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SCALARS FOR A MIXED QUBIT-QUTRIT STATES

ABSTRACT. In the present paper few steps are undertaken towards the de-
scription of the “qubit—qutrit” pair — quantum bipartite system composed
of two and three level subsystems. Calculations of the Molien functions
and Poincaré series for the qubit-qubit and qubit-qutrit “local unitary
invariants” are outlined and compared with the known results. The re-
quirement of positive semi-definiteness of the density operator is formu-
lated explicitly as a set of inequalities in five Casimir invariants of the
enveloping algebra su(6).

1. INTRODUCTION

The present article discusses several computational aspects of a pure
quantum effects in composite systems valuable for the modern theory of
quantum computing and quantum information [1, 2].

The cornerstone of these latest trends is an extraordinary quantum
phenomenon — the “entanglement’” of quantum states. Basically, under
the entanglement it is assumed an exposition of diverse non-local cor-
relations in a composite multipartite quantum system, which have no
classical analogue. From the mathematical standpoint of view character-
istics of entanglement can be understood within the classical theory of
invariants (cf. [3, 4]). The central object in these studies is the ring of G-
invariant polynomials in elements of the density matrices with the group
G consisting from the so-called local unitary transformations acting sep-
arately on every part the multipartite composite system. The program
of description of this ring for multipartite mixed states was outlined in
[5] and during the last decade has been intensively developed. Over this
time many interesting physical and pure mathematical results have been
obtained. Particularly, for the simplest bipartite system of two qubits, the
structure of the corresponding ring has been clarified (see e.g. [6, 7, 8]).
However, comparative less is known for multipartite states, as well as for
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bipartite mixed states, composed from arbitrary d-level subsystems, i.e.,
the so-called qudits [9, 10]. The reason is first of all in a big computa-
tional difficulty we are faced. Indeed, even dealing with 3-level subsystem,
qutrit, the large number of independent elements of the density matrix
leads to the wide variety of the local polynomial invariants and makes
non-effective the direct usage of the known computer algebra packages.

Below, attempting to construct the polynomial ring of invariants for
qubit-qutrit pair, we got added evidence of the complexity of the prob-
lem. The known results [23] and our calculation of the Molien functions
and Poincaré series for the qubit-qutrit shows that the number of local
invariants grows up significantly compared with the case of two qubits.
Nevertheless the derived information is very useful for the analysis of the
ring of SU(2)®SU(3) invariants. As a preliminary results we present here a
set of linearly independent SU(2) ® SU(3) invariant polynomials up to the
fourth order constructed via trace operation from the non-commutative
monomials in three elements of a special decomposition of qubit-qutrit
density matrix. Using the subset of the SU(2) ® SU(3) invariant polyno-
mials, consisting from the Casimir invariants of the enveloping algebra
$U(su(6)), the positive semi-definiteness of density matrix of qubit-qutrit
pair is derived in the form of a system of algebraic inequalities.

THE SU(n) CASIMIR INVARIANTS

Here the basic statements on the unitary symmetry of quantum me-
chanics and its role in the description of composite multipartite states is
given.

e Density operator and SU(n)-invariants e

According to the conventional quantum theory, a complete information
on a generic n-dimensional system is accumulated in the self-adjoint pos-
itive semi-definite density operator ¢ with a unit trace, p € 4. For a
closed quantum system, this description is highly redundant, the equiva-
lence relation between elements of 3, due to the invariance of observables
under the adjoint action of SU(n) group

(Adg)e=gog", g€SU@), (2.1)
guarantee that the physically relevant knowledge about quantum states
can be extracted from the orbit space PB4 | SU(n)! Relaxing for a moment,

IThe orbit space P4 |SU(n) of SU(n) is defined as the set of all SU(n)-orbits,
endowed with the quotient topology and differentiable structure and the subset of all
the SU(n)-orbits with the same orbit-type forms a stratum of P4 | SU(n).
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condition of semi-definiteness, the density operator ¢ can be expressed via
the Lie algebra su(n) of SU(n) group [11]:

