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COMPLEXITY OF SOLVING
PARAMETRIC POLYNOMIAL SYSTEMS

ABSTRACT. We present three algorithms in this paper: the first algorithm
solves zero-dimensional parametric homogeneous polynomial systems with
single exponential time in the number n of the unknowns, it decomposes
the parameters space into a finite number of constructible sets and com-
putes the finite number of solutions by parametric rational representations
uniformly in each constructible set. The second algorithm factorizes abso-
lutely multivariate parametric polynomials with single exponential time
in n and in the degree upper bound d of the factorized polynomials. The
third algorithm decomposes the algebraic varieties defined by paramet-
ric polynomial systems of positive dimension into absolutely irreducible
components uniformly in the values of the parameters. The complexity
bound of this algorithm is double-exponential in n. On the other hand,
the complexity lower bound of the problem of resolution of parametric
polynomial systems is double-exponential in n.

INTRODUCTION

The simulation of many physical problems [44, 57, 21], chemical reac-
tions [18, 21, 25], optimization [70], interpolation [59, 60, 25], robots [26,
13, 59, 60], and geometric problems [22, 42] yield to parametric systems
of polynomial equations. A parametric system of polynomial homoge-
neous equations is a finite family of multivariate homogeneous polyno-
mials fi1,..., fr € Flug,...,u][Xo,...,X,] (in the variables X, ..., X,)

with polynomial coefficients in the variables u = (u1, ..., u,) (the param-
eters) over a ground field F', i.e., an infinite collection of algebraic systems
of polynomial homogeneous equations in Xy, ..., X,, parametrized by a fi-

nite number of variables called parameters. Some of these problems can be
solved simply by determining the values of the parameters in an algebraic
closure F of F for which the associated polynomial equation systems are
consistent or not. However, when the system is consistent, it is sometimes
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necessary to describe the set of its solutions uniformly in these values of
the parameters (see below). The parameters take values from the space
P:=F which is called the parameters space.

0.1. History

Different algorithms are intended for the resolution of parametric
systems of polynomial equations. Heintz [32] exhibits an algorithm for
the quantifier elimination problem in the theory of algebraically closed
fields involving an algorithm that solves parametric linear systems by
a parametrization of the Gaussian elimination procedure. Sit [63, 64]
presented also algorithms for parametric linear systems. Grigoriev [28]
presents an algorithm for the resolution of parametric systems of uni-
variate polynomials by the computation of greatest common divisors of
a family of univariate polynomials with parametric coefficients. Grigoriev
and Vorobjov [29] and Montes [52] give algorithms for zero-dimensional
parametric polynomial systems which are based on parametric Grébner
bases. If d is an upper bound on the degrees of fi, ..., fx, the complexity
bound of the algorithm of [29] is d°("*r) | Weispfenning [69, 70] computes
comprehensive Grobner bases for parametric polynomial systems of posi-
tive dimension but with no complexity analysis of this computation.

Parametric geometric resolutions for zero-dimensional parametric poly-
nomial systems are given by Giusti et. al. [23, 22, 24], Heintz et. al. [31],
and Schost [60, 59]. The complexity bound in these papers is d°r) | Gao
et. al. [21], Wang [68], Dahan and Schost [61, 15] describe algorithms based
on the computation of parametric triangular sets. The discriminant vari-
eties for zero-dimensional parametric polynomial systems are introduced
and computed by Lazard and Rouillier [43] with single exponential time in
n and r [54]. Dynamic evaluation [53] can be used for solving polynomial
systems.

We also study in this paper the problem of factorization of multivari-
ate polynomials. This problem is one of the principal problems in alge-
bra and symbolic computation. It goes back to Newton, Gauss, Fermat,
Kronecker, Hensel, and others. Berlekamp [4, 5] describes an algorithm
for the factorization of univariate polynomials over a finite field. The
first polynomial-time algorithm which factorises univariate polynomials
with rational coefficients is realised by Lenstra, Lenstra and Lovasz (the
LLL algorithm), it is based on the computation of minimal vectors of lat-
tices [48]. Based on this algorithm and the Hensel lemma, Grigoriev and
Chistov [11, 8, 27] present a polynomial-time algorithm which factorises
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multivariate polynomials with coefficients in a field which is a finite exten-
sion of a purely transcendental extension of its prime subfield. In the same
year, Kaltofen [34, 35, 37] describes a deterministic polynomial-time al-
gorithm of reductions from multivariate to univariate integral polynomial
factorization. Many other mathematicians worked on this problem like
Zassenhaus [72], Niederreiter [56], von zur Gathen [67, 66], Lenstra [49,
50], Shoup [36], Gao [19, 20], Lecerf [7], and others.

These two topics are strongly related (see below for the parametric case
and [8, 9, 27] for the nonparametric case).

0.2. Preliminaries

Let F = H(Ty,...,T})[n] be a finite extension of purely transcenden-
tal extension of its prime subfield H, where H = Q if char(F) = 0
and H O F, is a finite extension of sufficiently large cardinality' if
char(F) = p > 0 is a prime number. The variables T7,...,T; are al-
gebraically independent over H, n is algebraic, separable over the field
H(Ty,...,T;) with a minimal polynomial ¢ € H(Ty,...,T;)[Z]. Let
(fi,--, fr) C Fluy,...,u.][Xo,...,X,] be a parametric system of ho-
mogeneous polynomial equations. In the whole our algorithm below we
suppose that these polynomials are coded by dense representations, i.e.,
we represent all their monomials up to a certain degree, including those
which are zeroes.

For any polynomial f € Fluy,...,u.|[Xo,...,X,], we denote by I(f)
the binary length of f which is the maximum of the binary lengths of the
coefficients of f in H.

For any rational function h € F(us,...,u,), the degree of h w.r.t.
uy, . .., ur, denoted by deg,, ., (h), is the maximum of the degrees of its
numerator and its denominator w.r.t. uy,. .., Uy.

We suppose that we have the following bounds:

degy, 1,7(¢) <di, (o) <M

and for any 1 <j <k,

degr, . 1,(fj) < da, degy, . x,(fj) <d,
degul,...7ur(fj) <o,

Ithe cardinal of H depends only on the degrees of the input polynomials of our
algorithms
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For a polynomial g € F(uy,...,u,)[Xo,X1,...,X,] and a value a =
(a1,...,a,) € P of the parameters, we denote by ¢g(®) the polynomial
of F[Xy, X1,...,X,] which is obtained by specialization of uy,...,u, by
a in the coefficients of g if their denominators do not vanish on a (F is
an algebraic closure of F'). We denote by V(% the projective variety of
P"(F) defined by the polynomials fl(a), ceey fka) € F[Xo,..., Xy

We associate to the system (f1,..., fr) the subset U of the parameters
space P which is constructed by the values a € P such that the system

fl(a) == f,g”) =0 is zero-dimensional and does not have solutions at infi-
nity, i.e., the variety V(%) is a finite subset of P™ (F) and V(“)HV(XO) =o.
Definition 0.1. Let a € P be such that the system fl(”) =...= f,ga) =0

has a finite number of solutions &1,...,& € P"(F). The multiset of the
multiplicities of this system is the multiset (mult(&;), ..., mult({s)) € N®
where mult(§) is the multiplicity of £ as a solution of the system (the
integers of this multiset are not ordered).

Effective generic points. We recall now the definition of effective
generic points (see page 1840 of [8] and also [71, 55, 39, 9, 27]) of non empty
irreducible projective varieties. Let W C P"(F) be a non empty projective
variety which is defined and irreducible over F. We denote by F[WW] the
coordinate ring of W and by F'(WW) the field of rational functions over W
which is the subfield of the fraction field of F[W] formed by the fractions
4 where g and h are homogeneous polynomials in F[Xo, X1, ..., Xp,] of
the same degree and h ¢ I(W) (i.e., h does not vanish identically on W).
Let m = codim (W) and t1,...,t,—m be a transcendence basis of F'(W)
over F.

