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ABSTRACT. In this paper we continue the theme which has been investi-
gated in [11, 12] and [13] and we present a simple method to prove correct-
ness and self-adjointness of the operators of the form B* corresponding
to some boundary value problems. We also give representations for the
unique solutions for these problems. The algorithm is easy to implement
via computer algebra systems. In our examples, Derive and Mathematica
were used.

1. INTRODUCTION

An important tool in creating correct operators and solving boundary
value problems containing differential or integro-differential equations is a
theory of the correct extensions of minimal operators. Correct extensions
of densely defined minimal operators in Banach and Hilbert spaces have
been investigated by M. I. Vishik [2], A. A. Dezin [7], M. Otelbaev [8],
R. Oinarov [9] and many others. Self-adjoint extensions of a densely de-
fined minimal symmetric operator Ay have been studied by a number of
authors, such as M. G. Krein [1], E. A. Coddington, A. Dijksma [3, 4],
V. I. Gorbachuk and M. L. Gorbachuk [5], A. N. Kochubei [6] and many
others.Correct self-adjoint and positive extensions of nondensely defined
minimal symmetric operators Ay have been considered in [10]. Correct
self-adjoint problems for quadratic and cubic operators have been inves-
tigated in [11, 12] and [13].

In this paper using the operator B, defined by

-~

Bz = Az — (AF)C(Az, F')ym = f, D(B) = D(A),
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where A is one well known correct self-adjoint operator, C' is a m x m
matrix, we investigate the operator B, corresponding to the boundary
problem:

Byz = A'c — V(Az, F) gm — Y(A22, F) gm — S(A%2, F') grm
—G(A*z, F'ygn = [, D(By) = D(AY), (1.1)

where the vectors V € H™, Y € D(A)™, S € D(A%)™, G € D(A3)™,
Fe DAY and V, S, Y satisfy (3.12).

We show that the operator By is biquadratic, i.e. By = B* and prove a
criterion of correctness and selfadjointness of the problem (1.1) in terms
of the matrices C. We give also representations for the unique solution of
this problem which is essentially simpler than in the general case of non-
biquadratic operators. Note that the self-adjointness of B4 can be proved
by more general method developed in [2] or [3]. But here we don’t need the
full strength of this method and prove it in a simpler and straightforward
way.

The paper is organized as follows. In Section 2 we recall some basic
terminology and notation about operators. In Section 3 we prove the main
result and give one example of integro-differential equations which shows
the usefulness of our results.

2. TERMINOLOGY AND NOTATION

By (z, f)g we denote the inner product of elements z, f of a complex
Hilbert space H. For operators A : H — H we write D(A) and R(A)
for the domain and the range of A respectively. An operator A is called
correct if R(4) = H and the inverse A~! exists and is continuous. An
operator B is called biquadratic if there exists an operator B such that
By = B*. Let A be an operator with domain D(A) dense in H. The ad-
joint operator A* : H — H of A with domain D(A*) is defined by the
equation (Az,y)g = (z, A*y) g for every x € D(A) and every y € D(A*).
The domain D(A*) of A* consists of all y € H for which the functional
x — (Az,y) g is continuous on D(A). An operator A is called selfadjoint
if A= A*. If an operator B : H — H is correct (resp. selfadjoint), then
we say that the problem Bx = f is correct (resp. selfadjoint). Let F;, g; €
H,is = 1,...,m. Then F = (Fy,...,Fp), G = (g91,-.-,9m) and AF =
(AFy,..., AF,,) are vectors of H™. Let F = (A=3F,A—2F,A"'F,F) =
(A3Fy,...,A3F,,A2F,...,A2F, A'F,,...,A'F,,F\,...,Fp
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is a vector of H*™ and A=* = (A~1)*. We also write F* and (Az, F')gm
for the column vectors col(Fy, ..., Fy,) and col ((Az, Fi)m, ..., (Az, F) )
respectively. We denote by M (resp. M?) the complex conjugate (resp.
transpose) matrix of M and by (G, F)gm the m x m matrix whose 1, j-
th entry is the inner product (g;, F;)m. Note that (G*, F)gm define the
matrix inner product and has the properties: (CG!, F)y = C(G',F)y,

(GYFCYy = (G, F)uC, (G, )y = (FF, G, where C-is am x m con-

stant matrix. It is obvious that (f, F*)g = (Ft, f);. We also denote by
I, and [0],,, the identity m x m and the zero m X m matrix respectively.