1 .
o= —Tp+Rg, g csu(n), *=-1 (2.2)

with some normalization factor %. Therefore the density operator can be
decomposed over n? —1 basis elements, e;, of the Lie algebra su(n)

n?—1

g= Z &ei, (23)

i=1
and any other operator A[g], constructed from the density operator p,
admits a representation in the graded power series:
1 1 1 .
Ale) = AOT4+AW ¢, + ZAEJJ eie; + 5,4§.j,1 cicjer+...,  (24)
According to the Poincaré-Birkhofl-Witt theorem [12] the ordered mono-
mials

ep =1, €irin-iy — €i1€in +vx Eipy  Eiy T €y < oo < €4y, (25)

form a linear basis of the universal enveloping algebra {(su(n)) of su(n).
Direct corollary of this theorem is that the symmetrized monomials of de-
gree d in (2.4) span a linear spaces 4%(su(n)) and the universal enveloping
algebra

(su(n)) = @ U (su(n)).
d=0

as a linear space is isomorphic to a polynomial algebra in commutative
real variables &, i =1,... ,n% — 1.

Furthermore, according to the well-known Gelfand’s theorem [13], the
description of center, Z(su(n)), of the enveloping algebra $(su(n)) reduces
to the study of invariants in commutative symmetrized algebra S(su(n)),
which is isomorphic to the algebra of invariant polynomials over su(n).
The elements of center Z(su(n)) are in one to one correspondence with
the SU(n)-invariant polynomials in n? — 1 real variables, coordinates in
su(n). More precisely, the element of 4(su(n))

1
Cr = E F Ciqevip E eia(l)eia(m e,-a(r), (26)

ocES,
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where S, is the group of permutation of 1,2,...r, belongs to Z(su(n)),
if and only if ¢;,...;, are coefficients of the polynomial in &,&,...,¢&,
variables

r

BE,6,-6) =Y Ciriy Eirin - iy (2.7)

which is invariant under the adjoint action

B(&1, 6, -, 6) = d((Ad 9)T&1,(Ad 9)T&,... (Ad 9)E),  (2.8)

with (Ad g)7 — the matrix of adjoint operator, Ad g, calculated in the
basis e;,€;, ... €;,..

Therefore, from the algebraic standpoint, the study of the orbit space
P+ | SU(n), as well as any characteristics of quantum-mechanical observ-
ables, invariant under the unitary action (2.1), reduces to the computation
of the center Z(su(n)) of U(su(n)).

If the elements €,., belong to center they are termed as Casimir oper-
ators. The number of independent homogeneous Casimir generators for
SU(n) group is equal to rank su(n) =n —1 .

It is well known, that the quadratic Casimir operator is unique up to
the constant factor and is expressible with the aid of the Cartan tensor:

Cij = tI‘((Ad 61)(Ad 6]‘)), (29)

Therefore for algebra su(n) the quadratic Casimir operator reads

@2 = Z €;€4, (210)

The higher dimensional Casimirs are expressed via the symmetric struc-
ture constants d;j;, of su(n) algebra [15]. Because further, dealing with the
qubit-qutrit system, the Casimirs of SU(6) will be used?, the expressions
for &; are given below:

€3 = dijiniy €, €ir€is,
¢y = Z dji1i2dji3i4 €41 €i3€i3€Ci,,
¢ = Z isyioQijis Ajigis €i1€in€isCi4CisCig s
Cg = Z iiyinijis Aikia Ahisis €i1€is€is€iaCisCig -
2The tensorial su(2) ® su(3) product type basis for su(6) is given in Appendix A.

There are also presented formulas for the symmetric structure constants d;;x as well
the antysymmetric structure constants f;;5 for su(n).
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Now using these operators and decomposition (2.3) based on the isomor-
phism between center Z(su(n)), and SU(n)-invariant polynomials, the fol-
lowing scalars, referred hereafter as Casimir invariants, can be written:

=(n-1)€&-& (2.11)
—(n-1)(EVE) ¢ (2.12)
=(n HEVE)-(EVvE) (2.13)
G =(n-1)((EVE)VEVE))-¢ (2.14)
=(n-1)(EVEVE) (2.15)
where
(U vV )a = KdapUp Ve,
with normalization constant k := y/n(n — 1)/2.