An effective generic point [71, 55, 39, 9, 8, 27] of W is defined by the
following field isomorphism:

T:F(t1, ... th—m)[0]

—>F<Xj %,(ﬁ)pu,...,(%)f)gﬂw) (1)

XS ’ ’ XS XS s
which is given by the following items:

e An integer 0<s<n which is selected in such a way that the variety
W is not contained in the hyperplane defined by the equation X, =0.

e The elements X;/X; are rational functions over W. In addition,
7(t;) = Xj, /X, for 1 <i <n —m with the convention that p* =1
if char(F) = 0 and v > 0 if char(F) =p > 0.
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e A linear combination § = a1 X, /X5 + -+ + @ X}, _,./Xs where
a; € Z and 0 < a; < deg(W) (see [9, 8, 27]) if char(F) = 0 and
a; € H where H O F) is a finite extension of sufficiently large
cardinality if char(F) =p > 0.

e The minimal polynomial ®(Z) € F(t1,...,tn—m)[Z] of 8 over the
field F(t1,...,tn—m)- This polynomial has to be separable.

e For each 1 <i <mn, a polynomial B; € F(t1,...,t,—m)[f] such that
(G /X)) = B

We recall here Lemma 2.7 of [27] which characterizes the elements of the
ideal I(W) C F[Xo, ..., Xy]:

Lemma 0.2. Let W be a non empty projective variety which is defined
and irreducible over F. Suppose that we have an effective generic point
of W defined as above by (1). Let ¢ € F[Xy,...,X,] be a homogeneous

polynomial. Then 1 vanishes identically on W (i.e., v € I(W)) if and
only if Y*" (%, ? eens %) = 0 in the field F(t1,...,t,—m)[0] by using

the field isomorphism 77 1.

0.3. Main results

In this paper, we cover all values of the parameters, i.e., we give finite
partitions of the parameters space into constructible sets and we describe
the solutions of the associated polynomial systems on each constructible
set by rational univariate representations (rur [58]) for zero-dimensional
systems and by effective generic points for systems of positive dimension
(see below). We note that the computational model used within all the
algorithms in this paper is the Turing machine model.

The paper is organized in three main sections. Section 1 presents an al-
gorithm which for a parametric polynomial system of homogeneous equa-
tions (fi1,..., fr), computes a finite partition of the associated set U into
constructible sets A such that for each set A, the multisets of the mul-
tiplicities and the number of the solutions of the associated systems are
constant in A and they are computed by the algorithm. The algorithm
computes univariate polynomials ®,11,...,¢, € F(uy,...,u,)[Z] which
satisfy the following properties: for any a € A, the denominators of the
coefficients of ®,1,...,¥, do not vanish on a and the solutions of the
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system fl(a) == f,ga) = 0 are given by the following parametric poly-
nomial representation:

(&) - wo

(®) - wo

where for all 1 < j < n, p¥% = 1if char(F) = 0 and v; > 0 if
char(F) = p > 0. The number of the elements of the partition is at
most (8dd;)°™*r*). The degrees of ®,¢y,..., ¢, Wrt. uy,...,u, and
T,...,T; are bounded by d,6°(") (ddl)o("Zr), their binary lengths do not
exceed (M + Ms)ld26°) (ddy )P The total complexity of this algo-
rithm does not exceed (6d2)o(r21) (ddl)o(”zrzl) and its binary complexity
does not exceed (pM; M) (6dy)OD (dd, )O*r*D) (see Theorem 1.9 for
more details). These bounds are relatively analogy to those of Grigoriev
and Vorobjov [29] and Montes [52] (parametric Grobner bases), Schost [59,
60] (Newton-Hensel operator) and Lazard-Rouillier [43] (discriminant va-
rieties). The method used in this paper is new but the complexity bound
is the same as in the mentioned papers. The algorithm is based on the
computation of parametric U-resultants (see Sec. 1).

Section 2 is devoted to the absolute factorization of parametric multi-
variate polynomials. We give an algorithm which for a parametric polyno-
mial f € Fluy,...,uy][Xo, X1,...,Xp] (where each coefficient is a param-
eter, i.e., 7 = (d + 1)"*!), computes a finite partition of the parameters
space P into constructible sets V such that the absolute factorization of
f is given uniformly in each constructible set V), i.e., the algorithm com-
putes s polynomials Gy, ...,Gs € F(C,uy,...,u,)[Xo,...,X,], s < dand
a polynomial x € F(u)[C] where C is a new variable satisfying the fol-
lowing: for any a € V, there exists ¢ € F being a root of x(*) € F[C] such
that the denominators of the coeflicients of x and G; do not vanish on a
and (c,a), respectively, and the absolute factorization of f(*) is given by

flo) = H ch,a), ch,a) is absolutely irreducible.

1<j<s

The number of the elements of the partition is at most dOn’ @) More-
over, deg.(G}), dego(x) < d94 | deg, (G;), deg, (x) < dO(rd®)  The total
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complexity of the algorithm does not exceed dOn*d) and its binary com-

plexity does not exceed pO(l)dO(nr2d3) (see Theorem 2.14 for more details).
This algorithm is based on a parametric version of Hensel’s lemma and
an algorithm of quantifier elimination in the theory of algebraically closed
field [10] in order to reduce the problem of finding absolute irreducible
factors to the problem of representing solutions of zero-dimensional para-
metric polynomial systems. This algorithm is a review and a completion
of that of 2004 [1].

Example 0.3. Let the following parametric multivariate polynomial
f= (W +v)2® +uzy + vz + uy + v € Qu,v][z,y],

where z and y are two variables, u and v are the parameters. The algorithm
decomposes the parameters space in the form:

CZ=Vv, UV, UVs,

where V; = {u?+v = 0}. For any (a,b) € V; we get the following absolute
factorization:
£ = (z + 1) (ay +b).

Vo = {u? +v # 0,u # 0}. For any (a,b) € Vo, f(& is absolutely
irreducible.

V3 = {u = 0,v # 0}. For any (a,b) € Vs, there exists ¢ a cubic primitive
root of the unity (in this case y = C® — 1) which satisfies the following

f(“’b) =b(z — ¢)(z — ?).

In Sec. 3, we study the resolution of parametric homogeneous poly-
nomial systems of positive dimension. We present an algorithm which
for a parametric homogeneous polynomial system (fi,..., fx) computes
a finite partition of P into constructible sets F such that the absolutely
irreducible components of the projective varieties defined by fi,..., fi
are given uniformly in each constructible set F, i.e., for any a € F, the
number of the absolutely irreducible components Wl(a), o WL(”) of the
projective variety V(® defined above is constant (i.e., L is independent of

a). For each absolutely irreducible component W(®) among Wl(a), ceey Wéa)
of codimension m, the algorithm computes a basis Yy, ...,Y,, of the space
of linear forms in Xy, ..., X, with coefficients in H such that W(®) is
represented by a parametric representative system and by a parametric
effective generic point in the following sense:
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Parametric representative system

The algorithm computes polynomials

1/)1,...,1/)N 6F(C,ul,...,ur)[if(),...,Yn]

homogeneous in Yy, ...,Y,, and a univariate polynomial
X € F(uy,...,ur)[C].