3. CORRECT AND SELF-ADJOINT
PROBLEMS FOR BIQUADRATIC OPERATORS

Next theorem is Theorem 3.1 of [13].
Theorem 3.1. Let B: H — H and

Bz = Az — (AF)C(Az, F')ym = f, D(B)=D(A4),  (3.1)

where A is correct and self-adjoint on H, C' is a m X m matrix with
rank C =n <m and Fy,...,F,, linearly independent elements ofD(g).
Then:

(i) B is self-adjoint operator if and only if C is a Hermitian operator,

(if) B is a correct operator if and only if
det [Ty — (AFt, F) 1 C] #0. (3.2)

(iii) If B is a correct operator, then dim R(B — A) = n,
(iv) The unique solution of (3.1), where B is a correct operator, for
every f € H is given by the formula

w=B'f= A f+ FC[ly, — (AF, F) 1, O] (f, FYm.  (3.3)

Remark 3.2. The correctness of B and the solution (3.3) of (3.1) in
Theorem 3.1 do not depend on the linear independence of the components
OfFl,...,Fm.

This statement follows immediately from Remark 3.1 of [11], if we
suppose that any functional &3 € H* can be identified in Hilbert space H
by theorem Riesz with unique element F; € H such that

Oo(x) = (Pg,z)g = (x, Fo)p for all z € H, (3.4)
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so from (3.4) easy follows that any vector ® = (®4,...,®,,) € H*™ can
be identified with unique vector F = (Fy,..., F},,) € H™ such that for all

reH
®,(z) = (¥;,2)yg = (z,F)g,i=1,...,m, or

3.5
¥() = (8',2)11 = (o, F' (5:)
and for all vectors G = (g1,...,9m) € H™
3(G) = (',G)m = (G, F)jpm = (F4 G) g - (3.6)
Now it is evident that ®4,..., ®,, is a set of linearly independent elements

of H*™ if and only if F7,..., F,, linearly independent on H™.

By Theorem 3.1, since A% is a correct self-adjoint operator and the
components of F linearly independent, it follows easily the next theorem

Theorem 3.3. Let By : H — H and
Biz = A'z — (A*F)Cup (A2, F'Yjpam = f,  D(By) = D(A"),

where A as in Theorem 3.1, Cyyy, is a (4m) x (4m) matrix with rank Cy,, =
n < 4m and the components of the vector F = (A—3F, A=2F, A~\F, F)
are linearly independent elements of D(A*). Then:

(i) By is a self-adjoint operator if and only if Cy,, is Hermitian,

(if) By is a correct operator if and only if

det Ly = det [Ium — (A*Ft, F) jram Cam| # 0. (3.8)
(iii) If By is a correct operator, then dim R(B; — A*) = n,
(iv) The unique solution of (3.7), where By is a correct operator, for

every f € H is given by the formula

2 =B f = A f 4+ FCum[Lim — (A2 F, F) pyamCam] ~ (f FE) grim.

(3.9)
Lemma 3.4. Let the operators B, By : H — H be defined by
Bz = Az — G(Az, F')ym = f, D(B) = D(A), (3.10)
Byx = A*2z — V{(Az, F'Ypym — Y (A2, F) yym — S(A2, F*) gy —
— QA% F'Yym = f, D(By) = D(AY), (3.11)
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where A is a linear operator on H, G is a vector of D(A®)™, the vectors
V,Y, S, G satisfy the equations

V =AY —G(Ft,AY) .., Y = AS —G(Ft, AS)m,
S = AG — G(Ft, AG) ym (3.12)

and the components of the vector F = (Fy,...,Fy) belong to D(A*%).
Then B, = B*, i.e. B, is a biquadratic operator.