Now these scalars will be used for the explicit formulation of the posi-
tive semi-definiteness of density matrices for an arbitrary n-level quantum
system.

e Positivity of density operators e

To the best of our knowledge the first analysis of consequences of the
constraints on the density operator due to its semi-positive definiteness
has been done in sixties of the last century studying the production and
decay of resonant states in strong interaction processes [16, 17, 18]. Nowa-
days, the quantum computing and theory of quantum information reveals
the new role of these constraints and recently they have been once more
derived [19, 20]3.

To formulate the semi-definiteness let us choose the Bloch representa-
tion for a density operator (2.2) [11]:

o=—(I,+w), w=kr€E-A (2.16)

SI’—‘

characterized by (n2 — 1) -dimensional Bloch vector &€ € R""~! contracted
with Hermitian basis elements \; , i = 1,... ,n? — 1 of su(n) Lie algebra.

3Tn our recent publication [8] the positivity conditions for density operators has been
analyzed in context of the consequences for integrity basis of SU(2) ® SU(2) polynomial
invariants ring as well as for entanglement characteristics of mixed qubit states [21]



SU(6) CASIMIR INVARIANTS 107

According to [17]* a necessary and sufficient condition for the Hermitian
matrix to be positive is that the coefficients Sy, of its characteristic equa-
tion

Tz —o| =2" — 1" ' + Sz 2 — ...+ (-1)"S,, =0 (2.17)
should be non-negative
>0 & 5,20 k=1,...,n. (2.18)

It is convenient to rewrite these inequalities in terms of normalized coef-
ficients Sy := Si/max{ Si}. Noting that the maximal values of Sj, cor-
respond to a maximally degenerate roots; x; = 22 = ... =z, = 1/n of
the characteristic equation (2.17), one can expresses them via binomial

coefficients
1 n
max{ Sk} = ’n_k <n _ k’)

and thus
0<S5, <1 k=2,...,n. (2.19)

Now we are ready to rewrite the constraints (2.19) in terms of the
Casimir invariants (2.11)—(2.15). This is possible since, each of three sets,
¢, or Sy, or t, = tr(o¥), k = 2,... ,n forms the basis of algebraically
independent invariants of SU(n) group (see e.g. [14]). The expressions
for the coefficients Sy in terms of ¢, are well-known, they are given by
determinants:

t1 1 0 0 e 0

to t 2 0 .- 0

1 t3 t2 tl 3 s 0

Sk=-—1 . : ) ) i
th_1 tp_o tp_3 tp_4 ... k—1

te  trh-1 tk—2 tg—3 ... t1

Further, t,, can be represented as polynomials in Casimir invariants.
Based on the expressions for traces of symmetrized products of Lie al-

4Note that P.Minnaert attributed the same result to D. N. Williams.
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gebra basis elements (see Appendix A cf. also [20]) we have:

tr(w?) = n€,, (2.20)

tr(w®) = nes, (2.21)

tr(w?) = n (€3 + ¢4), (2.22)

tr(w®) =n (2¢2¢3 + ¢5), (2.23)

tr(wh) = n (€3 +2¢¢, + €2 + &), (2.24)

Finally, imposing the following normalization for the Casimir invariants,
Cr = (k= 1)! ¢, (2.25)

m—Dn-2)...(n—k+1)

we arrive at a system of inequalities in su(6) Casimir invariants, that
defines the positive semi-definiteness of the density matrix of qubit-qutrit
pair:

0<Cy <1, (2.26)
0<3Cy,—C5<1, (2.27)
0<6C,—5C; —4C3 +Cy <1, (2.28)
0<(1-5C%)* —30C5C3 +10C3—-5C,+C5<1 (2.29)
0 < (1 —5C5)% —1800,C5 + 125C5Cy

+20C5(1 4 5C3) — 15C, + 6C5 — Cs < 1. (2.30)

To discuss the role of the positive semi-definiteness in the entanglement
problem we need to write derived system in terms of local SU(2) ® SU(3)
invariants.