For any a € F, there exists ¢ € F, a root of x(® € F[C] such that the
denominators of the coefficients of x and vy, ... do not vanish on a and

(¢, a), respectively, and the homogeneous polynomials 1/156’“), ceey ](f,”a) €

F[Yp,...,Y,] define the component W@ i.e.,

W@ = v, o) c PYF).
Parametric effective generic point

The algorithm computes polynomials
$ By,...,B, € F(C,Ul, . ,ur)(tl, . ,tn_m)[Z]

and a rational function § = > ajé. For any a € F, there exists
0<j<n Y

¢ € F, a root of x\* such that the denominators of the coefficients of
®, By,..., B, do not vanish on (c,a) and the following properties hold:

e WWNV(Yy) = 2.

e The rational functions

Y; Y
t= Lt =

Yo Yo

over W(@ form a transcendence basis of F(W(®) over F.

e An effective generic point of W(®) is defined by the following uni-
variate representation:

p
(%) = B£C7a) (tl, PR ,tn—m: 0)
(P(C7a)(t17...,tn—m70) = 07 .
p
(%) — BT(laa)(tl,...,tn—m;o);
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where p¥ = 1 if char(F) = 0 and v > 0 if char(F) = p > 0. The degrees
of the coefficients of ¢4, ...,%¥N and By, ..., B, and their binary lengths
are single exponential in n,r and d. However, those of the coefficients of
x and ® are double exponential in n and single exponential in r and d.
The number of the elements of this partition and the total complexity of
this algorithm are double exponential in n (see Theorem 3.5 and Corol-
lary 3.6 for more details). We know that the lower bound complexity of
the problem of solving zero-dimensional parametric polynomial systems
is double-exponential in n [30] (when r = ("), ie., each coefficient of
the polynomials is a parameter), the above bound for solving paramet-
ric polynomial systems of positive dimension is thus close to the exact
bound. Our algorithm is a parametrization of that of Grigoriev [27]. It
decomposes the parameters space by induction on the codimension of the
absolutely irreducible components.

In the literature, there is no study of the complexity bound of the
determination of the absolutely irreducible components of varieties defined
by parametric polynomial systems of positive dimension. We recall that
there is no analysis of the complexity bound of the algorithms given in [69,
70, 21, 68, 61, 15].

We note that if the input parametric polynomial system f; = --- =
fr = 0 is represented by a straight-line program, then by the works of
Lecerf [46, 48] and Jeronimo, Sabia [33], the complexity of the equidimen-
sional decomposition of varieties is single exponential with probabilistic
algorithms.

Example 0.4. 1. Return to Example 0.3 and consider the hypersurface
V = V(f) defined by the parametric polynomial f = (u? + v)z? + uzy +
vz + uy + v. The parameters space is decomposed into four constructible
sets F1 = V1 \ {(0,0)}, Fo = Vs, F3 = V3, and Fy = {(0,0)} where Vi, Vs
and Vs are defined in Example 0.3.

For any (a,b) € Fi, the hypersurface V(*? admits two absolutely
irreducible components W; and Ws which are defined, respectively, by
the polynomials x + 1 and ay + b, i.e., the parametric polynomial z + 1
(respectively, uy +v) forms a parametric representative system for Wi (re-
spectively, W»). A parametric effective generic point of W; (respectively,
Ws) is given by the equations x = —1 and y = ¢ (respectively, © = ¢t and
y = =", u# 0on Fi) where ¢ is a parameter.

For (a,b) € F», we have only one absolutely irreducible component
W because f(*?) is absolutely irreducible. The set {f} is a parametric
representative system for W. A parametric effective generic point of W
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2 2
is given by the equations # = t and y = —% (u # 0 on F»)
where t # —1 is a parameter.

For any (a,b) € Fs, the hypersurface V(*?) admits two absolutely
irreducible components W; and Ws which are defined, respectively, by
the polynomials ¢ — ¢ and x — ¢ where c is a cubic primitive root of the
unity, i.e., the parametric polynomial z — ¢ € Q(c, u,v)(z,y) (respectively,
x—c? € Q(c,u,v)(z,y)) forms a parametric representative system for Wy
(respectively, Ws) for x = C® — 1 € Q(u,v)[C] which is the polynomial
that defines the field extension of Q(u,v) of the definition of Wi and W5.
A parametric effective generic point of W, (respectively, W5) is given by
the equations z = ¢ and y = t (respectively, z = ¢ and y = t) where ¢ is
a parameter.

For (0,0) € Fy, V(%0 = C2. A parametric representative system is
given by the zero polynomial and a parametric effective generic point is
defined by the equations = = t1,y = t» where t; and ty are parameters.

2. Consider the following parametric polynomial system which appears
in [6, 69, 21]:

Ty —Ug+uz =0
Tya+T3+To+x1 —Us—uz—up =0
T3Lg + T1X4 + To2T3 + T1T3 — ULUs — U1 U3 — UzUg = 0

T123x4 — Uruzg =0

where uq,...,us are the parameters and the variables z1,...,z4 are the
unknowns of the system. The algorithm decomposes the parameters space
C* into three constructible sets F;, F2, and F3 which satisfy the following:

Fir={uz —ug #0}, 6> —ab*+ B0 — uyuzuy =0,

_ 1 2 el __ B
L1 = UQ—U40 + ’u,2—’lL49 U2 —Ug
_ 1 2 o B’
T2 = uz—U40 u2—U49 + U2 —Ug
r3 — 0

T4 =Ug — U2

Fy = {uz —ug =0, uyuzuy # 0}, no solutions;
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Fs = {uy —uy =0, wyuzug =0}, 6* — (u? —l—u§ +u? —26) =0,

231:—%0—154‘%

$2:t
373:%0-}-%
234:0,

where a = uy + us + uq, 8 = urug +ujuz + usug, o’ = uy + uy + usz, and
B = ujus + uruz + usuz — usuy + ul.

Note that for any specialization (ai,...,a4) of the parameters in Fi,
the associated system admits three solutions which correspond to the
three roots a1, as, and a4 of the equation 6% — af? + B0 — wiusus = 0.
For (ay,...,as4) € Fs, the associated system has dimension 1.

1. SOLVING ZERO-DIMENSIONAL PARAMETRIC
HOMOGENEOUS POLYNOMIAL SYSTEMS

Suppose that we have a parametric system of polynomial homogeneous

equations f; = -+ = fr = 0 where fi,..., fx € Fluy,...,u,][Xo,...,Xu]
are coded by dense representation of degrees Di,...,D; < d, respec-
tively (w.r.t. Xog,...,X,). In this section, we are interested in the set

U associated with the system which is defined in the introduction. The
basic tool of this section is the computation of the resultants of the sys-
tems f\* = ... = fka) = 0 (a € P) uniformly in the values a of the
parameters. We introduce the notion of parametric U-resultant where
U = (Uy,...,U,) are new variables algebraically independent over the
field F(uy,...,u., Xo,...,X,). Each parametric U-resultant R is a poly-
nomial of Fluy,...,u.,Uy,...,U,] homogeneous in Uy, ..., U,, associated
with a constructible subset W of P such that for any a € W, R® ¢
F[Uy,...,U,] is the U-resultant of the system fla) = ... = f,ga) =0
(see Sec. 1.1). When a parametric U-resultant (W, R) is calculated, we re-
duce R to parametric univariate polynomials (by suitable specializations
of the variables Uy, . .., U,,) which allows us by a calculation of parametric
greatest common divisors to find the multiset of the multiplicities of the
solutions of the system fl(”) = ... = f,g”) = 0 uniformly in the values
a € W of the parameters (see Sec. 1.2). The description of the solution
set of the system fl(”) =... = fka) = 0 is given by parametric rational
univariate representations using parametric shape lemma (see Sec. 1.3).
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1.1. Parametric U-resultant

Lazard [40, 41] generalised the notion of resultant for overdetermined
polynomial systems, we discuss here the concept of U-resultant which
was studied by Kronecker and Van der Waerden [41]. We follow the
constructions of Lazard’s work [41] (see also [27]). We suppose that
d>D; >---> Dy and let

D:=Di+ Y (D;—1)<nd.