Proof. From (3.10) and equations (3.12), we get
BG = AG — G(F*, AG) . = S,
BS = AS — G(Ft,AS) .. =,
BY = AY — G(Ft, AY) .. = V.
Taking this into account and the relation (3.10) for every z €
D(A*) N D(B*) from (3.11) we have:
Byz = A*z — BY (A, F')yrm — BS(A%z, F*) grm
— BG(Az, Ft) ym — G(Az, F*) gm
= B(Az) — BY (Az, F')ym — BS(A%z, F')pym — BG(Az, F') gy
= B(Az — Y (A, Ft)gm — S(A%0, F*) grm — G(A%2, F) o).
In [13, Lemma 3.3] we have showed that for the operator Bs defined by
Bsz = A%z — Y (Az, F) gm — S(A2%2, F*) pm — G( A%z, F)grm = f,
D(Bs) = D(A?), (3.13)
hold By = B? and D(B®) = D(A%). So By = B'z for every z €
D(A*)ND(B"). Now we show that D(B*) = D(A"). From D(B*) =
D(A%) we have D(B*) = {z € D(4%) : B’z € D(A)}. Let = € D(A").
Then from (3.13) since Y,S,G € D(A) we get = € D(B*). Let now

x € D(BY). Again from (3.13) since Y,S,G € D(A) we conclude that
x € D(A%). So, D(B*) = D(A*) and B, = B%.

We now present the main result of this paper. For biquadratic operator
B4 we prove a criterion of correctness and selfadjointness in terms of the
matrices C' and give explicit representations for the unique solution of the
equation Byx = f which is essentially simpler than in the general case of
non-biquadratic operators.
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Theorem 3.5. Let the operators ﬁ, B, : H — H and vectors G, S,
Y, V be defined as in Lemma 3.4. We also assume that A is a cor
rect operator, G = (EF)C, where C' is a m X m matrix with rank
C = n < m and the components of vector F = (A—3F, A=2F, A~\F, F)
(resp. A3F = (F,AF, A’F, EBF)) are linearly independent elements of

D(A%) (resp. D(E)) Then:
(i) By is a self-adjoint operator if and only if C' is Hermitian,
(ii) By is a correct operator if and only if holds

det L = det [I,, — (AFt, F) ;. C] # 0. (3.14)

(iii) If By is a correct operator, then dim R(By — A%) = 4n (n < m),
(iv) The unique solution of the problem (3.11) , where By is correct,
for every f € H is given by

z=B;'f=A"*f
+[A (A2 F)CL L F) o+ (A7 F)W 4 FCL™ ((A=2F0 F)
+mHmCL_IWHm +WHMW)}CL_1 XS E ) m
4 [A2F + (A F)YOL T F) g + FW|CL (A7 ) e
n [2—1}7 n FCL_lmHm} CL™'(f, A2 F" gym
+ FCL™Y(f, A3 F'ym, (3.15)

where W = CL~! [ (A1Ft, F) o + (FE, ) gy CL(FE, F>Hm]

Proof. (i), (iii) Let
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Then the matrix L in (3.14) is written as L = I,, — DC, the vectors S,
Y, Vin (3.11) as

S = (A2F)C — (AF)CKC,
Y = (A*F)C — (A2F)CKC — (AF)Z,
V = (A*F)C — (A*F)CKC — (A*F)Z — (AF)C(MC — PCKC — KZ).

The equation (3.11) can also be written in matrix notation as

Bz = A'z — (AF, A*F, A*F, A*F)

—C(MC-PCKC-KZ) -Z —CKC C <§2vat>Hm
-z —CKC  C  [0]m Ao Flygm | _

( o ke ) e | 5 ag)
c Ol [Om [ (A% F) e

or Byr=A'w— (24.7:)C4m<24x,.7~"t>H4m =7

where F = (A=3F, A=2F, A-'F, F),

—C(MC - PCKC-KZ) -Z -CKC C
—7 —CKC ¢ ]

Cam = Ol
am = —-CKC C 0m  [0]m
C [O] m [0] m [0] m

It is easy to verify that Cg,, is a Hermitian matrix with rank C4,, = 4n
if and only if C' is Hermitian with rank C' = n. Then, by Theorem 3.3,
dim R(Bs — A") = 4n (n < m) and the operator Bj is self-adjoint if and
only if C' is Hermitian.

