components of the algebraic variety
p~1(Z(8;)) are in the one-to—one correspondence with the maximal ideals
my, v € I';. More precisely, denote by W, the irreducible over k¥ compo-
nent of p~'(Z(d;)) corresponding to m, and by k(W) the field of rational
functions defined over k of this algebraic variety. Then the natural homo-
morphism k[V'] — By;)/m, induces the isomorphism k(W.) — Bj(;)/m,.
In the other words the last isomorphism defines a generic point defined
over k of the algebraic variety 1W,. We shall denote it by w-.

Let us represent W, = ULe I E, where E, are the irreducible over k
components of W,. They are conjugated over the field £ and hence have
the same dimension. We shall suppose without loss of generality that
1,,N1,, = @ for all distinct 1,72 € I'; for every j € J. Put I; = U, ¢, Iy
for every j € J.

Notice that each component E, contains a smooth point of V' since
V' is nonsingular in codimension one. It is known that in this case any
generic point e, of F, is a smooth point of the variety V’. We choose and
fix the generic points e, such that the zero-dimensional algebraic variety
corresponding to each w, contains only the points e,.

Let Yi,...,Y,, be new variables and L € k[Y7,...,Y,,] be a linear
form. Let us define the morphism

pp V= A™ME), z (X1(2),. .., Xno1(2), Ly, -, ym)(2)).

Since p is finite dominant we have py, (V') = Z(f1,) for the uniquely defined
irreducible polynomial f;, € k[Xi,...,X,] with the leading coefficient
lex, fo =1. Denote by p; : V' — pr(V') the finite dominant morphism
induced by pg.

Let 5 € J. Consider the following conditions:

1) The fields k(Xy, ..., Xpn—1,L(y1,--- ,ym)) = k(V) coincide.

2) The differential d, pr, is a monomorphism for every ¢ € I;.

3) For all distinct t1,t2 € I; we have pr(e,,) # pr(e.w,).
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Lemma 2. Let L € k[Y3,...,Y,,] be a linear form and j € J. Then the
following conditions are equivalent.
(a) For the linear form L all conditions 1), 2), 3) hold true.
(b) The morphism p’; is finite birational and p’ (e,) is a smooth point
of the hypersurface Z(fr) for every v € I;.
(c) The degree degx  frL = degx, f and for every v € I'; at least one of
n elements

OfL
0X;

(Xla"'7Xn—17L(y17"'7y’m))7 lézgn,

does not belong to the ideal m, C Byj.

Moreover, (b) implies by the Zariski main theorem that the differential
de, Py, is an isomorphism for every ¢ € I;.

Proof. To deduce (b) from (a) one can apply the implicit function theo-
rem for formal power series (we leave the details to the reader here). The
inverse implication follows from the Zariski main theorem. The equiva-
lence of (b) and (c) is straightforward from the definitions. O

Further, we get immediately the following two lemmas.

Lemma 3. There are at most (nd)®(") integers c satisfying the following
property. For the linear form L = Y c'Y; there is j € J such that at

1<i<m
least one of conditions 1), 2), 3) does not hold. O
Lemma 4. Let L,L' € k[Y1,...,Y.,] be linear forms. Suppose that for

all j € J conditions 1), 2), 3) are satisfied for the linear form L. Then for
all t € k, except at most a polynomial in (nd)°") number, conditions 1),
2), 3) are satisfied for the linear form L + tL' (in place of L). O

Now we are going to describe how to construct an element z from the
statement of Theorem 1. Let us enumerate integer ¢ = 0,1, 2,. ... For the

considered ¢ put L = Y. ¢'Y;. Using representations (3) and solving a
1<i<m

linear system over the field k(Xy,... ,X,—1) we construct the polynomial

fr- Applying Theorem 3 from Section 3 we decide whether

(x) assertion (c) of Lemma 3 holds for every v € I'; for every j € J.