2<i<n
We introduce the linear form
fk+1 =UpXo+ - -+U,X, € F(ula---7ur;U07---7Un)[X07---7Xn]

and the spaces B; (respectively, B) of homogeneous polynomials in
F(uy,...,up,Ug,...,Up)[Xo,...,Xy] of degrees D — D; (respectively, D)
for all 1 <i<k+1 where Dy, = 1. Consider the F(u1, .. .,u,Ug,...,Uy)-
linear map ¥ : By @& -+ @ Bpy1 — B defined by:

U(hy,...,hgyr) = Z hifi for any (hy,...,hgy1) € Bi®---® Bpg1.
1<i<k+1

We denote by M the associated N x ( > Ni) matrix of ¥ in the
1<i<k41
monomials of By, ..., By1, B where N := dim(B;) = ("*7 7)), 1 <i <

k+1,and N =dim(B) = (”;D). We write M in the form:
M:M(ula"'au’r‘aUO:"':Un):(Ml M2)7

where My is constructed by the last Nji1 columns of M with linear
form entries over F' in the variables Uy, ..., U, and Mj has its entries in
Flui,...,ur]. We recall the basic result of Lazard’s works (see Theorem
4.1 and Theorem 7.1 of [41], see also [40] and Theorem 2.2 of [27]) in the
following theorem:

Theorem 1.1. (1) Let a = (ay,...a,) € P, the system fl(a) =... =
fY° = 0 has a finite number of solutions in P"(F) if and only if
rk(M®)) = N where M@ := M(ay,...a,,Uy,...U,) has its coefficients
in the field F'(Uy,...,U,).
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(2) For any a € U, the ideal generated by the N minors of M@ is a
principal ideal which is generated by their greatest common divisor

R, € F[Uo, . Un] of degree N — rk(./\/lga))_

(3) For any a € U, the homogeneous polynomial R, € F[Uy,...,U,]
factorizes in the form:

Ra:HLi, where L;= Y &'U; with ¢ €F,

0<j<n
and each (f(()i) Dol &(f)) € P"(F) is a solution of the system
fla) = ... = f,g”) = 0, its multiplicity is equal to that of L; as a

factor of R,. The number of the solutions of the system (counted
with their multiplicities) is equal to degy, p, (Ra)-

Definition 1.2. For any a € U, the polynomial R, € F[U,...,U,] of
Theorem 1.1 is called the U-resultant of the system fla) = ... = flg“) =0.

The computation of U-resultants is based on the following lemma
(see [41, Theorem 5.1]).

Lemma 1.3. For any a € U, the U-resultant R, coincides with any
nonzero N minor of M(® which contains rk(M\*) columns of M\® .

Definition 1.4. A parametric U-resultant of the system f; = --- =
fr = 0 is a couple (W, R) where W is a constructible subset of P and
R e Fluy,...,u.,Uy,...,U,] which satisfy the following property:

For any acW, R is the U-resultant of the system fl(”) =-- -:flg") =0.

The following lemma shows that there is a finite number of parametric
U-resultants which cover all values of the parameters in U.

Lemma 1.5. There is an algorithm which computes at most N paramet-
ric U-resultants (W1, Ry),...,(Wn, Ry) of the system f; =--- = f, =0
satisfying the following properties:

(a) The constructible sets Wi, ..., Wy form a partition of U.

(b) Each R; is homogeneous in Uy, ...,U, of degree N —i < N. More-
over, deg, R; < 10 < N, degp, 1 Ri < ididy < Ndids, and
I(R:) < idy My My < Ndy My M.
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The number of arithmetic operations of this algorithm is (N&dydy)©™)
in H and its binary complexity is (Mle)O(l)(N(Sdldz)O(”).

Proof. We consider the Macaulay matrix M associated with the sys-
tem f; = --- = fr, = 0 which is defined above. The parametric Gaussian
elimination procedure (see [32] and [2, Theorem 2.4.1]) calculates a con-
structible set W where the rank of M is maximal, i.e., for all a € W,
rk(M(@)) = N. By Theorem 1.1, W is the set of a € P where the system
fl(a) == f,ga) = 0 admits a finite number of solutions in P"(F’). This
procedure also decomposes P into N constructible sets U; such that the
rank of M is constant over each U; and equal to 3.

For each U;, we get R; as a N minor of M which contains ¢ columns
of My (by Lemma 1.3). Let A; = degy, ¢y, Bi = N —i and [; €
Fluy,...,u,] the coefficient of US> in R;. The constructible sets

Wi:L{iﬂWﬁ{IﬁéO}

satisfy the lemma. The inequation I; # 0 ensures that no zero is allowed
at infinity according to the definition of &. The complexity bound follows
from [32] (see also [10, p. 24-25 and [28, p. 14-15]). O

1.2. Constant multisets of the multiplicities

We fix a parametric U-resultant (W;, R;) from Lemma 1.5. Let N > d"
be an integer. By Propositions 1, 2, and 3 of [12], one can construct vectors
b1,...,bnz, € F'™, pairwise distinct with the following property: for any
pariwise distinct elements 31, ..., 8, € F™, there exists 1 < ¢t < N?n such
that

(Bi,br) # (Bj,br) forall i j, (2)

where (., .) is the euclidean inner product in F™. For each 1 < j < n, we
consider n X n matrices By, ... , Byz, with coefficients in F' such that the
jth row of By is b; for all 1 <t < N2n. We introduce the polynomials

Qj = Ri(Uo,O,...,O,U]’,O,...,O) EF[ul,...,ur,Uo,U]’] (3)

and »

Gj(ZpJ):Qj(Z7_]-)EF[UD---:UT][Z]: (4)
where Z is a new variable and p*7 is a maximal power of Z. The following
lemma links the solutions of the systems fl(”) =... = f,ga) = 0 to the
roots of the polynomials Gga), ey GS‘) € F[Z] (for any a € W;).
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Lemma 1.6. Let a € W; and £ = (§ : -+ : &) € P™(F). For any
1 < j < n, there exists a matrix B; among By, ... ,Bpnz, with the fol-
lowing property: If ¢ is a solution of the system fl(”) =... = f,g”) =0

of multiplicity p then after the linear transformation V. = B,U where
U= (U,...,U,) and V = (Vy,...,V,,) are new variables one has

&G\ . @ = —_
: is aroot of G € F[Z] of multiplicity p.
0

P
Proof. Definition 1.4, Theorem 1.1, and formula (4) prove that (E—J)

o
is a root of G\ of multiplicity > . If ¢ = (Go : -+ : (u) € PM(F) is
another solution of the system fla) =... = f,g”) = 0 distinct from &, we
have

f. p"i C p"i
(&) #(&)

€o o

by the definition of the linear transformation B; and by formula (2). Thus
A\ P
the multiplicity of (é—g) as a root of G;a) is exactly u. O
Lemma 1.7. There is an algorithm which decomposes W; into at most
(N6)P) constructible sets W such that for each W, it computes a mul-
tiset s = (s1,...,sy) € N® which fulfills the following property: For any
a € W, s is the multiset of the multiplicities of the solutions of the system
The number of arithmetic operations of this algorithm is

(d1 dg)o(l) (N5)O(T+l) in H

and its binary complexity is (MyM>)°M (dydy)©® (N§)Or+D,

Proof. We consider the parametric univariate polynomials G, ...,G, €
Flui,...,u,])[Z] defined by (4). By Lemma 1.6, there exists a matrix B,
associated to GG1, then we evaluate the linear transformation V' = B:U in
formula (3) and we apply the algorithm from Lemma 1 of [28] (see also
Lemma 3.4.2 of [2]) to the new G obtained by (4) (after the linear change
of variables) which computes a finite partition of TW; into constructible sets
W, 4, each of them with a constant multiset s!) = (35”, ey sglll)) € N of
multiplicities of the roots of G;. Again after another linear transformation
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associated to G2, we can decompose each W;,, into a finite number of
constructible sets W; ,, 4, each of them with a constant multiset s(?) =

(s§2), e 552) € N2 of multiplicities of the roots of G and so on. Finally,
we get constructible sets W := W;,, . 4. that form a finite partition
of W;. For each W, we associate an integer h = min(hs,...,h,) and a
multiset s := (s1,...,5,) where s; := min(sg-l), . sgn)) foralll1<j<h
which satisfies the lemma. The complexity bound follows from Lemma 1
of [28]. O