(ii) Let @ = C(MC — PCKC — KZ). By Theorem 3.3, the operator
By is correct if and only if (3.8) holds true with By replaced by By and
L1 by L4. We find

Ly = Ly — (A'Ft F) o Camy = (3.17)
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(Ft,A2FYpgm (F', A" F)gm (F',F)gm  (AF!,F)gm
L — (Ft,A"1F)gm (F*, F)gm (AFY, Fygm  (A’F' F)gm Cam
(Ft,F)gm (AFt, Fygm  (A?Ft, F)gm (ASFY, F)gm
(AFt Fygm (A2FY Fygm  (APFY Fygm (AYFY F)gm
N H T D Q Z CKC —-C
P H T D K Z CKC —C [O]m
= am T D K P CKC —C  [0lm [0m
D K P M —C  [0lm  [0lm  [O]m
J1 NZ+HCKC —-TC NCKC — HC —NC
| J» In.+HZ+TCKC - DC HCKC —-TC —HC
I TZ+ DCKC — KC I, +TCKC — DC —-TC ’
Ju DZ + KCKC — PC DCKC — KC I, — DC
where

Ji=In+NQ+HZ+TCKC - DC,
J»=HQ+TZ+ DCKC — KC,
J;=TQ+ DZ+ KCKC — PC,
Ji=DQ+ KZ+ PCKC — MC.

Multiplying the elements of the second column by KC and adding to the
corresponding elements of the first column we get

X, NZ+HCKC-TC  NCKC—HC  —NC
_ Xs Im+HZ+TCKC—DC HCKC—TC  —HC
det Ly = det <X3 TZ+DCKC—KC Inh+TCKC—DC —TC ) )
X, DZ+KCKC—PC  DCKC—KC In—DC

where

X1 =L+ NCMC-NCKCPC+ HCPC,
Xo=HCMC -HCKCPC+TCPC,

X3 =TCMC -TCKCPC — LPC,

X4y =DCMC -DCKCPC+KCPC —-MC.

Multiplying the elements of the third column by PC and adding to the
corresponding elements of the first column we get

L+NCMC NZ+HCKC-TC NCKC—HC —NC
HCMC L+HZ+TCKC HCKC-TC —HC
det Ly = det TOMC Tz .
> +DCKC—-KC L+TCKC -TC
—LMC DZ+KCKC—-PC DCKC—KC L
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Multiplying the elements of the fourth column by M C and adding to the
corresponding elements of the first column we get

L NC(P-KCK)C+HCKC-TC NCKC—HC —NC

_ [0lm L+HO(P-KCK)C+TCKC HCKC—TC —HC

det Ly = det | " " 1o (p_koK)c-LKC L+TCKC —TC
[0]m DC(P-KCK)C+KCKC—PC DOKC—KC L

Multiplying the elements of the third column by KC and adding to the
corresponding elements of the second column we get

L NCPC-TC NCKC-HC -NC
[0, L+HCPC HCKC-TC -HC
0.  TCPC L+TCKC -TC
[0lm  —LPC ~LKC L

det Ly = det

Multiplying the elements of the fourth column by PC' and adding to the
corresponding elements of the second column we get

L -TC NCKC-HC -NC

~ 0, L HCKC-TC -HC

detly=det | 1y 10, L+TCKC -TC
[O]m [O]m —-LKC L

Multiplying the elements of the fourth column by K C and adding to the
corresponding elements of the third column we get

L -TC —-HC -NC

—det| O L -TC -HC
detLo=det| 9" 0., L -TC (3.18)
Olm  [0lm  [0]m L
= (det L)* # 0 < det L # 0.

So, by Theorem 3.3, because of (3.17) and (3.18), the operator By is
correct if and only if (3.14) holds true.
(iv) In [13, Theorem 3.4] we have showed that
By'f =A% f + [A2F + (A F)CL Y FLF) g
+FCL Y ((ALF F) o + (FLF) o CLTYFF) 1 ) |CL7YH(f, FY
+ [A7YF + FOL Y F,F) o |CL7Hf, A ) g
+ FCL™Y(f, A2 F"gm. (3.19)
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Let g = B~2f. Then, since (3.3) and (3.19), we find