If (x) is not fulfilled then we proceed to the next c¢. By Lemma 2 and
Lemma 3 there is ¢ = (nd)°() such that () holds true. We shall find
such an integer ¢ and stop the enumeration at this ¢ = ¢y.
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Now we describe a new recursion on (L,«a) where L is a linear form
and 1 < a < m is an integer. At the beginning of this recursion a« = 1 and
L= 3 Y. Let us describe the step of this recursion with the input

1<i<m
(L,a). Let L = > 1;Y;, where all [; are integers. By Lemma 4 with
1<i<m
L' =Y, applying Theorem 3 from Section 3 (ounly its assertion related to
¢ € my) we construct a new linear form L” = Z1<i<m iza liYi + taYa
satisfying property (*) with L” in place of L and an integer to, = (nd)°).
Put the new linear form L to be L”. If « + 1 < m we proceed to the next
step with the input (L,a + 1). If @ = m then we stop, i.e., the step with
« = m is final.

Put z = L(y1,... ,ym) for the constructed linear form L. Now asser-
tions (i)-(iv) of Theorem 1 hold true by the Zariski main theorem and
Theorem 3 from Section 3.

It remains to prove (v). Let u = {u;;}, 1 <i<n,1<j<n+1l,
and k(u) be the extension of k by all the elements u; ; from the family
u. Hence the transcendency degree of the field k(u) over k is n(n + 1).

Put uw; = > Ui j X + UinTy + Uiny12, 1 < 4 < n. Then there
1<jsn—1

is an irreducible over k(u) polynomial ® € k(u)[Xy,...,X,] such that

®(uq,...,u,) = 0. The polynomial ® is uniquely defined up to a nonzero

factor from k(u). From the Bézout theorem we deduce that the degree
degV =degy, . x, @

There is a nondegenerate k(u)-linear transformation of the elements u;,
1 < i < n, such that the transformed elements

u;): Z Av,ithi = Xy + poln, 1<v<n-—1,
1<i<n

Uy, = § An,iui =2z + fnTn,
1<i<n

~

where all Ay, py € k(u), 1 < i,v < n, and the transcendency degree of
the field k(u1,- .., un) over k is n. Hence there is a polynomial ® such
that ®'(uf,... ,u,,) =0 and deg ® = deg ¥’.

Put f/ = f(X1 —mXn, .., Xn—1 — pn—1Xn, Xp). Then

fl(ulla"' 7u;’z—1axn) = 07

the polynomial f’is irreduciblein k(u) (X1, ... , X,—1)[Xy] and degx  f'=
degy, . x,f = degVy. Set the fields K = k(u)(Xy,...,X,-1) and
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K' =K[T]/(f'(X1,...,Xn-1,T)) where T is a new variable. Put
t=Tmod f/(X1,...,Xn_1,T) € K.

Recall that z = ( > zizh) /A where all 2; € k[X1,...,X,—1]. Put
0<i<degy, f

zi = 2i(X1 —mt, ..., Xn_1 — pn_a1t), 0<i<degy, f,
A" = A(Xl —pt,... 7Xn—1 - un—lt)a

and 2/ = > 2/t'. We have 0 # A’ € K’ since, otherwise, by the
0<i<degy, f

Gauss lemma f’ divides A(X; — 11 Xp, ... , Xn—1 — tn—1X,) in the ring

kE(u)[X1,...,X,] and this implies a contradiction: f divides A.

Consider the mapping of the norm N : K'(X,) — K(X,). Now
0# @ =NA'X, — (' + ppA't)) € k(u)[X1,...,X,] since lex, f' €
k(w). Further, according to our definitions ® divides ®”. Hence, deg &’ <
deg ®”. Therefore, it is sufficient to prove deg ®’ = D),

We can compute ®” as the determinant of the matrix corresponding
to the K(X,,)-linear mapping

K'(X,) = K'(X,), aw— (A'X, — (' + p,A’t))a

taking ', 0 < i < degf as a basis of K'(X,) over K(X,). Now the
required bound deg & = DM follows from (ii) and (iii). The theorem
is proved (modulo Theorem 3).

2. A VERSION OF THE THEOREM ON FACTORING
POLYNOMIALS OVER FIELDS OF FORMAL POWER SERIES

In [2] we describe polynomial-time algorithms for factoring polynomials
over the fields k((X)), k((X)) and Q = k((X)) = U1 k(X)) (now k
plays the role of the field F' from [2]) with estimations of sizes of all the
objects from these algorithms. In the case of ) we get also explicit upper
bounds for all degrees and lengths of integer coefficients of these objects
(for k((X)) and k((X)) one can also get them analogously but we just
omit the details in [2] in these cases). Now for the proof of Theorem 3
from Section 3 we need to obtain similar algorithms and estimations for a
more general field of coefficients K in place of k. We refer explicitly only
to the case of the field K ((X)) in Section 3. So we formulate our result
only over the field K((X)), see Theorem 2 below.
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Namely, let £ be the field from the Introduction, T1,...,T,, be new
variables, m > 0, and the field K = k(Th,...,T). Let f € K[X,Y]
be a polynomial. Set X; = X, Xo = Y. We represent f it in the
form (1) with n = 2 but now all ag,as,,i,,; € Zlt1,...,t,T1,... ,Tnl,
GCDi1,i2,j (ao, ai17i27j) = 1 in this ring. We define

