
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 387, 2011 Ç.V. Gerdt, D. Mladenov, Yu. Palii, A. KhvedelidzeSU(6) CASIMIR INVARIANTS AND SU(2) ⊗ SU(3)SCALARS FOR A MIXED QUBIT{QUTRIT STATESAbstrat. In the present paper few steps are undertaken towards the de-sription of the \qubit{qutrit" pair { quantum bipartite system omposedof two and three level subsystems. Calulations of the Molien funtionsand Poinar�e series for the qubit-qubit and qubit-qutrit \loal unitaryinvariants" are outlined and ompared with the known results. The re-quirement of positive semi-de�niteness of the density operator is formu-lated expliitly as a set of inequalities in �ve Casimir invariants of theenveloping algebra su(6). 1. IntrodutionThe present artile disusses several omputational aspets of a purequantum e�ets in omposite systems valuable for the modern theory ofquantum omputing and quantum information [1, 2℄.The ornerstone of these latest trends is an extraordinary quantumphenomenon { the \entanglement" of quantum states. Basially, underthe entanglement it is assumed an exposition of diverse non-loal or-relations in a omposite multipartite quantum system, whih have nolassial analogue. From the mathematial standpoint of view harater-istis of entanglement an be understood within the lassial theory ofinvariants (f. [3, 4℄). The entral objet in these studies is the ring of G-invariant polynomials in elements of the density matries with the groupG onsisting from the so-alled loal unitary transformations ating sep-arately on every part the multipartite omposite system. The programof desription of this ring for multipartite mixed states was outlined in[5℄ and during the last deade has been intensively developed. Over thistime many interesting physial and pure mathematial results have beenobtained. Partiularly, for the simplest bipartite system of two qubits, thestruture of the orresponding ring has been lari�ed (see e.g. [6, 7, 8℄).However, omparative less is known for multipartite states, as well as forKey words and phrases: Entanglement, polynomial invariants, Molien funtion, pos-itive de�niteness. 102



SU(6) CASIMIR INVARIANTS 103bipartite mixed states, omposed from arbitrary d-level subsystems, i.e.,the so-alled qudits [9, 10℄. The reason is �rst of all in a big omputa-tional diÆulty we are faed. Indeed, even dealing with 3-level subsystem,qutrit, the large number of independent elements of the density matrixleads to the wide variety of the loal polynomial invariants and makesnon-e�etive the diret usage of the known omputer algebra pakages.Below, attempting to onstrut the polynomial ring of invariants forqubit-qutrit pair, we got added evidene of the omplexity of the prob-lem. The known results [23℄ and our alulation of the Molien funtionsand Poinar�e series for the qubit-qutrit shows that the number of loalinvariants grows up signi�antly ompared with the ase of two qubits.Nevertheless the derived information is very useful for the analysis of thering of SU(2)⊗SU(3) invariants. As a preliminary results we present here aset of linearly independent SU(2)⊗SU(3) invariant polynomials up to thefourth order onstruted via trae operation from the non-ommutativemonomials in three elements of a speial deomposition of qubit-qutritdensity matrix. Using the subset of the SU(2) ⊗ SU(3) invariant polyno-mials, onsisting from the Casimir invariants of the enveloping algebra
U(su(6)), the positive semi-de�niteness of density matrix of qubit-qutritpair is derived in the form of a system of algebrai inequalities.The SU(n) Casimir invariantsHere the basi statements on the unitary symmetry of quantum me-hanis and its role in the desription of omposite multipartite states isgiven.

• Density operator and SU(n)-invariants •Aording to the onventional quantum theory, a omplete informationon a generi n-dimensional system is aumulated in the self-adjoint pos-itive semi-de�nite density operator % with a unit trae, % ∈ P+. For alosed quantum system, this desription is highly redundant, the equiva-lene relation between elements of P+, due to the invariane of observablesunder the adjoint ation of SU(n) group(Ad g )% = g % g−1; g ∈ SU(n); (2.1)guarantee that the physially relevant knowledge about quantum statesan be extrated from the orbit spae P+ | SU(n)1 Relaxing for a moment1The orbit spae P+ |SU(n) of SU(n) is de�ned as the set of all SU(n)-orbits,endowed with the quotient topology and di�erentiable struture and the subset of allthe SU(n)-orbits with the same orbit-type forms a stratum of P+ | SU(n).