1.3. Parametric shape lemma

We fix a constructible set W C W; of Lemma 1.7 where (W;, R;) is a
parametric U-resultant of the parametric system f; = --- = f; = 0 from
Lemma 1.5. Let K := F(uy,...,u,) be the field of rational functions in
the parameters and for any 1 < j < n, let A; be a root of the polynomial
Q;(Z,-1) (defined by (4)) in K such that ¥’ is separable over K with
its minimal polynomial being a divisor of G; in K[Z].
Lemma 1.8. We can compute polynomials x,¢1,...,¥, € K[Z] of de-
grees < N such that

p“t
Al

$1(6)

X = (),

where x is the minimal polynomial of 8 over K. The degrees of
X>WU1, .-, U wort.uy, ..., up, and 1y, . .., T; are, respectively, bounded by
§(Ndy)°™ and dy(Nd,)°™ . Their binary lengths are bounded by (M +
My)rldy(Ndy)©™ . This calculation costs (6dy)°) (Ndy)°™™ opera-
tions in H and its binary complexity is (pM; M2)°™M (6dy) O (Nd, )O D,

Proof. By induction on j, we construct a primitive element 6; for each
finite and separable extension E; := K[/\fyl,...,/\?'/]] over K with its
minimal polynomial x; € K[Z]. We take 0 := 6, and x := xn, € K[Z]
then E, = K[\ ..., A2 = K[#]. The computation of the coefficients
of ¥1,...,4, is done by solving some linear systems over K of order
< N using Cramer’s formulas (see Lemmas 3.5.1 and 3.5.2 of [2] for the
description of these linear systems and the complete detailed proof of the
Lemma). O

We can now summarize the main result of this section in the following
theorem.
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Theorem 1.9. There is an algorithm that for a parametric homoge-
neous polynomial system f; = --- = fr = 0 decomposes the asso-
ciated subset U of P into at most (6dd1)o(”27’2) constructible sets A
such that for each set A, the multisets of the multiplicities of the so-
Iutions of the associated systems and their number are constant in A and
they are computed by the algorithm. Moreover, it computes polynomials
X>W1,. -y ¥n € F(u,...,u,)[Z] such that each value a € A satisfies:

e The denominators of the coefficients of x, %1, ...,%¥, do not vanish
on a.

e A parametric representation of the solutions of the system fl(a) =
ce= f,i”) = 0 is given by

v (0)

v
x\P
Xo

X (6) =0, :
P a
(%) = wo
e The degrees of x,¥1,...,%, w.rt. uy,...,u. and Ty,...,T; are
bounded by dy§°(") (ddl)o(”2”), their binary lengths do not exceed
(M + My)ld»6°0) (ddy )0 ).

The number of arithmetic operations of the algorithm is
(5d2)0(r2l) (ddl)O(n2r2l)

and its binary complexity is (leMZ)O(l)(édz)O(TZl) (ddl)o(”2”2l).

Proof. We continue the discussion started before the theorem and we
consider the constructible set P, = W N {¢ = 0} C P where ¢ €
Fluy,...,u,] is the L.c.m. of the denominators of the coefficients of the
polynomials x, 91, - . ., ¥, given by Lemma 1.8. For any a € W\ P;, the so-
lutions of the associated system are given by the equations of Lemma 1.8.
For the variety T) defined by the equation {¢) = 0} and the equations
which define W, we apply the algorithm of solving algebraic systems [9,
27, 8] (see Theorem 2.4 of [27] or Theorem 2.1 of [8]) which computes each
irreducible component S; of codimension m of T} by an effective generic
point defined by the following field isomorphism:

F(tla---atr—m)[u] %F(Sl) (5)
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where t1,...,t._,, are algebraically independent over F' and pu is sepa-
rable over the field F(ty,...,¢.—,,) with a minimal polynomial & €
F(t1,...,tr—m)[Z]. Tt expresses each variable u; as an element of
F(t1,...,tr—m)[p]- By substitution of these expressions in the polynomials
Gj € Flu, ..., ur][Z], we get polynomials g; € F(t1,...,tr—m)[1][Z]-

By the same procedure as above (see Lemma 1.8), we compute a primi-
tive element 6() of the extension K'[X" ..., A?""] over K’ with its min-
imal polynomial x € K'[Z] where K’ := F(t1,...,t.—,)[0] and /\5?'/] is a
root of g; € K'[Z] in K'. Then we have again a parametric representation
of the solutions of the system fl(”) == f,g”) =0foralla € S\ P,
where P, = §; N {y(®) =0} ¢ F and (1) is a suitable polynomial in
Flty,...,t.—m]. We apply again the same procedure to the variety P», the
algorithm stops after at most r steps because at each step the dimension
decreases (dim(Pz) = dim(S1) — 1 = r — m — 1). The bounds on the de-
grees and the total complexity bound are given by Lemma 1.8 and those
of Theorem 2.4 of [27] or Theorem 2.1 of [8] (the complete discussion on
the recursive computation of the complexity bound is given in details in
Theorem 3.5.3 of [2]). O

2. ABSOLUTE FACTORIZATION OF
PARAMETRIC MULTIVARIATE POLYNOMIALS

Let f be a parametric polynomial in Flus,...,u,|[Zo,...,Zy], in this
section we are interested in the absolute factorization of the polynomials
f@ € F|Zy,...,Z,] uniformly in the values a € P of the parameters (see
below).

We restrict our attention to the case when F' = H and each coefficient
of f is a parameter, i.e., we can write f in the form:

f = Z uIZIJ

11| <d

where I = (ig, ... ,in) € N"*' |I| = ig+---+iy is the norm of I and zZl =
Zy -+ Zir. The variables (uj)|rj<q are the parameters u = (uy,...,u,)
of f.

We introduce the set Hy[Zo, ..., Zy] == {h € H[Zy, ..., Zy)], deg(h) =
d} of polynomials of degrees exactly d in Zy, ..., Z,. There is a natural
bijection between this set and the set

njd n+d)

p= (T {0, .0) x B,
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which will be the parameters space. The first factor corresponds to the
monomials of degrees d, the second factor corresponds to those of degrees
strictly less than d.

The main tool of this section is the Hensel lemma (see Lemma 3.3). This
lemma is applicable to polynomials g € F[X,Y1,...,Y,] which satisfy the
following two conditions:

(H1): lex(g9) =1, i.e., g is monic w.r.t. X.
(H2): go(X) := g(X,0,...,0) is separable in F[X].

2.1. Preparation to the Hensel lemma

For any a € P, the polynomials f(*) € H[Zy,...,Z,] do not satisfy
necessary the conditions (H1) and (H2). The following lemma overcomes
this problem.

Lemma 2.1. There is an algorithm which decomposes P into at most
d° constructible sets W such that for each set W, there exists a linear
transformation of variables X,Y1,...,Y,, and the algorithm computes a
polynomial g € H(u)[X,Y1,...,Y,]. For each specialization a € W of the
parameters, the denominators of the coefficients of g do not vanish on
a and the polynomial g'* € H[X,Y1,...,Yy,] fulfills the conditions (H1)
and (H2). Moreover, deg,(g) < 2d?, degx(g) < d, degy(g9) < 2d*, and
I(9) = O(nd®logy(d)). The complexity bound of the algorithm is d°™.

To prove this lemma we should give some notations and intermediate
results. For each couple (a,T) where a € P and T'is a (n + 1) x (n +
1) matrix with coefficients in H, we associate the polynomial g, ) €

H[X,Y:,...,Y,] defined by
9y (X, Y1, .., Yy) = fO(T(X, N, .., Y)).