3. THE LOCAL UNITARY INVARIANTS

e The local invariance of composite states e

When a quantum system is obtained by combining of r-subsystems
with ny,ns,...,n, levels each, the non-local properties of the composite
system are in correspondence with a certain decomposition of the unitary
operations (2.1).

In order to discuss this decomposition consider the subgroup of unitary
group formed by the local unitary transformations

SU(n1) ® SU(n2) @ - - - @ SU(n,.), (3.1)
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acting independently on the density matrices of each subsystems
o) Q(”i)l =go" g™t geSUMmy), i=1,2,...,r,. (3.2)

Two states of composite system connected by the local unitary trans-
formations (3.1) have the same non-local properties. The latter can be
changed only by the rest of the unitary actions

SU(n
SU(TLl) ® SU(TLQ) - SU(TLT) ’

n=mnne Ny, (3.3)

generating the class of non-local transformations.

Now we are in position to discuss the structure of the ring of polyno-
mial local invariants, i.e. polynomials in elements of the density matrices,
which are scalars under the adjoint local unitary transformations. It is
well known that for any reductive linear algebraic group G (particularly,
a Lie group) and for any finite dimensional G-module V, the ring R has
the Cohen-Macaulay property [22] and posses a Hironaka decomposition

r
RE =P J.ClK1, Ko, ..., Ky, (3.4)
a=0
where K3,b = 1,2,...,n are primary, algebraically independent polyno-
mials and J,, a = 0,1,2,...,r,Jog = 1, are secondary, linearly indepen-

dent invariants respectively. According to that the corresponding Molien
function Mg (q) for R [7] can be expressed as follows

XT: qdnga
Mg (q) = —"—. (3.5)
(1—qglee®r)

s

b=1

In this form it provides us with information about the numbers of alge-
braically independent polynomials as well as linearly independent invari-
ants.

e Molien function for (C[‘Bfm)] and C[‘Bf®3)] .
Let us start with remark concerning the adjoint action (2.1). Consider
case of a non-degenerate density matrices. In this case using the natural
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identification of the elements of a linear space spanned by the Hermitian
2
n x n matrices with the space R? !

0 — pij
one can instead of the adjoint action (2.1) consider the linear representa-
tion on R™ 1
Vfll = LapVp, Lsp € SU(n) ® SU(n),
where a line over expression means the complex conjugation.
After this identification in order to get some insight on the structure

of the ring of polynomial invariants of linear action of Lie group G on the
linear V' space we can compute the Molien function

M((C[V]G,q)z/ #%, lg| <1, (3.6)
G

where du(g) is the Haar measure for Lie group G and 7 (g) is the corre-
sponding representation on V. We start with the system of two qubits.

Two qubits. In this case the local unitary group is

G =SU(2) ® SU(2). (3.7
As it is well known for any reductive linear group the integration in (3.6)
reduces to the integration over the maximal compact subgroup K of G [4].

In the present case this results in integration over the maximal tori
m(g) = diag (1,1, 2,27 ") ® diag (1, 1,w,w™ "), (3.8)

where z,w — coordinates on one dimensional tori. Therefore computations
reduce to the following two dimensional integral

Msu2)esu(2)(9) 27” / / X (3.9)
=1 |w|=1
where
dz dw
dp=(1-2P0-wPZ o
det(l — qn(9)) = (1~ ) W(z,w,q) (3.10)

U(z,w,q) = (1-q)*(1 - ¢2)°(1 — quw)*(1 — gz ')’ (1 — qu™")?
(1 —qzw)(1 — gz 'w)(1 — qzw™ ") (1 — gz 'w™ ).
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After integration we get the Molien function [7]

Mgy (2)esu(z) (@)
14+ P +3° + 20" + 26 +3¢° + ¢ +¢' + ¢
1-¢?)?(1—-¢*)?(1—¢")*(1 - ¢%) ’

which is the palindromic one

(3.11)

Msu)esue) (1/9) = —¢"° Msy(2)zsu(2) (9)

in accordance with
dim SU(4) = 15.