104 V. GERDT, D. MLADENOV, YU. PALII, A. KHVEDELIDZEondition of semi-de�niteness, the density operator % an be expressed viathe Lie algebra su(n) of SU(n) group [11℄:% = 1n In + ~� { g; g ∈ su(n); {2 = −1: (2.2)with some normalization fator ~�. Therefore the density operator an bedeomposed over n2−1 basis elements, ei, of the Lie algebra su(n)
g = n2 −1

∑i=1 �i ei; (2.3)and any other operator A[%℄, onstruted from the density operator �,admits a representation in the graded power series:
A(e) = A(0) I+A(1)i ei + 12!A(2)ij eiej + 13!A(3)ijk eiejek + : : : ; (2.4)Aording to the Poinar�e{Birkho�{Witt theorem [12℄ the ordered mono-mials e0 = 1; ei1i2···ik = ei1ei2 : : : eik ; ei1 < ei2 < · · · < eik ; (2.5)form a linear basis of the universal enveloping algebra U(su(n)) of su(n).Diret orollary of this theorem is that the symmetrized monomials of de-gree d in (2.4) span a linear spaes Ud(su(n)) and the universal envelopingalgebra

U(su(n)) = ∞
⊕d=0 Ud(su(n)):as a linear spae is isomorphi to a polynomial algebra in ommutativereal variables �i ; i = 1; : : : ; n2 − 1.Furthermore, aording to the well-known Gelfand's theorem [13℄, thedesription of enter, Z(su(n)), of the enveloping algebra U(su(n)) reduesto the study of invariants in ommutative symmetrized algebra S(su(n)),whih is isomorphi to the algebra of invariant polynomials over su(n).The elements of enter Z(su(n)) are in one to one orrespondene withthe SU(n)-invariant polynomials in n2 − 1 real variables, oordinates in

su(n). More preisely, the element of U(su(n))
Cr = ∑ 1r! i1···ir ∑�∈Sr ei�(1)ei�(2) : : : ei�(r) ; (2.6)



SU(6) CASIMIR INVARIANTS 105where Sr is the group of permutation of 1; 2; : : : r, belongs to Z(su(n)),if and only if i1···ir are oeÆients of the polynomial in �1; �2; : : : ; �rvariables �(�1; �2; : : : ; �r) = ∑ i1···ir �i1�i2 : : : �ir ; (2.7)whih is invariant under the adjoint ation�(�1; �2; : : : ; �r) = �((Ad g)T �1; (Ad g)T �2; : : : (Ad g)T �r); (2.8)with (Ad g)T { the matrix of adjoint operator, Ad g, alulated in thebasis ei1ei2 : : : eir .Therefore, from the algebrai standpoint, the study of the orbit spae
P+ | SU(n), as well as any harateristis of quantum-mehanial observ-ables, invariant under the unitary ation (2.1), redues to the omputationof the enter Z(su(n)) of U(su(n)).If the elements Cr; belong to enter they are termed as Casimir oper-ators. The number of independent homogeneous Casimir generators forSU(n) group is equal to rank su(n) = n− 1 .It is well known, that the quadrati Casimir operator is unique up tothe onstant fator and is expressible with the aid of the Cartan tensor:Cij = tr((Ad ei)(Ad ej)); (2.9)Therefore for algebra su(n) the quadrati Casimir operator reads

C2 = ∑ eiei; (2.10)The higher dimensional Casimirs are expressed via the symmetri stru-ture onstants dijk of su(n) algebra [15℄. Beause further, dealing with thequbit-qutrit system, the Casimirs of SU(6) will be used2, the expressionsfor Ci are given below:
C3 = ∑ di1i2i3 ei1ei2ei3 ;
C4 = ∑ dji1i2dji3i4 ei1ei2ei3ei4 ;
C5 = ∑ dii1i2diji3dji4i5 ei1ei2ei3ei4ei5ei6 ;
C6 = ∑ dii1i2diji3djki4dki5i6 ei1ei2ei3ei4ei5ei6 :2The tensorial su(2) ⊗ su(3) produt type basis for su(6) is given in Appendix A.There are also presented formulas for the symmetri struture onstants dijk as wellthe antysymmetri struture onstants fijk for su(n).