deng (f) = max.{degTB (GO)J degTB (ai1,i2 ,j)}? 1 < ﬁ < m,

21,22,]
deng,... T (f) = illf}ia;‘ij{degn,... T (ao), deng7...7Tm (ah,iz,j)}-

The degrees deg, f, 1 <~ <, the length of integer coefficients I(f)
are defined in the same way as in the Introduction. Similarly are defined
the degrees degy,, 1 < 8 < m, degy, . 1, deg, , 1 <~ </ and the
length of integer coefficients of other elements (e.g., of the polynomials
9#(N), fiz(N), see below).

We shall suppose that (1), (2) hold, see the Introduction, and addition-
ally

degy, 1, (f) <da, degTﬁ(f) <dz, 1<B<m.

We shall assume that the leading coefficient lcy f = 1 and hence deg f =
degy- f. Consider the decomposition into the irreducible factors

F=11r (4)

icl

over the field K((X)). Additionally suppose that lcy f; =1 for all i € J.
Recall that K[[X]] denotes the ring of formal power series of X over K.
Let ¢ = f; be an arbitrary factor. Then it is represented in the form

g = > g;Y7 where all g; € K[[X]] since the coefficients g; are
0<j<degy g

integral over K[X]. Hence g; = Y g;: X" where all g;; € K. For a real
>0
number N by definition put

ge(N)= > Y 3 g X' €k[X,Y],

0j<degy g 0<i<N

hence if N > 0 is an integer then XV *1 divides g — g#(IN) in the ring
K[[X]] and degx g%(IN) < N. So g#(N) € K[X,Y] is the N-th approx-
imation of the polynomial ¢ € K[[X]][Y]. We shall say, cf. [2], that the
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decomposition (4) is constructed by an algorithm within the time poly-

nomial in Ay,...,A4, (here A; depends on the input data) if for every
integer NV > 0 using this algorithm one can construct within the time
polynomial in A;,...,A,, and NT™*! the set of indices I and for all

i € I the polynomials f;«(IN) and integers e;.
Theorem 2. One can construct decomposition (4) within the time poly-
nomial in (dydad)'*!, (dsd)™, d, My, M. Moreover, for every integer
N > 0 for all © € I we have the following estimations for degrees and
lengths of integer coefficients
deg, fi#(N) = Ndp(d1d)®V, 1
degr, fi#(N) = Ndsd®V, 1<p
l(f,#(N)) = Nlog(N + ].)(Ml + My + 1+ m)(dz + d3)(d1d)o(1),
degy, . 1, fiz(N) = Ndad®",

v <,
m

(
(

<
<

)

PLAN FOR THE PROOF. At first one needs to consider the esti-
mations for the algorithm for factoring polynomials over the field ; =
U1 K((X'/")). They are similar to the ones from Theorem 2 [2] and
the required bounds for degrees and lengths of integer coefficients for the
field K in place of k are obtained analogously to Section 2 of [2] where the
complexity of the Newton—Puiseux algorithm is estimated. After that it
is sufficient to collect together factors conjugated over the field K((X)),
cf. Section 3 of [2]. To estimate the complexity notice that actually every-
thing is reduced to factoring polynomials over the field K (and its finite
extensions) and solving linear systems of size d°(!), From here the bounds
from the statement of the theorem follow directly, cf. [2]. O

Note that the estimates for degrees and lengths of integer coefficients
from the statement of the theorem are not sharp (but they are sufficient
for our aims), one can obtain here more fine bounds, cf. the statement of
Theorem 2 [2].