Qubit — Qutrit. Now the local unitary group is G := SU(2) ® SU(3)
and owing to the symmetries of the integrand (3.6) the non-trivial part
of the integration is entirely accumulated in the diagonal components of
the 7(g)-representation of the form:

ﬂ-(g)diag = diag (17 1,z, w_l)
®@diag(1,1,1,y,2,9z,5~ ", 27, (y2) "), (3.12)
where x,y and z are coordinates of one-dimensional tori. Therefore, the

computation of the Molien function (3.6) reduces to the evaluation of the
multiple contour integral in complex planes over unit circles®:

Msvwesuw@ = o | [ [ fewsadedyds @313

lz]=1 |y|=1 |z|=1

where
1 -z H -y Ha -2 - ()"
flx,y,2,q) = P T@,9.2.0) , 31
det(I —gm(g9)) = (1 —q) ¥(z,y,2,9), (3.15)

5The multiple integral (3.13) has been calculated using the consecutive application
of Cauchy’s residue theorem. Since the integrand f has poles of rather high orders,
computer computations of the residues has been performed using the command Residue
built-in Mathematica that implements the standard limit formula for high order poles
(see http://mathworld.wolfram.com/ComplexResidue.html).
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and W(ll7 y7 Z7 q) =

(1—q)°(1 —qy)*(1 — g2)*(1 — qyz)*(1 — %)2(1 _ %)2(1 _ i)z
(1- Qx)3(1 —qzy)(1 — gzz)(1 — qzyz)(1 — %)(1 _ %)(1 B Z_z)

(- DPa= 0 =00 - E50 - - Sy - 5.

As a result, the Molien function can be represented in the rational form
(cf. [23]):
N
Msy)esus)(q) = ik

where

N=1+4¢"+9¢"+38¢°+69¢" +173¢® +347¢° + 733 ¢*° + 1403 ¢!
+ 2796 ¢*2 + 5091 ¢'3 + 9286 ¢** + 16058 ¢'° + 27208 ¢*® + 44250 ¢*7
+ 70537 ¢'® 4 108430 ¢'° + 163158 ¢2° + 238264 ¢ + 339974 ¢°?
+ 472130 ¢%% 4 641187 ¢>* + 848615 ¢%° + 1098643 ¢° + 1388741 ¢*7
+ 1717327 ¢®® + 2075836 ¢2° + 2456389 ¢3° + 2843020 ¢! + 3222408 ¢32
+ 3575226 ¢33 + 3884797 ¢34 + 4133599 ¢° + 4308636 ¢3° + 4398377 ¢37
+4398377¢%% + ... +38¢%° +9¢70 +4¢"" +4°
D=(1-¢*)*(1 -1 —¢")’(1 - ") (1 - ¢*)°(1—¢")*(1 - ¢%). (3.16)

This Molien function is the palindromic one

Msy(2)esus)(1/a) = " Msu@)esue) (9),

as provided by
dim SU(6) = 35.

This form of the Molien function serves as source of information on the
polynomial ring of SU(2)®SU(3) invariants. Particularly, one can endeavor
to identify the structure of algebraically independent local unitary scalars.
According to (3.16) there are 24 independent scalars in agreement with
simple count of dim [SU(6)/SU(2) ® SU(3)] = 35 — 11 = 24. The set of
these 24 polynomial invariants may be composed from three invariants of
degree 2, four of degree 3, five of degree 4, four of degree 5, five of degree
6, two of degree 7 and one of the degree 8.
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Note that the Poincaré series of Msy(2)gsu(s)(q)

Msy)esus)(g) = Z dim (P§U(2)®SU(3)) 7, (3.17)
d=0

determines the number of homogeneous polynomial invariants of degree
d. According to the calculations of (3.13) the few terms of the Taylor
expansion over q are

Msu)esus) (@) = 1+3¢°+4¢°+15¢* +25¢°+90 ¢°+170 g7 +489 ¢°
+ 1059 ¢° 4+ 2600 ¢'° + 5641 ¢*' + 12872 ¢"2 + 27099 ¢*3