106 V. GERDT, D. MLADENOV, YU. PALII, A. KHVEDELIDZENow using these operators and deomposition (2.3) based on the isomor-phism between enter Z(su(n)), and SU(n)-invariant polynomials, the fol-lowing salars, referred hereafter as Casimir invariants, an be written:
C2 = (n− 1) � · � (2.11)
C3 = (n− 1) (� ∨ � ) · � (2.12)
C4 = (n− 1) (� ∨ � ) · (� ∨ � ) (2.13)
C5 = (n− 1)((� ∨ � ) ∨ (� ∨ � )) · � (2.14)
C6 = (n− 1) (� ∨ � ∨ � )2 (2.15): : : : : :where (U ∨ V )a := � dabUbV;with normalization onstant � := √n(n− 1)=2.Now these salars will be used for the expliit formulation of the posi-tive semi-de�niteness of density matries for an arbitrary n-level quantumsystem.

• Positivity of density operators •To the best of our knowledge the �rst analysis of onsequenes of theonstraints on the density operator due to its semi-positive de�nitenesshas been done in sixties of the last entury studying the prodution anddeay of resonant states in strong interation proesses [16, 17, 18℄. Nowa-days, the quantum omputing and theory of quantum information revealsthe new role of these onstraints and reently they have been one morederived [19, 20℄3.To formulate the semi-de�niteness let us hoose the Bloh representa-tion for a density operator (2.2) [11℄:% = 1n ( In + ! ) ; ! = � � · �; (2.16)haraterized by (n2− 1) -dimensional Bloh vetor � ∈ Rn2−1 ontratedwith Hermitian basis elements �i ; i = 1; : : : ; n2 − 1 of su(n) Lie algebra.3In our reent publiation [8℄ the positivity onditions for density operators has beenanalyzed in ontext of the onsequenes for integrity basis of SU(2)⊗SU(2) polynomialinvariants ring as well as for entanglement harateristis of mixed qubit states [21℄



SU(6) CASIMIR INVARIANTS 107Aording to [17℄4 a neessary and suÆient ondition for the Hermitianmatrix to be positive is that the oeÆients Sk of its harateristi equa-tion
|Ix − %| = xn − S1xn−1 + S2xn−2 − : : :+ (−1)nSn = 0 (2.17)should be non-negative% ≥ 0 ⇔ Sk ≥ 0 k = 1; : : : ; n: (2.18)It is onvenient to rewrite these inequalities in terms of normalized oef-�ients �Sk := Sk=max{Sk}. Noting that the maximal values of Sk or-respond to a maximally degenerate roots; x1 = x2 = : : : = xn = 1=n ofthe harateristi equation (2.17), one an expresses them via binomialoeÆients max{Sk} = 1nk ( nn− k)and thus 0 ≤ �Sk ≤ 1 k = 2; : : : ; n: (2.19)Now we are ready to rewrite the onstraints (2.19) in terms of theCasimir invariants (2.11){(2.15). This is possible sine, eah of three sets,

Ck, or Sk, or tk = tr(%k), k = 2; : : : ; n forms the basis of algebraiallyindependent invariants of SU(n) group (see e.g. [14℄). The expressionsfor the oeÆients Sk in terms of tm are well-known, they are given bydeterminants:Sk = 1k! ∣
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:Further, tm an be represented as polynomials in Casimir invariants.Based on the expressions for traes of symmetrized produts of Lie al-4Note that P.Minnaert attributed the same result to D. N. Williams.



108 V. GERDT, D. MLADENOV, YU. PALII, A. KHVEDELIDZEgebra basis elements (see Appendix A f. also [20℄) we have:tr(!2) = nC2; (2.20)tr(!3) = nC3; (2.21)tr(!4) = n (C22 + C4); (2.22)tr(!5) = n (2C2C3 + C5); (2.23)tr(!6) = n (C32 + 2C2C4 + C23 + C6); (2.24)Finally, imposing the following normalization for the Casimir invariants,Ck = (k − 1)!(n− 1)(n− 2) : : : (n− k + 1) Ck; (2.25)we arrive at a system of inequalities in su(6) Casimir invariants, thatde�nes the positive semi-de�niteness of the density matrix of qubit-qutritpair: 0 ≤ C2 ≤ 1; (2.26)0 ≤ 3C2 − C3 ≤ 1; (2.27)0 ≤ 6C2 − 5C22 − 4C3 + C4 ≤ 1; (2.28)0 ≤(1−5C2)2 − 30C2C3 + 10C3−5C4+C5≤1 (2.29)0 ≤ (1− 5C2)3 − 180C2C3 + 125C2C4+ 20C3(1 + 5C3)− 15C4 + 6C5 − C6 ≤ 1: (2.30)To disuss the role of the positive semi-de�niteness in the entanglementproblem we need to write derived system in terms of loal SU(2)⊗ SU(3)invariants. 3. The loal unitary invariants
• The loal invariane of omposite states •When a quantum system is obtained by ombining of r-subsystemswith n1; n2; : : : ; nr levels eah, the non-loal properties of the ompositesystem are in orrespondene with a ertain deomposition of the unitaryoperations (2.1).In order to disuss this deomposition onsider the subgroup of unitarygroup formed by the loal unitary transformationsSU(n1)⊗ SU(n2)⊗ · · · ⊗ SU(nr); (3.1)