3. CONSTRUCTING A SMOOTH AFFINE CURVE

In Section 4 of [2] we prove Theorem 3 [2] and suggest an algorithm
for constructing the normalization of the affine curve Z(f) C A%(F) for
a polynomial f € F[X,Y] irreducible over F. The field F is similar to
the field k£ from the Introduction. Now our aim is to obtain in Theo-
rem 3 the analogous result for the field K in place of F' and a polynomial
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f € K[X,Y] irreducible over K (it is not necessarily irreducible over
K but actually it does not change anything). Since the situation now is
slightly different in comparison with [2] we repeat the required part of
the construction from [2] in the proof of Theorem 3 below for this more
general situation of the field K (in place of k). Simultaneously we would
like to correct minor inexactitudes from Section 4 of [2] (factually it can
be easily done by the reader from the context).

Let f € K[X,Y] be the polynomial from Section 2. Hence the leading
coefficient lcy f = 1 and f satisfies the same estimates for all the degrees
and length of integer coefficients. Now additionally we shall suppose that
the polynomial f is irreducible over K. Let V; = Z(f) C A?(K) be
the affine curve defined over K with the ring of defined over K regular
functions K[Vp] = K[X,Y]/(f). Denote y = Y mod f € K[X,Y]/(f).
The field of defined over K rational functions of the algebraic variety 1
is K (Vo) = K (X)[y].

Denote by Vi the normalization of V. It is a defined over K affine
curve irreducible over K and the ring of defined over K regular functions
K[Vi] is the integral closure of the ring K[Vp] in K (V)).

Let us compute the discriminant A € K[X] of the polynomial f with
respect to Y and using the algorithm from [8] decompose A = Ay [] (5;-"

j€d
into irreducible over K factors with integers c¢; > 1 and A\¢p € K. Hence
the number of elements #J = O(d?).

Let us find an integer A = d°() such that for every j € J the element
y + AX is a primitive element of the extension of fields K(Vy) D K(J;).
Replacing y by y + ¢X we shall suppose in what follows without loss of
generality that ¢ = 0.

Let j € J. Denote dj = degy d;. Denote for brevity § = §;. For an
arbitrary K[é]-module £ denote by Es) the localization of E with respect
to the multiplicatively closed set K] \ (9).

Now K[Vi]() is a free K[6](s)-module and K[Vi]s) has a basis over
K[6](s) of the form

W= Y A O<ic<dd s O

0<i<degy f

where all wl(]v) € K[X]. Now ng) € K[V4] for all i,j and, cf. the proof of
Theorem 3 [2], we get immediately.
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Lemma 5. The family consisting of all the elements ng), 0 <1<
d} degy f, j € J, and y*, 0 < i < degy f, is a system of generators of
the K[X]-module K[V1]. O

Denote by my, g € G the family of all the maximal ideals of the ring
K[Vi](s) (recall that § = d;) such that my, N K[d];) = (6). For every
g € Gj there is an element 7, € my N K[V;] such that 7, & m,, for every
g#9g1 €Gjand my & mg. Then obviously the ideal my, = (J;, 7). One

can represent
Ty = ( Z 7rg7vyv)/A, (6)

0<i<degy f

where all 7y, € K[J;].
Finally let be given an element

= > et | /A€ KL

0<i<degy f
Suppose that the estimations
deg, oy = do(di )V, 1<y <,
degr, @, = dsd®, 1< B <m
o) = (M1 + My + 1 +m)(dz + d3)(did)°™,
degr, .. 1, v = dyd®M).

)

)

hold true.

Theorem 3. Under previous conditions one can construct all the ele-
ments wl(’ ), 7y and their representations (5), (6) within the time polyno-
mial in (dida2d)', (d3d)™, d, My, Ms. One can decide within the same
time whether ¢ € my for every g € Gj, j € J. Moreover, the following

estimations for degrees and lengths of integer coefficients hold
deg,, wi) = do(drd)°V), 1<y <,
degy, wi) = dsd®V, 1< B <m,
i) = (M + My + 1+ m)(dy +ds)(drd) ),
degr, 7, wi) = dad®W,

degm Tgv = do (dld)o(l), 1<y,
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degTB Tgw = dsd®M . 1<B8<m
(mg0) = (My + My 41 4+ m)(ds + ds3) (dyd) P,

degy, . 1, Tgw = dad?W).

for all 0 < i,v < dd;-, g € Gj, j € J with absolute constants in O(1).