Proposition 2.2. One can produce explicitly a family {Ty,...,Tn,} of
nonsingular (n + 1) x (n + 1) matrices with entries in H. For each value
a € P (ie, f\9 € Hy[Zo,...,2Z,]), there exists 1 < i < N; = (d+ 1)
such that the polynomial g, r,) satisfies

0 7+— ch(g(a,Ti)) €H.
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Proof. Leta = (ar)jj<¢ € Pand T = (ti7j)1<ij<n+1 be a (n+1)x(n+1)

matrix with indeterminate coefficients. Then

io
91 (X, Y1, ) = Z ar (tLlX +tiY1+- -+ t17n+1Yn>
[I|<d

in
. '(tn+1,1X +ilng1 oY1+ + tn+1,n+1Yn)

_ io pi1 in d
= E artytyy g X'+,
to+-Fin=|I|=d

where degx (G) < d and

0 # h:=lcx (g(a,1))

io 4 in = :
= E art sy oty € Hltatan, oo tngaal;
i0+---+in=|1|=d

h is a homogeneous polynomial in ¢ 1, t2.1,...,tn+1,1 of degree d. This
polynomial is nonzero because a € P, i.e., at least one of the values ar
(|I| = d) is nonzero.

We fix by, . ..by € H, pairwise distinct (if char(H) = 0 one takes b; =i
and if char(H) = p > 0, one takes b; € F,m where p™~! < d < p™).
By Zippel-Schwartz lemma [66, 3], there exists (t11,%2.1,.-.,tnt+1,1) €
{bo,...bg}™ V) such that h(ty1,t21,...,tns1.1) # 0. One can take t; ; =
1 because h is homogeneous. With the condition det(7) # 0, we can take

1 0O 0 ... 0
tby 1 0 ... 0
T = t371 0 y
: . o0
the1n 0 ... 0 1

where all the coefficients of 7" are equal to zero except the first column and
the main diagonal. This proves the proposition by taking Ny = (d + 1)"
(see also Proposition 2.1 of [1]). O

Proof of Lemma 2.1 For each matrix T; (1 < i < Ny) of Proposi-
tion 2.2, we consider

9i = 9,1y € Hu][X,Y1,...,Y,], hi:=lcx(gi) € H[u]
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and the constructible set W; defined by the following equations and in-
equations:
h1=0,...,h;j—1 =0, h; #0.

These sets form a partition of P. By division of g; by its leading coef-
ficient h;, we get a polynomial in H(u)[X,Y1,...,Y,] which fulfills the
condition (H1) for each specialization a € W;. For the condition (H2), we
fix (W5, g;, h;) and we associate to each integer 0 < ¢t < L%J (where | %]
is the integer part of %) a polynomial g;; € H(u)[X,Y1,...,Y,] defined
by

g (XY V) = gas (X7 i )

and the constructible set W;; defined in WW; by the inequation

2 (g 0. )

The sets W;,; form also a partition of P. If char(H) = 0, we obtain
W; = W, which is defined by (6) with the convention 0° = 1. We fix
now a set WW;; and we compute the following discriminant:

. . 0
Dis := Discx(g;:+) = resx (gTi’t, a—X(gzt)) € H(u)[Y1,...,Ys]
we have degy (Dis) < d(2dp~* — 1) =: Dy and we consider the sets

W} ={ae Wi, 0=Dis e H[v1,...,Y,]},
W2 = {a € Wiy, 0+# Dis}

then
Wi =W uw.

z7

We begin by decomposing Wi(j), we fix by, ...,bp, € H pairwise distinct
(if char(F) = p > 0, one takes b; € Fpm where p™~! < D; < p™). For
each c\¥) = (cgj),...,cgf)) € {bo,...,bp, }" (1 <j < Ny =(D;+1)"), one

calculates the polynomial

9ir (X, Y1, Y) = gis(X, Vi YD) € Hw)[X, Y0, ..., Y,
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and a subset W(2’j) of W(2) defined by the inequation Dis(c\/)) # 0.
By Zippel- Schwartz lemma [66 3] (see also Lemma 4.2.2 of [2]), one can

choose the elements ¢¥) such that the sets W( 9 form a partition of W( )

and then polynomials g; . ; satisfy the condltlon (H2).

For decomposing W one calculates the signed sub-resultant polyno-

it
mial sequence
Sde—t,Sde—t_l, ...,SR1,SRy € K[X]

of P:=g;: and Q := %(gi,t) € K[X], where K = H(u)[Y1,...,Y,] by
algorithm 8.22 of [3]. We write each SR; in the form

SR;j =AYV XI 4+ ...+ A},

where A(j € K.Foreach1 < j <dp~t, we consider a constructible subset
W( 9 of W( ) defined by the following equations and inequation

AP =0,..., A7 YV =0, AV 0.

By Corollary 8.55 of [3], for any a € Wi(j’j), SRg-a) € H[Y1,...,Y,][X] is
a g.c.d. of P(® and Q(® of degree j in X. Let (); and R; be the pseudo-
quotient and the pseudo-remainder, respectively, of the pseudo-division
of g;+ by SR; in K[X]. The polynomial @; fulfills the condition (H2) in
Wl(t ), The degree, length and complexity bounds are computed in Sec. 3
of [1] Lemma 4.2.1 and Corollary 4.2.5 of [2]. O

2.2.Hensel’s lemma

Let Ry = F[Y1,...,Y,]/((Y1,...,Y,)Y), where 1 < N < oo and
R = F[Y1,...,Y,]. We recall here a version of the Hensel lemma, [72, 8,
27, 66].

Lemma 2.3. Let N > 1 and g € Ry[X] which is satisfying the conditions

(H1) and (H2) (see above).
(1), .. ()

Then for any decomposition of g in the form g9 = g5 ---g, , where
g(()l), .. ,g(()s) F[X] are monic, the following holds:
For each multi-index I = (i1,...,%y), |I| > N > 1, there exist unique

polynomials 951)7 co gﬁs) € F[X] which satisfy:
(i) deg(gf”) < deg(gy), 1121, 1<j <.
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(ii) In the completion of Ry[X] w.r.t. (Y1,...,Y,) ie., the ring
K[X][[Y1,...,Y,]] of formal power series in Y1,...,Y,, over K[X]
(see [17]) one has the decomposition:

g=G1---Gs, where Gj:g(()j)+ Zggj)YI, 1<j5<s.
17]>1

Let us write g in the form: g = go + Y. grY?, where g; € K[X] and
[7/=1
deg(gr) < deg(go) for all |I| > 1 according to (H1). Under the hypotheses
of the Hensel lemma (i.e., Lemma 2.3), the condition (ii) is equivalent to
the equations

= 3 oM g VgD g v, = ()

1<j<s

where Vi € F[X]. The coeflicients of V; € F[X] are polynomial functions
of those of the polynomials g( ) ... ,gss) for all |J| < |I|. For example, for

s=2,Vr= ) g§1)g§2_)J-

Let D := degx(g9) = deg(go). For fixed |I|, the coeflicients of

g§1), . g§ *) form a vector of FP which is the unique solution of the linear

system Bz = by given by (7), where B is D x D matrix with entries that

only depend on the coefficients of g(()l), ceey g(() *) (B is nonsingular by unicity

of ggl), e 7953) in Lemma 2.3). The second term b; depends on the coef-

ficients of g; and Vj. Note that in case s =2, we get B = Sylv(gél),gé ))

is the well-known Sylvester matrix of g ) and g(z)'

Remark 2.4. In case s = 2, we get B = Sylv(g(()l),g(() )) is the Sylvester

matrix of g(()l) and g(()z).

Notations. For any 1 < j <, let k; = deg(g[()j)), then D =3 . k;. We
write ) (7) ) _ (4:1)
J :ij+ Z ai] Xi, ] _ Z Oé] Xz
0<i<k; 0<i<k;

and

g1 = Z vir X' I > 1.
0<i<D
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Theorem 2.5. Under the hypotheses of Lemma 2.3 and the above nota-

tions, for any |I| > 1, the coefficients of 951), e gﬁs) are rational functions

of the coefficients of gél), e ,g(()s) and the coefficients of g and they are
given by:
(4,1)
Gn_ b ; ok
a; _W, ].S]SS, 0§l<k]

where Pi(j’l) is a polynomial, its variables are the coefficients of

gél), ceey g(()s) and those of g. Its coefficients are elements of H. Moreover,

(1) The degrees w.r.t. the coefficients ofg(()l), e ,g(()s) and those of g are

bounded from above by
deg,,» (P) < 211] = 1)(D = 1)(s — 1),
deg i (det(B)) < (D —1)(s — 1),

and

deg,, , (P)) < (21| - 1)(s — 1).