SU(6) CASIMIR INVARIANTS 109ating independently on the density matries of eah subsystems%(ni) → %(ni)′ = g%(ni) g−1 g ∈ SU(ni); i = 1; 2; : : : ; r; : (3.2)Two states of omposite system onneted by the loal unitary trans-formations (3.1) have the same non-loal properties. The latter an behanged only by the rest of the unitary ationsSU(n)SU(n1)⊗ SU(n2)⊗ · · · ⊗ SU(nr) ; n = n1n2 · · ·nr; (3.3)generating the lass of non-loal transformations.Now we are in position to disuss the struture of the ring of polyno-mial loal invariants, i.e. polynomials in elements of the density matries,whih are salars under the adjoint loal unitary transformations. It iswell known that for any redutive linear algebrai group G (partiularly,a Lie group) and for any �nite dimensional G-module V, the ring RG hasthe Cohen-Maaulay property [22℄ and posses a Hironaka deomposition
RG = r

⊕a=0 Ja C[K1;K2; : : : ;Kn℄; (3.4)where Kb; b = 1; 2; : : : ; n are primary, algebraially independent polyno-mials and Ja; a = 0; 1; 2; : : : ; r; J0 = 1, are seondary, linearly indepen-dent invariants respetively. Aording to that the orresponding Molienfuntion MG(q) for RG [7℄ an be expressed as followsMG(q) = r
∑a=0 qdeg Jan

∏b=1(1− qdegKb) : (3.5)In this form it provides us with information about the numbers of alge-braially independent polynomials as well as linearly independent invari-ants.
• Molien funtion for C[P(2⊗2)+ ℄ and C[P(2⊗3)+ ℄ •Let us start with remark onerning the adjoint ation (2.1). Considerase of a non-degenerate density matries. In this ase using the natural



110 V. GERDT, D. MLADENOV, YU. PALII, A. KHVEDELIDZEidenti�ation of the elements of a linear spae spanned by the Hermitiann× n matries with the spae R
n2−1% → �ijone an instead of the adjoint ation (2.1) onsider the linear representa-tion on Rn2−1 V ′A = LABVB ; LAB ∈ SU(n)⊗ SU(n);where a line over expression means the omplex onjugation.After this identi�ation in order to get some insight on the strutureof the ring of polynomial invariants of linear ation of Lie group G on thelinear V spae we an ompute the Molien funtionM(C[V ℄G; q) = ∫G d�(g)det(I − q�(g)) ; |q| < 1; (3.6)where d�(g) is the Haar measure for Lie group G and �(g) is the orre-sponding representation on V . We start with the system of two qubits.Two qubits: In this ase the loal unitary group isG = SU(2)⊗ SU(2): (3.7)As it is well known for any redutive linear group the integration in (3.6)redues to the integration over the maximal ompat subgroup K of G [4℄.In the present ase this results in integration over the maximal tori�(g) = diag (1; 1; z; z−1)⊗ diag (1; 1; w; w−1); (3.8)where z; w { oordinates on one dimensional tori. Therefore omputationsredue to the following two dimensional integralMSU(2)⊗SU(2)(q) = 1(2�i)2 ∫

|z|=1 ∫

|w|=1 d �	(z; w; q) (3.9)where d � = (1− z)2(1− w)2 dzz2 dww2 ;det(I − q�(g)) = (1− q)	(z; w; q) (3.10)	(z; w; q) = (1− q)3(1− qz)2(1− qw)2(1− qz−1)2(1− qw−1)2(1− qzw)(1− qz−1w)(1− qzw−1)(1− qz−1w−1):