Proof. We shall enumerate j € J and for every j perform the following
construction. Let us fix j € J, as previously denote § = §;, d' = d; =
degy 0, ¢ = ¢; and for convenience of notation denote by my,... ,m, the
ideals from the family my, g € G; (hence now the number of elements
#G; = r). Set O; = (K[Vi]e) \ my) ' K[Vi]s) to be the localization
of the ring K[Vi](5) with respect to the maximal ideal m;. Let O; be the
completlon of the local ring O; with respect to m;0;-adic topology. Denote
by K; the field of rational functions of the ring 0;.

We have K(X)[Y] D k(O)[Y]- Let N : K(X)[Y] — k(§)[Y] be the
mapping of the norm (the field K(X) = K(X)[Z]/(6(X) - 2Z) D K(Z) ~
K (), Z — 6 under the last isomorphism, and hence one can compute this
norm). Denote f = N'(f) € K[6,Y]. The polynomial f is irreducible over
K since y is a primitive element of the extension K (V) D K(d) and the
degree of this extension is dg- degy f = degy f Besides that, we have the
isomorphisms of fields

K(V) = K(2)[X,Y])/(6(X)~Z, f) = K(Z)[Y]/(F(Z,Y)) ~ K(&)[Y]/({)),

7
where the isomorphism in the middle takes place since f divides f(Z, Y)
and the degrees of the both algebras over the field K (Z) coincide.

Using Theorem 2 we get the decomposition f = ]I ﬁ into the ir-
1<i<r
reducible over K ((#)) factors. The polynomials f; are in the one—to—one
correspondence with the maximal ideals m;, 1 < ¢ < r. More precisely, we
have the commutative diagram

K[Vi](s) = K[Vi](s) D K]
N n N
K] @k K[[6]] =~ [licicr Oi o K[ (g
N N N

KW ok K((6) = I KE)Y/(HY) > K(9).

1<igr
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By (7) and the Chinese remainder theorem the construction of the N-th
approximation of the isomorphism ¢~! from the low row of diagram (8)
is reduced to finding polynomials A4, B, € K (), 1 < a < 7, such that

Ao [[ fi + Bafo = 1 mod 67 (9)
£

Actually Ay, By € (1/6°)K[6], 1 < A < r. The polynomials f; € K[[0]][Y]
for all i since f € K[6,Y] and lcy f = 1. Denote A! = §°A,, Bl, = 0°B,.
Then (9) is equal to

AT fir (N + ¢ = 1) + Bl fap(N + c— 1) = 6° mod 67
i#a

(here and below we replace X, see Section 2, by ¢ in the definition of the
approximation ax(N'), N’ € R, of a polynomial a with coefficients from
K((5))). Hence one can find A/, B!, solving a linear system of the size
(Nd)°M over the field K.

Denote for brevity v = degy f; Denote

yi =Y mod fi € K((6))[Y)/(fi(Y)).

Let _
Ni+ K(O)[Y]/(fi(Y)]Z] = K((9))[Z]

be the mapping of the norm.

Let us show how to construct a uniformizing element 7; € K (0)[y;] of
the ring (5@ for every 1 < i < r. For every element 0 # z € IA(@ the order
ords z is defined. Namely, the uniformizing element has the least possible
positive order 1/e; where the integer e; > 1, and ords z = p/e; if and only
if ze"/é” S 61 \mz(/’)\l

Let ® € K;[Z] be the minimal polynomial of the element z over the
complete field IA(@ with lc; ® = 1. It is known that the orders of all the
roots of ® coincide. Hence if z # 0 then the Newton broken line of the
polynomial @ has only one edge.

Lemma 6. Assume that a polynomial Q € K(0)[Y] is given such that
z = Q(y;,0) and the bound is known: ords z = d°"). Then the following
assertions hold.
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(i) One can compute the order ords(z) within the time polynomial in
(dydad)' ™, (d3d)™, d, My, My and the size L(Q) (of the polynomial
Q). In particular, one can decide whether ords z > 0 or which is the
same whether z € O;.