~

Bf=Blg=A"g+ FCL " (F',g) ym
= ATHAPf 4 [AF + (AT F)CLT
+FCL™ (H+TCL ') CL Y f, FY) prm
+ (A F+ FCL7'T)CL™ " (f, A" FYy ym + FOL™'(f, A2 Ft) ym }
+FCL Y (Ft, A3 f) o + (N+HCL—1T+TW)CL— (f, F* gm
+(H+TCL'T)CL ™ f, A Fty gpm + TCLY(f, A2 Ft)pym }
= A+ [APF + (A2 F)OL7'T + (A P)YW]CL ™ (f, F') prm
+[A2F+(A *1F)CL*1T]CL*1<f 2’1Ft>Hm
+(ATYR)CL Y, A Fy g + FCL7Y[(f, A2 F) gm
+(N+HCL™ 1T+TW)CL— (f, F) grm
+(H+TCL'T)CL™ (f, A F gpm +TCLY(f, A2 Ft) grm |
=AM+ [APF + (A2 F)OL7'T + (A1 P)W
+FCL (N + HCL™'T + TW)] CL*1<f, F' gm
+[2*2F+(E*1F)CL*1T+FW]CL (f, A 1Ft>Hm
+(A'F 4+ FCL™'TYCL™"(f, A2 F') gym + FCL™"(f, A3 F") ym

which gives (3.15). The theorem thus has been proved. O

From the proof of the previous theorem and remark 3.2 immediately
follows the next remark

Remark 3.6. The correctness of B4 and the solution of Byz = f in the
Theorem 3.5 do not depend on the linear independence of the components
of the vector F,

Remark 3.7. In applications we encounter operators B; of the form
Biu = A% — Wi (u, ) i — Wo (w, T8 irm — W (u, J) prm
— Wam (u, Ji)mm = f, D(By) = D(AY), (3.20)

where the vectors J;, Wi, € H™, ¢ = 1,2,3,4. Then we are interested
in knowing whether the operator B; is a By-type operator defined by
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(3.11) and, therefore, Theorem 3.5 applies. For this purpose, we proceed
as follows: R
1. We show that the operator A in (3.20) is correct and self-adjoint.
2. We find a vector F € D(ﬁ‘l)m and m x m matrices M;,i=1,2,3,4
with constant elements such that:

(w, JEY g = My (Au, Ft) grm,

(u, JE) g = Mo (A%u, F*) g,

(u, J8) g = M (APu, F*) g,

and

(u, JE) grm = My (A, F*) g .
3. We find vectors V. = Wi, My € H™, Y = Wy, My € D(A)™, § =
WamMs € D(A2)™ and G = Wy, My € D(A%)™ to satisfy the equations
V = AY — G(Ft, AY) ., Y = AS — G(F!,AS) .. and S = AG —
G(FKEG)HW If one of these steps fails, then B; is not identified as a
B,-type operator and, therefore, the theory can not be applied.

Below H!(0,1) denote the Sobolev spaces of all complex functions
from L5(0,1) that have generalized derivatives up to i -th order that
are Lebesque integrable, ¢ = 1,2,3,4. In the example presented bellow,
we have used the programs Derive and Mathematica 6 for computing
integrals and some complex expressions. We recall [10, p. 780] that the
operator A : Ly(0,1) — Ly(0,1) defined by

Au=iv' = f, D(A) = {ut) € H(0,1) : u(0) + u(1) =0}  (3.21)
is correct and self-adjoint and the unique solution u of the problem (3.21)

is given by the formula

u(t) = A= f(1) = ‘/f(a:) dr—i [ fz)de forallfeH. (3.22)

o

N | =

Then [13, p. 424] the operator A2 defined by
A2y = — = f,

N (3.23)

D(A?) = {u € H?*(0,1) : u(0) + u(1) = 0, «/(0) + /(1) = 0},
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is correct and self-adjoint, and for every f € L2(0,1) the unique solution
u of the problem (3.23) is given by the formula

1

/ 1
u(t) = t—z)f(x)de + - [ (2t — 22+ 1)f(x)dz. (3.24)

0
Also [13, Proposition 3.6] the operator A? defined by

Ay = —i" = §, (3.25)
D(A%)={u € H*(0,1) : u(0)}+u(1)=0, u'(0)+u'(1)=0, u"(0) + u” (1)=0},
is correct and self-adjoint, and for every f € L2(0,1) the unique solution
u of the problem (3.25) is given by the formula

1

/tt—:z: dm—i/(t—m)(t—x+l)f(a:)da:.