SU(6) CASIMIR INVARIANTS 111After integration we get the Molien funtion [7℄MSU(2)⊗SU(2)(q)= 1 + q4 + q5 + 3q6 + 2q7 + 2q8 + 3q9 + q10 + q11 + q15(1− q2)3(1− q3)2(1− q4)3(1− q6) ; (3.11)whih is the palindromi oneMSU(2)⊗SU(2)(1=q) = −q15MSU(2)⊗SU(2)(q)in aordane with dim SU(4) = 15:Qubit−Qutrit: Now the loal unitary group is G := SU(2)⊗ SU(3)and owing to the symmetries of the integrand (3.6) the non-trivial partof the integration is entirely aumulated in the diagonal omponents ofthe �(g)-representation of the form:�(g)diag = diag (1; 1; x; x−1)
⊗ diag (1; 1; 1; y; z; yz; y−1; z−1; (yz)−1); (3.12)where x; y and z are oordinates of one-dimensional tori. Therefore, theomputation of the Molien funtion (3.6) redues to the evaluation of themultiple ontour integral in omplex planes over unit irles5:MSU(2)⊗SU(3)(q) = 1(2�i)3 ∫

|x|=1 ∫

|y|=1 ∫

|z|=1 f(x; y; z; q) dx dy dz; (3.13)where f(x; y; z; q) = 1xyz (1− x−1)(1− y−1)(1− z−1)(1− (yz)−1)	(x; y; z; q) ; (3.14)det(I − q�(g)) = (1− q) 	(x; y; z; q); (3.15)5The multiple integral (3.13) has been alulated using the onseutive appliationof Cauhy's residue theorem. Sine the integrand f has poles of rather high orders,omputer omputations of the residues has been performed using the ommand Residuebuilt-in Mathematia that implements the standard limit formula for high order poles(see http://mathworld.wolfram.om/ComplexResidue.html).



112 V. GERDT, D. MLADENOV, YU. PALII, A. KHVEDELIDZEand 	(x; y; z; q) =(1− q)5(1− qy)2(1− qz)2(1− qyz)2(1− qy )2(1− qz )2(1− qyz )2(1− qx)3(1− qxy)(1− qxz)(1− qxyz)(1− qxy )(1− qxz )(1− qxyz )(1− qx )3(1− qyx )(1− qzx )(1− qyzx )(1− qxy )(1− qxz )(1− qxyz ):As a result, the Molien funtion an be represented in the rational form(f. [23℄): MSU(2)⊗SU(3)(q) = ND ;whereN =1 + 4 q4 + 9 q5 + 38 q6 + 69 q7 + 173 q8 + 347 q9 + 733 q10 + 1403 q11+ 2796 q12 + 5091 q13 + 9286 q14 + 16058 q15 + 27208 q16 + 44250 q17+ 70537 q18 + 108430 q19 + 163158 q20 + 238264 q21 + 339974 q22+ 472130 q23 + 641187 q24 + 848615 q25 + 1098643 q26 + 1388741 q27+ 1717327 q28 + 2075836 q29 + 2456389 q30 + 2843020 q31 + 3222408 q32+ 3575226 q33 + 3884797 q34 + 4133599 q35 + 4308636 q36 + 4398377 q37+ 4398377 q38 + : : :+ 38 q69 + 9 q70 + 4 q71 + q75D =(1 − q2)3(1− q3)4(1 − q4)5(1− q5)4(1 − q6)5(1− q7)2(1 − q8): (3.16)This Molien funtion is the palindromi oneMSU(2)⊗SU(3)(1=q) = q35MSU(2)⊗SU(3)(q);as provided by dim SU(6) = 35:This form of the Molien funtion serves as soure of information on thepolynomial ring of SU(2)⊗SU(3) invariants. Partiularly, one an endeavorto identify the struture of algebraially independent loal unitary salars.Aording to (3.16) there are 24 independent salars in agreement withsimple ount of dim [SU(6)= SU(2)⊗ SU(3)℄ = 35 − 11 = 24. The set ofthese 24 polynomial invariants may be omposed from three invariants ofdegree 2, four of degree 3, �ve of degree 4, four of degree 5, �ve of degree6, two of degree 7 and one of the degree 8.