+ 57990 ¢'* + 118254 ¢° + 240187 ¢' + O (¢'7) .
(3.18)

Now, having in mind the input from the structure of the Molien func-
tion (3.16), we attempt to construct the local SU(2) ® SU(3) unitary
invariants.

e Constructing SU(2) ® SU(3) invariants e

Let us introduce the decomposition for density matrices well adapted
to the case of composite qubit-qutrit system. The space su(6) in (2.2) for
n = 6 admits decomposition in the direct sum of three real spaces

su(6) = @ Vo = s5u(2) @ Iy + I ®@su(2) + su(2) ® su(3).

Using Pauli matrices o; as the basis for su(2) and Gell-Mann matrices A,
as the basis for su(3) algebras (see Appendix A) the density matrix (2.16)
for qubit-qutrit system can be written as [9, 10]:

1
QZE[IG+W], w=a+ 8+, (3.20)
where
3 8 3 8
a I:Zaim‘@Is, B ::Zbi L®, 7 ZZZ Zcmai@/\a-
i=1 a=1 i—=1 a=1

(3.21)
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Among the 35=3+8+24 real parameters (a; , by, ¢;o) the first two sets,
a; and b,, correspond to the Bloch vectors of an individual qubit and qutrit
respectively; the evaluation of partial trace yields the reduced matrices for
subsystem:

1 —_ —_ ]_ fnd -
QMM:uB@y:§b+maL dm::mﬂngﬂyM~M,

while the variables ¢;, are entries of the so-called correlation matrix ¢;, =
1C]l]ia-

Before we suggest a set of local SU(2)®SU(3) scalars, candidates for the
elements of the integrity basis, let us make a few explanatory remarks.
Consider the homogeneous polynomials in variables (a,b,c) of degrees
s,t, q respectively constructed as follows.

In analogy with the generators (2.5) of the universal enveloping algebra
let us introduce a general non-commutative monomial of the total degree
d:

Mi1...id = Xil ~Xi2 e ~Xid, (322)

in 3 matrix variables X;, € {a,8,v},k =1,...,d. The trace operation on
monomial (3.22) defines the map:

tr : M — P, tr(Mi. .i,) € Pstg(as, b, Cig) (3.23)

where Pgstq(ai, bg, ig) is a polynomial in variables (a;,bg,ciq) with the
total degree d = s+t + ¢, where s, and ¢ are sums of degrees of variables
a;, by and ¢; , respectively.

Now it is easy to verify that the image of the trace map is a set of
SU(2) ® SU(3) invariants. Indeed, the generic term of the polynomials
(3.23) consist from the convolution of monomials in (a;, b, ¢i,) With traces
of tensorial products in the monomials (3.22)

tr(oio2 -+ 0p @ MAa -+ ) =tr (o102 0p) tr (A Ao -+ Ap),
where p = s+ ¢ and r = t + ¢. Since under the transformation of the form
k1 ®ks, where ki € SU(2), and ko € SU(3), the basis elements transformed
independently, in adjoint manner

o — kiokyt, X — ket

the polynomials tr (M) are invariant against SU(2) ® SU(3) actions.
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Therefore the polynomials Py (a;, ba, ¢iq) are the reserve for construct-
ing the integrity basis for the ring C[B]5V®5UG) Now, in contrast to
the case of SU(n) Casimir invariants built up with the help of symmetric
structure constants only, dealing with the scalars against the tensor prod-
uct of groups the invariants are constructed in terms of the antisymmetric
structure constants of product algebras as well. For example,

tr ’}/3 = CiaCjbCkc tr (O’Z‘O'jO'k ® /\a/\b/\c) = CiaCjbCkc tr (O’Z‘O'jO'k) tr (/\a/\b/\c) .