0

u(t) =

l\.')IN

(3.26)

Proposition 3.8. Let the operator A defined by (3.21). Then the oper-
ator A* : L»(0,1) — L3(0,1) defined by

Aty =u® = §, (3.27)
D(A*) = {u € H*0,1) : u™(0) +u® (1) =0, k=0,1,2,3},

A4 is correct and self-adjoint and for every f € L2(0,1) the unique solution
u of the problem (3.27) is given by the formula

O/ (t —x)? (3.28)

1
1
v / 22t + 1) + 12tx(t + 1) — 4% — 6t° + 1] f(z) da
0

Cnl»—\

u(t) =

Proof. Correctness and self-adjointness of A imply correctness and self-
adjointness of A%. Now we will prove the formula (3.28). Let y(z) =
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A3 f(2).

Then by (3.22), (3.26) and Fubini’s theorem we have

1 t

A4 = A (A2 50) = Ay = 5 [vrde i [y()ds

0 0

:%j[%/(zx)2f(x)dx%](zx)(zxﬂ)f(x)dx} i
0 0 0

@l'—‘

t
/tfx
0

[42® — 627 (2t + 1) + 12tw(t + 1) — 4¢° — 6> + 1] f(z) dw
(3.29)
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which gives (3.28). O
Example 3.9 The operator By : L2(0,1) — L5(0,1) which corresponds
to the problem

{ 620 65654570

1( —t- 250047 (¢!
1

Biu = u'Y + 80 — 2% +1)

. 3102 3 2 5 4 2 ’
—Z[Gt—?)— o (4t — 6t +1)H/(2x ~5et + 522 — 1)u'(z) da
0
155 ‘ 310°
+ 80{ o5 (47 =687 +1) i [37&2 3t T (' =2t ¢ t)“

{620

1
x/u"(x)(2x5—5m4+5m2 1) dx —20i 3 (t —2t3+t)+4t3—6t2+1}
0

1
x/u”’ )(22° — 52t 4 522 — 1) dx
0
1
(3.30)

+ 200 (t* — 2t° + 1) /u”’ (z* — 22° + x)dw = f(t), D(By) = D(A%)
0

is correct and self-adjoint and the unique solution of (3.30), for every
f € Ly(0,1), is given by the formula

~ 274 691
D =A @)+ = | —= (&% — 47 + 14t° — 2843 + 17t) — ——— (87 — 28¢5
u(t) f()+3[56( + 87+ 171) — 35258 (8 8
6912 9452636909
4 2 o o 5 3 ittt 5 4
+70t* —8412417) “o (15 — 3t°+5¢ 3t)+—2884375494(2t 5t

1
+5t271)} /(2x575x4+5x2 —1)f(x) dx+29 [56 (87 —28t% + 70t
0

6914 6912
— 8482 4+17)+—(¢5 — 3t® + 53 — 3t) —
B+ 7)+,693( 3745 3t) 160083

(265 — 5t +51% — 1)

1
1
x/x — 32° + 52° fo)f(x)dx—E[—i(t6—3t5+5t373t)
0



CORRECT AND SELF-ADJOINT PROBLEMS 159

691
+——(2t° 5t +5¢7—1)]

531 82" — 2825+ 702" — 8427 +17) f () da

+ §(2t5 —5th 4+ 562 — 1) [ (2® — a7 + 142° — 282° + 172) f () dx,

1
/¢
0

1

)

0/ (3.31)

where A4 f(t) is defined by (3.28).