SU(6) CASIMIR INVARIANTS 113Note that the Poinar�e series of MSU(2)⊗SU(3)(q)MSU(2)⊗SU(3)(q) = ∞
∑d=0 dim (

PSU(2)⊗SU(3)d ) qd; (3.17)determines the number of homogeneous polynomial invariants of degreed. Aording to the alulations of (3.13) the few terms of the Taylorexpansion over q areMSU(2)⊗SU(3)(q) = 1+3 q2+4 q3+15 q4+25 q5+90 q6+170 q7+489 q8+ 1059 q9 + 2600 q10 + 5641 q11 + 12872 q12 + 27099 q13+ 57990 q14 + 118254 q15 + 240187 q16 +O (q17) : (3.18)Now, having in mind the input from the struture of the Molien fun-tion (3.16), we attempt to onstrut the loal SU(2) ⊗ SU(3) unitaryinvariants.
• Construting SU(2)⊗ SU(3) invariants •Let us introdue the deomposition for density matries well adaptedto the ase of omposite qubit-qutrit system. The spae su(6) in (2.2) forn = 6 admits deomposition in the diret sum of three real spaes

su(6) = 3
⊕a=1 Va = su(2)⊗ I3+I2⊗su(2) + su(2)⊗ su(3):Using Pauli matries �i as the basis for su(2) and Gell-Mann matries �aas the basis for su(3) algebras (see Appendix A) the density matrix (2.16)for qubit-qutrit system an be written as [9, 10℄:% = 16 [I6+!℄ ; ! = �+ � + ; (3.20)where� := 3

∑i=1 ai �i ⊗ I3; � := 8
∑a=1 bi I2⊗�a;  := 3

∑i=1 8
∑a=1 ia �i ⊗ �a:(3.21)



114 V. GERDT, D. MLADENOV, YU. PALII, A. KHVEDELIDZEAmong the 35=3+8+24 real parameters (ai ; ba; ia) the �rst two sets,ai and ba, orrespond to the Bloh vetors of an individual qubit and qutritrespetively; the evaluation of partial trae yields the redued matries forsubsystem:%(A) := trB(%) = 12(I2+~a · ~�); %(B) := trA(%) = 13(I3+~b · ~�);while the variables ia are entries of the so-alled orrelation matrix ia =
‖C‖|ia.Before we suggest a set of loal SU(2)⊗SU(3) salars, andidates for theelements of the integrity basis, let us make a few explanatory remarks.Consider the homogeneous polynomials in variables (a; b; ) of degreess; t; q respetively onstruted as follows.In analogy with the generators (2.5) of the universal enveloping algebralet us introdue a general non-ommutative monomial of the total degreed:

Mi1:::id := Xi1 ·Xi2 · : : : ·Xid ; (3.22)in 3 matrix variables Xik ∈ {�; �; }; k = 1; : : : ; d. The trae operation onmonomial (3.22) de�nes the map:tr : M → P ; tr (Mi1:::id) ∈ Pstq(ai; ba; ia) (3.23)where Pstq(ai; ba; ia) is a polynomial in variables (ai; ba; ia) with thetotal degree d = s+ t+q, where s; t and q are sums of degrees of variablesai; ba and i;a respetively.Now it is easy to verify that the image of the trae map is a set ofSU(2) ⊗ SU(3) invariants. Indeed, the generi term of the polynomials(3.23) onsist from the onvolution of monomials in (ai; ba; ia) with traesof tensorial produts in the monomials (3.22)tr (�1�2 · · ·�p ⊗ �1�2 · · ·�r) = tr (�1�2 · · ·�p) tr (�1�2 · · ·�r) ;where p = s+ q and r = t+ q. Sine under the transformation of the formk1⊗k2, where k1 ∈ SU(2), and k2 ∈ SU(3), the basis elements transformedindependently, in adjoint manner� → k1�k−11 ; � → k2�k−12 ;the polynomials tr (M) are invariant against SU(2)⊗ SU(3) ations.