(ii) If ords z = O then within the same time one can find the minimal
polynomial H € KJ[Z] of the element Z = z mod O;m; € O;/m;O;
over the field K. '

(ii) Let usrepresentz="= > ajy! where alla; € K((0)). Then for

0<j<v—1
every integer N > 0 one can compute the aj 4 (N) within the time

polynomial in (dydsd)' ", (d3d)™, d, My, M> and the size L(Q) and
Nl+m+1_

Proof. (i). It is sufficient to compute the coefficient of the slope of the
Newton broken line of the minimal polynomial ® € K ((0))[Z] of the
element z over the field K((d)). We have ¥ = N;(Z — z) = ®* for an
integer a > 1. Hence it is sufficient to compute ¥ (N) for N = d°(1). The
polynomial ¥4 (V) is calculated as an approximation of the determinant
of the matrix of the K((J))-linear mapping. It can be done within the
required time (we leave the details to the reader).

(ii). Suppose that ordzd = 0. Then ¥(0,Z) = H® for a separable
polynomial H € K[Z] and an integer a > 1. Now the minimal polynomial
of the element z over the field K is H. Thus, we can compute this minimal
polynomial.

(iii) Let ¥ = Z¥ + Y. U,;Z% where all ¥; € K((5)). We have

o<i<r—1
2 = (2" Y iy q Wiz ) /g and ords ¥ = d®W) | see the proof
of (i). By the proof of (i) we can construct the approximations of all the
coefficients ¥;. This implies (iii). O

Remark 2. Assume that we don’t now in advance the estimate ords z =
d°™) . Then within the time from the statement of assertion (i) construct-
ing ¥ from the proof of assertion (i) one can decide simultaneously whether
ords z = d°M) and stop the computation if ords z = d°!) is not true (with
a fixed constant in O(1)).

For every 1 < s < v put z; = (8Sﬁ/8YS)#(c/2)(yi,6) if
ords (0° f;/0Y*) (yi, 6) < ¢/2 (10)

(recall that ¢ = ¢; for 6 = §;) and z, = 1 if (10) is not true. We introduce
condition (10) since we are interested principally in the partial derivatives
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corresponding to the points (—s + v, ;) which belong to the Newton bro-
ken line with respect to (Y,9) of the polynomial E(Y +y;,0) € IA(i[Y, 0]
(but some other points may also satisfy this condition). Notice that
ords (0fi/0Y ) (ys,9) < ¢/2.

For all 1 < s < v let us compute using Lemma 6 (i) the orders €, of all
the elements z;.

Lemma 7. The least common denominator of alleg, 1 < s <v—1,ise;.

Proof. Leta = Y a;67/% € K((5)), a; € K, be aroot of the polynomial
Jj2jo
fiand ¢4 =1, € K. Then o/ = Y. a;¢767/¢ e K((9)) is also the root
J2jo
of ﬁ From here the required assertion follows by Lemma 2.1 [2], see
Lemma 9 from the Appendix, using the characteristic pairs or directly.
Applying Lemma 2.1 note that at present ¢ plays the role of X. Further,
this lemma can be applied to polynomials from K[[6]][Y] separable with
respect to Y in place of separable polynomials from KJ[d,Y]; the proof is
without changes (it is sufficient to replace f from the formulation of the
Lemma 2.1 by its appropriate approximation from the ring KJJ,Y]). We
leave the details to the reader. O

Let us find integers 1 < g, p < d°™) such that EKKV Hses—p=1/e;
and p1s; = 0 whenever z; = 1. Put m; = ([],¢,., 25*)/6". Now 7; is a

uniformizing element in the field IA(,
Put u, = z,/7;'"*, 1 < s < v, and up = 7;"/d and @y, = us mod m; €

O@/O,m,, 0<s <.
Lemma 8. The field K[uy, ... ,@,_1] coincides the residue field O; /m;O;.

Proof. Let u; be the elements (lf the maximal unramified extension K’
of the field K((§)) contained in K; such that @5 = us mod 7; for all s.
Put K" = K((9))[wo, ... ,u,—1] C K’. Let us show that there are

at most e; distinct K”-embeddings o : K; — K((3)). Indeed, suppose
contrary. Let us choose such an embedding o and identify oo (7;) = 7;.

Since o(tip) = W we have o(7;) = (7; mod §%/¢ where (¢ = 1, and
hence o (w,m¢ %) = (*Fin®u, mod 6% /¢ 1< s <v.