This quantity being invariant under the SU(2)®SU(3) action is expressible
via totally antisymmetric tensor €;;, — structure constants of su(2) algebra
and fup. — structure constants of su(3):

3 _
try” = —4 tr Eijkfabc CiaCjbCke)

Choosing a basis for local invariants, several types of algebraic depen-
dence between the polynomials in Psiq(a;, ba, ¢iq), have to be taken into
account. It is worth to consider two illustrative examples. Applying the
Hamilton-Cayley theorem for elements «a, 3 and -y, considered as Hermi-
tian 6 x 6 matrices, one can determine the algebraic identities for the
polynomials of the form tr(y™), n > 7. Less obvious example of relations
between polynomials is due to the identities between the structure con-
stants of the algebra.® Let us consider two invariants, both 4-th order in
variables, C', but one constructed using the invariant symmetric struc-
ture constants d while the second one with the anti-symmetric structure
constants f:

3°(dd) = dape depg (CT C)ap(CTC) g, (3.24)
3004(ff) = fapcfcbq(CTC)ab(CTc)pq- (325)

With the aid of identities (A.6) and (A.7) (Appendix A) for the structure
constants of su(3) algebra, one can convinced that

3%%%(dd) = §3°°4<ff> - % [(tr(CTC))2 - Qtr(CchTC)} . (3.26)

According to the Poincaré series (3.18) there are 15 homogeneous
scalars of order 4, while there are 81 = 3* monomials in three noncom-
mutative variables. But since the elements a and § commute this number

6Tor the detailed analysis of the relations of that type we refer to [24].
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reduces. Taking into account this commutativity as well as the invariance
of trace operation under the cyclic permutations of products, one can find
# 18 valuable monomials:

at, B oAt @B, aB?, oy, ay?, By, B,
B2, oy, ayay, B2, BB,
o’ By, af?y, afy?, aypy. (3.27)

Taking traces of these monomials one can convince that five of them form
the kernel of trace map:

tr(a8) = tr(af?) = tr(a®y) = tr(8%y) = tr(a®By) = O,

and image of last two monomials in (3.27) coincides up to sign

tr (aBy?) = —tr (ayBy).

Therefore the following set of twelve traces

tr (a*), tr(8"),tr (a®B%), tr(a’+?), (3.28)
tr (yh), tr(ay?®), tr(87%), tr (ayary), (3.29)
tr (8%7%), tr (8v87),tr (af®y), tr(aBy?), (3.30)

plus three 4-th order polynomials constructed as products of second de-
grees polynomials tr (a?) tr (82), tr (a?) tr (v2), tr (8%) tr (v2), are 15 ho-
mogeneous invariant polynomials in accordance with the Poincaré series
(3.18).

How difficult is extract the independent scalars from this list 7 It is easy
to verify that all traces in (3.28) are expressed in terms polynomials of
second order; e.g., tr (a?8%) = £ tr (a?) tr (8%). Concerning the remaining
monomials one can see that several of them have the same multidegree.
Namely, the following “trace” polynomials

L. tr(a?y?) = ¢ tr(a?) tr (v?) and tr (ayay),

2. tr (8%) tr (%), tr (8%4%) and tr (8767),
belong to the space Psgo and Pyas respectively. Being linearly independent

monomials, they obey the following relations

tr (a?+?) + tr (ayay) = 8 a;, a4, Cirjr Cinjr »

o 1 .
tr (8%+°) — g tr (8%) tr (v*) = 4djy ok dijsja bjy bjoCirjsCinjas
tr (B°7%) + tr (Bv87) = 8(3bj,bj,Ciy j1 Ci jo

+ djlj2k dkjsj4 bjl bjs Ci152Cirja )v
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where summation over all indices is assumed. This circumstance leaves an
open question how to build the elements of integrity basis with a certain
multidegree with the aid of the invariant “trace” polynomials.