(3

(2) If F = H and M is an upper bound of the binary length of g then
that of P9Y) is bounded by

sM + (2]lI| - 1)(D - 1)(s — 1).

Proof. By recurrence on |I| and by using Cramer’s formulas on the linear
system Bx = by defined above. O

2.3. Partition of the parameters space by the Hensel lemma

We fix a couple (W,g) of Lemma 2.1, for any ¢ € W, the poly-
nomial ¢(®) satisfies the conditions (H1) and (H2) of Lemma 2.3. Let
D :=degy(g) <d, degy (g9) < 2d? (see Lemma 2.1) and we write g in the
form:

g=XP+ > vir XY =g+ > gy,
0<|I]<2d3,0<i<D 1<|1]|<2d3
where v; 1 € H(u). Let k = (k1,...,ks) € N° be a partition of D, i.e.,
D=k +---+ks ki > - > ks, we associate to this partition a subset
Uy of W defined by
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Definition 2.6. U}, is the set of values a € W of the parameters such
that the polynomial ¢'® fulfills the following condition:
(H3): There exist monic polynomials g(()l), e ,g(()s) € H[X] which satisfy
4 =g oy, denla) =k, 1555

and such that by application of Lemma 2.3 one gets a factorization of
g'9 in H[X,Y1,...,Yy,]. In other words, the polynomials G;”) (1<j<s)
given by Lemma 2.3 are in H[X,Y1,...,Y,]. The latter condition will be
called the termination condition.

We write the rational functions v; ; (coefficients of ¢) in the form:

S.
Vi = RM’ where S; 1, Ri1 € H[u]
i I

and REGI) # 0 for any a € W.

The condition g{* = g{" - ¢{* is equivalent to:

sW=RrY Y 1 o™, ., 0<i<D, (8

0=lo<l1 <--<ls=i 1<m<s

where agfj) =1,1<j < sand the o' are the coefficients of g/ (as
above).

The following theorem proves an equivalent condition to the termina-
tion condition.

Theorem 2.7. The termination condition is equivalent to
Vi =0, 2d° <|I|<2sd?
where V; is given by (7).
Proof. The proof is the same as Theorem 5.2 of [1]. O
Each V; € H(agj) ,u)[X] depends only on polynomials {gsj)}|J|<|I|7 1<j<s-

We replace the coefficients of the polynomials {gSj) }i<|g|<2sd?,1<j<s in the
new termination condition (Theorem 2.7) by their expressions given by
Theorem 2.5, one gets polynomial equations in the form:

Q" =0, 2 <|I|<2sd®, 0<i<D-2 ©)

where QEI) € H[agj),u], the agj) are the coefficients of g(()j).
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Corollary 2.8. Let k = (ki1,...,ks) be a partition of D where s > 2.
Then the set Uy is the H-realization in VW of the following quantifier
formula:

39, 1<j<s, 0<i<k; which satisfy (8) and (9).  (10)

Proof. By Theorem 2.7 and the above discussion. O

Lemma 2.9. The number of equations in the formula (10) is

]V:(D—J)((n+2&é>—(n+2f>)+ﬁ)§dmm.

n n

The number of its quantifiers is D < d, the degrees of its equations w.r.t.

agj) are bounded by D < 4d®. Their degrees w.r.t. u are bounded by

d < 8d". The binary length of the coefficients of its equations in H is
bounded by M = O(nd®log,(d)) in the case H = Q (M = log,p if
H=T,).

Proof. By the bounds of Theorem 2.5. (]

Lemma 2.10. Let k be a partition of D, then we can produce the fol-
lowing decomposition:

v =J {/\(B&m =0) A (CV) # 0)}
s La
such that for any «, § we have:

° B&B), c¥) ¢ Hluy, ... u);

N degu(B&’B)), l(BEf)) < dO(nrdz);

e deg,(CP), 1(CB)) < gOd)

e The number of a and that of 8 are < dOnrd?®)

This decomposition costs dOnr>d) operations in H. Its binary com-
plexity is bounded by p@1) dOnr*d®)

Proof. By application of the quantifier elimination algorithm of Chistov—
Grigoriev [10] on the formula (10) which defines U (Corollary 2.8) by
taking into account the bounds of Lemma 2.9. ]
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The constructible sets Uy where the k’s are the partitions of D do not
form a partition of W and for any a € Uy, the decomposition ¢(*) =
G§a) .-G\ given by the Hensel lemma is not an absolute factorization
of g(®). To have a partition of W into constructible sets and an absolute
factorization of ¢(*) uniformly in each of them, we introduce the following
definition.

Definition 2.11. One says that a partition k' = (k{,...,k}) of D is
finer than another partition k = (k1,...,ks) of D if for all 1 <1 < s,

ki =ki, +kjyq -+ ki, forcertain 1 < iy < -+ <ig <h.

Proposition 2.12. If k' is finer than k then Uy C Uy.
Proof. By definition 2.6. (]

Lemma 2.13. For each couple (W), g) of Lemma 2.1, the constructible
set YW decomposes in the form:

w= |J ,

kept(D)

where pt(D) is the set of the partitions of D. For each set Uy, there
exist polynomials Gi,...,Gs € H(Cy,...,Cp,u)[X,Y1,...,Y,], where
C1,...,Cp are new variables. For each specialization a € Uy, of the pa-
. —D . .
rameters, there exists (c1,...,cp) € H  a solution of the algebraic sys-
tem defined by (8) and (9) such that the denominators of the coefficients
of G do not vanish on (ci,...,cp,a) and the absolute factorization of
g'¥) ¢ H[X,Y1,...,Y,] is given by:

g\ = H G;Cl""’”””), G;Cl""’”””) is absolutely irreducible.
1<j<s

Proof. For each k£ € pt(D), one takes U, = Uy \ |J Uy, the union
k' £k

ranges over all the partitions k&’ of D being finer than k. These sets form

a partition of W. The polynomials G1,...,G are given by the Hensel

lemma and Theorem 2.5 as rational functions in the parameters v and

the coefficients C1,...,Cp of g(()l), ceey g(()s). U

In the sequel, we replace the variables C1,...,Cp of Lemma 2.13 by
only one variable C' and we show how to pass from the absolute factoriza-
tion of g(*) (given by Lemma 2.13) to that of f(*) uniformly in the values
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a of the parameters. This change is based on the algorithm of solving
zero-dimensional parametric polynomial systems of Sec. 1 (Theorem 1.9).

We fix a constructible set U, C W given by Lemma 2.13 and we con-
sider the parametric polynomial system S which is defined by Egs. (8)
and (9), the parameters of S are the variables u = (u1,...,u;,), the un-
knowns are the variables C,...,Cp which replace the variables agj ) in
these equations. For any a € Uy, the system S(®) (obtained after spe-
cialization of the parameters by a) admits a finite number of solutions
which correspond to the permutations of the factors of g(()”) (see Defini-
tion 2.6), i.e., by the fact that there is a bijective correspondance between
the solutions of S(®) and the permutations of the factors of g(()”).

We can now show the main result of this section in the following theo-
rem.

Theorem 2.14. There is an algorithm which decomposes the parameters
space P into dO"*d*) constructible sets V such that for each V, the
algorithm computes polynomials hy,...,hs € H(C,u)[Zy,...,Zy] and a
polynomial x € H(u)[C]. For any a € V, there exists ¢ € H, a root of
x* € H[C] such that the denominators of the coefficients of x and h; do
not vanish on a and (¢, a), respectively, and the absolute factorization of
f(® is given by

flo) = H h;c’”), h§c7a) is absolutely irreducible.