SU(6) CASIMIR INVARIANTS 115Therefore the polynomials Pstq(ai; ba; ia) are the reserve for onstrut-ing the integrity basis for the ring C[P ℄SU(2)⊗SU(3). Now, in ontrast tothe ase of SU(n) Casimir invariants built up with the help of symmetristruture onstants only, dealing with the salars against the tensor prod-ut of groups the invariants are onstruted in terms of the antisymmetristruture onstants of produt algebras as well. For example,tr 3 = iajbk tr (�i�j�k ⊗ �a�b�) = iajbk tr (�i�j�k) tr (�a�b�) :This quantity being invariant under the SU(2)⊗SU(3) ation is expressiblevia totally antisymmetri tensor �ijk { struture onstants of su(2) algebraand fab { struture onstants of su(3):tr 3 = −4 tr "ijkfab iajbk;Choosing a basis for loal invariants, several types of algebrai depen-dene between the polynomials in Pstq(ai ; ba; ia), have to be taken intoaount. It is worth to onsider two illustrative examples. Applying theHamilton-Cayley theorem for elements �; � and , onsidered as Hermi-tian 6 × 6 matries, one an determine the algebrai identities for thepolynomials of the form tr(n), n > 7. Less obvious example of relationsbetween polynomials is due to the identities between the struture on-stants of the algebra.6 Let us onsider two invariants, both 4-th order invariables, C, but one onstruted using the invariant symmetri stru-ture onstants d while the seond one with the anti-symmetri strutureonstants f :
I004(dd) = dab dpq (CTC)ab(CTC)pq ; (3.24)
I004(ff) = fapfbq(CTC)ab(CTC)pq : (3.25)With the aid of identities (A.6) and (A.7) (Appendix A) for the strutureonstants of su(3) algebra, one an onvined that

I004(dd) = 23 I004(ff)− 13 [

(tr(CTC))2 − 2 tr(CTCCTC)] : (3.26)Aording to the Poinar�e series (3.18) there are 15 homogeneoussalars of order 4, while there are 81 = 34 monomials in three nonom-mutative variables. But sine the elements � and � ommute this number6For the detailed analysis of the relations of that type we refer to [24℄.



116 V. GERDT, D. MLADENOV, YU. PALII, A. KHVEDELIDZEredues. Taking into aount this ommutativity as well as the invarianeof trae operation under the yli permutations of produts, one an �nd# 18 valuable monomials:�4; �4; 4; �3�; ��3; �3; �3; �3; �3;�2�2; �22; ��; �22; ��;�2�; ��2; ��2; ��: (3.27)Taking traes of these monomials one an onvine that �ve of them formthe kernel of trae map:tr(�3�) = tr(��3) = tr(�3) = tr(�3) = tr(�2�) = 0;and image of last two monomials in (3.27) oinides up to signtr (��2) = − tr (��):Therefore the following set of twelve traestr (�4); tr (�4); tr (�2�2); tr (�22); (3.28)tr (4); tr (�3); tr (�3); tr (��); (3.29)tr (�22); tr (��); tr (��2); tr (��2); (3.30)plus three 4-th order polynomials onstruted as produts of seond de-grees polynomials tr (�2) tr (�2), tr (�2) tr (2), tr (�2) tr (2), are 15 ho-mogeneous invariant polynomials in aordane with the Poinar�e series(3.18).How diÆult is extrat the independent salars from this list ? It is easyto verify that all traes in (3.28) are expressed in terms polynomials ofseond order; e.g., tr (�2�2) = 16 tr (�2) tr (�2). Conerning the remainingmonomials one an see that several of them have the same multidegree.Namely, the following \trae" polynomials1. tr (�22) = 16 tr (�2) tr (2) and tr (��),2. tr (�2) tr (2), tr (�22) and tr (��),belong to the spae P202 and P022 respetively. Being linearly independentmonomials, they obey the following relationstr (�22) + tr (��) = 8 ai1ai2i1j1i2j1 ;tr (�22)− 16 tr (�2) tr (2) = 4 dj1j2k dkj3j4 bj1bj2i1j3i1j4 ;tr (�22) + tr (��) = 8( 23bj1bj2i1j1i1j2+ dj1j2k dkj3j4 bj1bj3i1j2i1j4);