Therefore, there are two embeddings o; # o9 such that the corre-
sponding ¢ is the same. Then we have o, (z,) = 02(zs) mod 6% +1/¢ for
all 1 < s < v. Thus, the partial derivatives (corresponding to the points
(—s+v,e,) which belong to the Newton broken line with respect to (Y, 0)
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of the polynomial ﬁ(Y +y;,0) € I/(\'i[Y, d]) do not separate the roots oy (y;)
and o2 (y;) of the polynomial f;. This contradicts to Lemma 2.1 [2]. Thus,
K" = K’ and hence K[ﬂo,... ,ﬂ,,_l]:O,-/m,-O,-. [l

Using Lemma 6 (iii) and (ii) one can construct an element 7; such
that 7; mod O;m; is a primitive element of the extension O;/O;m; D K.
Namely, using Lemma 6 (iii) we find approximations v} of the elements u;
such that u} are represented in the form from the statement of Lemma 6,
i.e., similarly to z, and u; = u; mod O;m; (we leave the details to the
reader). Further, applying Lemma 6 (i) we choose 7; = up+ > Aqul

1<agsv—1
where 0 < A\, < v and for every 1 < s < v — 1 the degree of the minimal

polynomial over K of the element 7, s = (uy + Y. Agqul,) mod O;m; is
1<a<s
maximal possible (we construct subsequently 7; 1, 7i,2, - - Mi,v—1 = 7i)-

Now the elements

(0,...,0,@™7",0 e [[ K@)/ =4, (1)

1<igr

0<my <e,0< me < (degy f,-)/e,-, 1 <@ < r, (here the nonzero entry
is at the place number i) form a basis of the ring [[, ;. O; (as a free

module) over K[[6]]. Denote elements (11) by @y, 0 < w < degy f (recall
that at present d’ = d, and d’ degy f = degy f).
Let @, = > Wy,wy? where all @y, , € K((4)). Using Lemma 6
0<v<degy f
(iii) and isomorphisms (7) and ¢~! from (8) we compute the approxima-
tions B
wo = Y, Duep(@y’s 0<w <degy f.
0<v<degy f

As it is known (this follows, e.g., from the Nakayama lemma) the family

Wy, 0 < w < degy f, is also a basis of the ring [[ O; as a free module
1<igr

over K[[0]] and simultaneously it is a basis of the semilocal ring K[Vi]s)
as a free module over K[6](s).

Now for every 1 < ¢ < r we are going to construct an element m; € m;
which is a uniformizing element of m; but m; ¢ m;, for every 1 < iy #
i < r. We find the element 7; as a sum of some w,. This sum is an
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approximation of the element (1,...,1,7;,1,...,1) € ]] O; C A, see
1<i<r

(11). Recall that i corresponds to g € G;. Set my = Am; where 0 # X\ €

K[X] is chosen of the minimal possible degree such that (6) holds and

lex A = 1. The elements 7y, g € G, are constructed.

It remains to show how to decide whether ¢ € m;. We apply Lemma 6
(iii) to the element 7; and find an approximation of the element ¢/7; €
K (0)[y;]. Finally applying Lemma 6 (i) (and if necessary Remark 2) we
decide whether ords(y/7;) > 0 in the field I/(\'i, ie., p €m;.

The estimations for the working time, degrees and lengths of integer
coefficients follow immediately from the described construction and The-
orem 2 from Section 2. The theorem is proved. O

APPENDIX: THE STATEMENT OF LEMMA 2.1 FROM [2]

Here we formulate a version of Lemma 2.1 from [1] and [2]. We slightly
changed the notation and give the statement for a separable polynomial f
in place of an irreducible polynomial f, but the proof is without changes.

Let k be a field of zero-characteristic and Q = k(X)) = U, 5, k(X))

be the field of fractional-power series over an algebraically closed field k.

Lemma 9. Let f € k[X,Y] be a separable polynomial with the lead-
ing coefficient lcy f = 1. Denote by A € k[X] the discriminant of the
polynomial f with respect to Y. Let y;,y; € €1 be two distinct roots
of f considered as a polynomial from k(X)[Y]. Then there is an integer
1 < v < degy f and the elements &;,&; € k and the number u(i,j) € Q
such that & # & and ordx (37 f/0Y7)(X,ys) — &XME)) > (i, j) for
s =1,j. Besides that, 0 < pu(i,j) < ordx(A)/2 and u(i,j) = p1(i, 5)/v(3)
where 1 (i,7), v(i) are integers, 1 < v(i) < degy f, and v(i) depends only
on the root y;. ([
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