We resume our analysis by the following list of linearly independent

SU(2) ® SU(3) scalars which are not products of low orders ones”:

e degree 2, three invariants
tr(a?), tr(%), tr(y?)
e degree 3, four invariants
tr(8%), tr(+%), tr(aBy), tr(6y?)
e degree 4, eight invariants

tr(v"), tr(ay®), tr(8y%), tr(ayay),
tr(8°9°), tr(By8y), tr(af?y), tr(ay?).
e Casimir invariants decomposition e

The expansion of the Casimir invariants up to the 4-th order (2.11)—
(2.13) over the above suggested SU(2) ® SU(3) “trace” scalars reads:

6Cy = tr(a?) + tr (6%) + tr (v?),
63 = tr(8%) +tr (v*) + 3 tr (8%) + 6 tr (aBy)

6¢, = é[tr(az) (2 tr(ﬁz)—l—tr(’yz)) +1 tr(8%)* % tr(v%)* —tr(5°) tr(vz)}
+ 4 tr(@r?) + tr(87°) + tr(529%) + tr(ap?) + Btr(ap)|
+2 {tr(cwow) + tr(ﬁvﬁv)} +tr(y?).

We conclude with the final remark on the applicability of the derived
results to the problem of classification of mixed quantum states. Using
inequalities (2.26)—(2.30) and results from [21] the well-known Peres—
Horodecki criterion for the separability of qubit-qutrit mixed states can
be reformulated as a set of inequalities in SU(2) ® SU(3) scalars.

"Note that 2-nd and 3-d order invariants were proposed in [23].
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A. APPENDIX: FORMULAS FOR THE su(6) ALGEBRA

e The tensorial basis e
For the su(6) algebra we use the basis {74}4=1, 35 constructed from
the tensor products of the Pauli matrices o; € su(2):

w=(23) em(F) e h)

and eight {Ag}e=1,.. 8 Gell-Mann matrices, forming the su(3) basis:

B

01 0 0 —i 0 1 0 O
AM=11 0 0 =i 0 0 AM=10 -1 0
0 0 0 0O 0 O 0 0 O
0 0 1 0 0 — 0 0 O
M=10 0 0 M=|0 0 O =10 0 1
1 0 0 i 00 0 1 0
0 0 O 1 1 0 0
AMM=|0 0 —i ] dg=—]0 1 0
0 2 0 V3 0 0 -2
The elements 74 are enumerated as
L ®1I 1 IL®A (A.2)
Ti = —= 0 9 T3+a = —F= a .
\/g 3 3+ \/i 2

M14a — o ®A T94a — o ®A 727 - ®A
a as a p as p a [
11 \/— 1 19 \/— 2 274 \/—()3

e The algebraic structures e
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The product of basis elements reads

2
TATB = 55143]1 + (daBe + 1 fapo)Te,

The structure constants d4pc and fapc can be determined via equations

1 ?
dapc = ZTT({TAaTB}TO)a faBc = 1 Tr([ra,7B]7C),

where apart from the Lie algebra product, [, ], the “anti-commutator” of
elements, i.e., {74,78} = T7a7B + TBTa has been used.

e Identities for structure constants e
For the SU(n) group the structure constants obey the following iden-
tities:

fabcfcpq + fbpcfcaq + fpacfcbq = 07 (A3
dabcfcpq + dbpcfcaq + dpacfcbq = O, (A4)

2

fabcfcpq = dapcdcbq - dachcbp + — (6ap6bq - 5aq6bp)7
n (A.5)
fabcfcpq + faqcfcpb = 2dapcdcbq - dabcdcpq - dachcbp
2

= (200 — BabBpg — Gugop). (A.6)

The SU(3) symmetric constants satisfy [25, 26] an important identities

1
dabcdcpq + dbpcdcaq + dpacdcbq - §(5ab6pq + 5ap6bq + 5aq6bp)- (A7)
e The traces e
The traces of symmetrized products of su(n) basis elements are

tr (T(aTp}) = 2das,

tr (T{aTch}) =2 dabcu
2

tr (T{aTchTd}) = E 5ab5cd +2 dabedecda
22
tr (T{aTchTdTe}) - E (dabc(sde + 6abdcde) + 2 dabfdfcgdgdeu

3 22
tr (T{aTchTdTeTf}) = ﬁ 5ab5cd5ef + g (dabgdgcd(sef + 6abdcdgdgef)
2
+ E dabcddef +2 dabgdgchdhdvdvef~
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