SU(6) CASIMIR INVARIANTS 117where summation over all indies is assumed. This irumstane leaves anopen question how to build the elements of integrity basis with a ertainmultidegree with the aid of the invariant \trae" polynomials.We resume our analysis by the following list of linearly independentSU(2)⊗ SU(3) salars whih are not produts of low orders ones7:
• degree 2, three invariantstr(�2); tr(�2); tr(2)
• degree 3, four invariantstr(�3); tr(3); tr(��); tr(�2)
• degree 4, eight invariantstr (4); tr (�3); tr (�3); tr (��);tr (�22); tr (��); tr (��2); tr (��2):
• Casimir invariants deomposition •The expansion of the Casimir invariants up to the 4-th order (2.11){(2.13) over the above suggested SU(2)⊗ SU(3) \trae" salars reads:6C2 = tr (�2) + tr (�2) + tr (2);6C3 = tr (�3) + tr (3) + 3 tr (�2) + 6 tr (��)6C4 = 13[ tr(�2)(2 tr(�2)+tr(2))+ 14 tr(�2)2− 12 tr(2)2−tr(�2) tr(2)]+ 4[ tr(�3) + tr(�3) + tr(�22) + tr(��2) + 3 tr(��2)]+ 2[ tr(��) + tr(��)] + tr(4):We onlude with the �nal remark on the appliability of the derivedresults to the problem of lassi�ation of mixed quantum states. Usinginequalities (2.26){(2.30) and results from [21℄ the well-known Peres|Horodeki riterion for the separability of qubit-qutrit mixed states anbe reformulated as a set of inequalities in SU(2)⊗ SU(3) salars.7Note that 2-nd and 3-d order invariants were proposed in [23℄.
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• The tensorial basis •For the su(6) algebra we use the basis {�A}A=1;::: ;35 onstruted fromthe tensor produts of the Pauli matries �i ∈ su(2):�1 = ( 0 11 0) �2 = ( 0 −ii 0 ) �3 = ( 1 00 −1) ; (A:1)and eight {�a}a=1;::: ;8 Gell-Mann matries, forming the su(3) basis:�1 = 



0 1 01 0 00 0 0 

 �2 = 



0 −i 0i 0 00 0 0 

 �3 = 



1 0 00 −1 00 0 0

�4 = 



0 0 10 0 01 0 0 

 �5 = 



0 0 −i0 0 0i 0 0 

 �6 = 



0 0 00 0 10 1 0 

�7 = 



0 0 00 0 −i0 i 0 

 �8 = 1√3 



1 0 00 1 00 0 −2 

The elements �A are enumerated as�i = 1√3 �i ⊗ I3; �3+a = 1√2 I2 ⊗ �a; (A:2)�11+a = 1√2 �1 ⊗ �a; �19+a = 1√2 �2 ⊗ �a; �27+a = 1√2 �3 ⊗ �a:
• The algebrai strutures •



SU(6) CASIMIR INVARIANTS 119The produt of basis elements reads�A�B = 2nÆABI + (dABC + { fABC)�C ;The struture onstants dABC and fABC an be determined via equationsdABC = 14 Tr({�A; �B}�C); fABC = − {4 Tr([�A; �B ℄�C);where apart from the Lie algebra produt, [ ; ℄; the \anti-ommutator" ofelements, i.e., {�A; �B} = �A�B + �B�A has been used.
• Identities for struture onstants •For the SU(n) group the struture onstants obey the following iden-tities: fabfpq + fbpfaq + fpafbq = 0; (A:3)dabfpq + dbpfaq + dpafbq = 0; (A:4)fabfpq = dapdbq − daqdbp + 2n (ÆapÆbq − ÆaqÆbp);(A:5)fabfpq + faqfpb = 2dapdbq − dabdpq − daqdbp+ 2n (2ÆapÆbq − ÆabÆpq − ÆaqÆbp): (A:6)The SU(3) symmetri onstants satisfy [25, 26℄ an important identitiesdabdpq + dbpdaq + dpadbq = 13(ÆabÆpq + ÆapÆbq + ÆaqÆbp): (A:7)
• The traes •The traes of symmetrized produts of su(n) basis elements aretr (�{a�b}) = 2 Æab;tr (�{a�b�}) = 2 dab;tr (�{a�b��d}) = 22n ÆabÆd + 2 dabeded;tr (�{a�b��d�e}) = 22n (dabÆde + Æabdde) + 2 dabfdfgdgde;tr (�{a�b��d�e�f}) = 23n2 ÆabÆdÆef + 22n (dabgdgdÆef + Æabddgdgef )+ 22n dabddef + 2 dabgdghdhdvdvef :
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