Proof. We refer to Theorem 3.5. If we compare Eq. (3.30) with Eq. (3.11),
it is natural to take A%y = u® with D(A*) = D(By), m = 1, F =
2t5 — 5t 4+ 5t2 — 1. Then we can get A to be defined by (3.21), A? defined
by (3.23), and A% by (3.25). It is obvious that F € D(A%), AF = 10i(t* —
23 +1), A2F = —10(43—612+1), ABF = —120i(t2—t), A*F = 120(2t—1),
and that

1
(Au, F\g = /iu’(m)(2t5 — 5t* + 51 — 1) dz,
0

1
(Au,Fyyg = — /u”(x)(2t5 — 5t* + 5t — 1) dx,

0
1

(B, = —i / W ()26 — 58+ 58 — 1) da,

0
1
(A*u, F)py = / u® (z)(22° — 52" + 52 — 1) da.
0
Then

w' (2)(22° — 52t + 52° — 1) d = —i(Au, F)y,

o _

u'(2)(22° — 5zt + 52° — 1) de = —(A%u, F)y,

w"(2)(22° — 52" + 52 — 1) da = i(A%u, F)y.

/
/
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Integrating by parts, we have
1
(A'u, F)y = —10/u'"(x)(m4 —22° + 1) d,
0

Then
1

/u'"(az)(a:4 — 223 +x)dr = —E<A4u F)pu.
0
Substituting these formulas into (3.30), we obtain:

- 620 65654570
— A4 _ 943
Biu = Aty 80@{ ST = 1) = Dt — 26 + 1)
. 3100 ., .
fz[ﬁtfsf (407 — 61 + 1)”<Au,F>H
185 ) ., 310 -,
80{ (41 —612+1) - [3t 3t — (-2t +t)”<A w, FYar
8
n 20[6—3?’(# 283 1) + 4% — 62 + 1} (ABu, P
— 20i(t* — 263 + t)(A%u, F) g = f(1). (3.32)
Again, comparing (3.32) with (3.11), we get
620 65654570 ;
v 80{ 1( )= 250047( — A
, 3102 .
—z[ﬁtfsf (4t — 6t +1)}},
Lol 55 ey ala gy 310 e o
Y_so{ (48" — 62 + 1) z[3t 8t — o (t — 2t +t)]},
6204 3 3 2 (44 3
S_—20[63( — 23 4+ ) + 4¢3 — 6t +1} and G = 20i(t* — 263 + t).

It is obvious that G € D(A®). The vectors F, AF, A2F, A3F are linearly

independent elements of D(ﬁ), since the corresponding determinant of

the Gram matrix is nonzero. Using Derive, we obtain
~ — = 2
AG — G(Ft, AG) o = — 20(48% — 617 + 1) — 20i(t* — 243 + ¢) 6630
620¢

63

=5,

AS —G(F*, AS) .. = — 20i [ (4% — 6t2+1)+12(t27t)}

6202
37

—20i(t* — 263 + t)( -
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and
AY — G(Ft, AY) ., = 80@'{%(1%2 —12t) —i [675 —3

3102 262618280
632 250047
The last three equalities, by Lemma 3.4, show that the operator B; is
biquadratic, i.e. B = By. From G = (AF)C it follows that 20i(t* —
2t +t) = 10i(t* — 2¢> +t)C. This equation implies that C' = 2. Using the
program Derive, we find (F', F)g = 22 (%TFt, F)g = 0. By Theorem 3.5,
the operator By is correct and self-adjoint, since C' = 2 is a real number
and

(465 — 612 + 1)} } — 20i(t4 — 263 + t)

det L = det[I,, — (AF*, F);,.C]=1—-0=1%#0.

Then L' = 1. If we substitute in (3.22), (3.24) and (3.26) f = F =
2t5 — 5t* + 512 — 1, we receive

AR = —é(tﬁ — 365 4 515 — 3t),

A?F = ,%(8,57 — 28t% + 704" — 84¢% + 17)
and
ATF = %8(1?8 — 417 4 1485 — 2883 + 17t).
Then

1
(f,A'F)y = fé/(xﬁ —32° + 52% — 32) f(v) du,
0

1

~ 1 .

(f,A’F)g = 1R /(8x7 — 2825 + 702 — 8422 + 17) f(x) dx
0

and

1
(f,A°F)y = ﬁ /(338 — a7 4 1425 — 282° + 172) f(z) dz.
0
Using the program Derive, we have (A~'F,F)y = 0, (A2F,F)y =

2481 and from (3.15) W = 41‘3656122. As a result of this and (3.15) we
get the solution (3.31) of the problem (3.30). O
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