1<j<s

Moreover, degg(h;), dege(x) < dO@, deg, (h;), deg,(x) < d°C®). The
number of arithmetic operations of the algorithm is d°"*@°) and its bi-
nar lexity i O(l)dO(nr2d3)

'y complexity is p .
Proof. One applies the algorithm of Theorem 1.9 to the zero-dimensional
parametric polynomial system S, we get a partition of U into dO(r’d”)
constructible sets V such that for each set V), the algorithm computes
polynomials x, %1, ...,¥p € H(u)[C] which satisfy the following proper-
ties:

— The denominators of the coefficients of x,1,...,%p do not vanish
onaé€V.

— For each solution (¢1,...,cp) € H” of the system S(®)| there exists
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c € H, aroot of x(* € H[C] such that

a = ¥
oo = P9

— dege(x), dege (¥) < dO@ and deg, (x), deg, (1;) < JO(rd®)
We fix now a set V and we replace the expressions

Ci = ¥i(0)

Co = ¥n(C)

in the coefficients of the polynomials G; € H(C4,...,Cp,u)[X,Y1,...,Y})]
of Lemma 2.13. One gets polynomials g; € H(C,u)[X,Y1,...,Y}] such
that for any a € V, there exists ¢ € H, a root of x(¥ € H[C] and the
absolute factorization of ¢(®) is given by:

gl = H gjc’“), g](.c7a) is absolutely irreducible.
1<j<s

To pass from absolute factorization of ¢(*) to that of f(*), one has to return
to the form of the polynomial g which is given by the proof of Lemma 2.1.
The complexity bound follows from Theorem 1.9, Lemmas 2.1 and 2.10.

O
3. SOLVING PARAMETRIC HOMOGENEOUS
POLYNOMIAL SYSTEMS OF POSITIVE DIMENSION
Let fi = --- = fr = 0 be a parametric system of polynomial homo-
geneous equations fi,..., fr € Flui,...,uy][Xo,...,Xp] which are coded

by dense representation with the notations and the bounds from Sec. 0.2.
In this section, we are interested in the decomposition of the varieties

Vi = V(fl(a), RN f,ga)) C P"(F) into absolutely irreducible components
uniformly in the values a € P of the parameters (see Theorem 3.5).
3.1. Trees of components

We recall here the notion of tree of components from [27] adjusted
for the parametric case. For each a € P, we associate to the system
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fl(a) =... = f,ga) = 0 a tree of components, denoted by 7%, defined as
follows:

The root of 7@ is the n-dimensional projective space P"(F) over F.
The level of a node v of this tree is the number of edges in branches going
from the root to the node. The number of the levels of the tree T(%) is
at most n + 1. For any node of level m, denoted by v,,, we associate a
projective variety Wéi) C P"(F), absolutely irreducible of codimension m
(for m = n+1, one takes Wéfll = ). The construction of these varieties
is based on the following lemma.

Lemma 3.1. There is an algorithm which decomposes the parameters
space P into a finite number of constructible sets. For each set U among
them, it computes linear combinations hy, ..., h,1 Of f1,..., fr with coef-
ficients in the field H such that any a € U satisfies the following property:
e Forany 1l < m < n+1, the codimension of any absolutely irreducible
component of the variety V(hga), .. .,h£,;‘)) C P"(F) which is not
an absolutely irreducible component of V() is m. By consequence
Ve =y m®, . e,

Suppose for the moment that this lemma is proven and fix a con-
structible set U of the partition of P with the associated polynomials
hi,...,hpy1. We return to the construction of the trees T forall @ € U.
Indeed, the sons of the root are the absolutely irreducible components of
the hypersurface V(hga)) and for each node v, of the tree, its sons are
the absolutely irreducible components of the variety

W = WD AV (R, ). (11)
One can distinguish two types of nodes of level not greater than n:

Definition 3.2. A node v, of the tree T is called a node of the first
type (i.e., v, is a leaf of T(®)) if the variety ngffl) is an absolutely irre-
ducible component of V(® and v, is called a node of the second type if
Wi ¢ v,

Corollary 3.3. For any 1 < m < n + 1, the absolutely irreducible com-
ponents of the variety V(hga), ceey h,(ff)) are the varieties WQE:? where v,

ranges over all the nodes of level m of T'® and the varieties va) (j <m)
which are components of V() (i.e., the leaves v; of 7@ of level j < m,).

Proof. By induction on m and by taking into account the above con-
struction of the trees of components. O
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Proposition 3.4. For any a € U, all the absolutely irreducible compo-
nents of V(®) appear in T, j.e., for each component W of V(®) | of codi-

mension m, there exists a leaf v,, of T'® of level m such that W = Wéi)

Proof. One has W ¢ V(@ ¢ V(hga), .. .,hg,‘f)), then W is contained in
an absolutely irreducible component of V(hga), ceey h,(ff)), but W ¢ ng]a)
for any leaf v; of level j < m, then there is a node vy, of T(®) such that
W C Wéi) (Corollary 3.3), or dim W = dim Wl = p —m thus W =

m

W(“)' O

Um

In the sequel, we prove a result stronger than Lemma 3.1. Indeed, in the
following theorem (main theorem of this section), we give a finer partition
of the parameters space and we compute all the varieties WQE:? for all
nodes v, of T(® uniformly in each element of this partition.

Theorem 3.5. There is an algorithm which for a parametric polynomial
system f; = --- = f, = 0 (which is given as in the introduction), partitions

n3
the parameters space into k(éddl)rsdo( * constructible sets such that for
each set F among them, the following properties hold:

— For any 1 < m < n+ 1, the number of nodes of levels m is constant
in F, i.e., for any values a,b € F, the number of nodes v, of the tree T(%)
is equal to that of T®).

— For each absolutely irreducible variety W,, = of codimension m, the
algorithm computes a basis Yy, ...,Y, of the space of linear forms in
Xo, ..., X, with coefficients in H such that W,  is represented by a para-
metric representative system and by a parametric effective generic point
in the following sense:

Parametric representative system

The algorithm computes polynomials
1/11,...,1/1N & F(C,ul,...,u,,)[YO,...,Yn]

homogeneous in Yy, ...,Y;, of degrees < d°™ and a polynomial x €
F(uy,...,u,)[C]. For any a € F, there exists ¢ € F, a root of x(*) €
F[C] such that the denominators of the coefficients of x and 1; do not
vanish on a and (c,a), respectively, and the homogeneous polynomials

1/)§C’a), e ,1/15\?’“) € F[Yy,...,Y,] define the variety thi), ie.,

W =ve®, .. ele) ¢ Pr(F).
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Moreover, the following bounds on the degrees and the binary lengths
hold:

o degq(¢¥;) < 5dO* D deg,(x) < 50(r®) gr2d® )
o deg, (1)) < 3OUNOETE) | deg, (y) < 5O arte?
o degy, 4, (1) < drdO) @O )
deng,...,T, (x) < dzéo(rs)drgdo("a)_
o [(1);) < (M + My)dyd00r) gon’r*d®)
l(x) < (M + M2)d250(7“3)dr3do("3).
o N < dO0),
Parametric effective generic point:
e The variety WQE:) is not contained in the hyperplane V (Yy) C P*(F).

over thi) form a

Yoom

e The rational functions t; = %, ceistpom =
transcendence basis of F(Wéi)) over F.

e The algorithm computes polynomials
(ls,Bl,. . .,Bn € F(C,Ul, Ce ,Ur)(tl,. . ,tn_m)[Z]

and a rational function 0 = 20<j<naj% with 0 < «a; <

deg(ngffL)) < d™. For any a € F, there exists ¢ € F, a root of
x(@ such that the denominators of the coefficients of ¢, B1, ..., By,
do not vanish on (c,a) and an effective generic point of WQE:? is given
by the following field isomorphism:

= Y1\P" Y, )p" —
T.F<1,(YO) (YO )—>F(t1,...,tn_m)[0]. (12)
This isomorphism is defined by the following univariate representa-

tion:

p c,a
(%) = B, . tam,b)
PO (b, .. tym,0) =0,

Bt tnem, 0)

/
S
—
=
Il
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Moreover, the following bounds on the degrees and the binary lengths
hold:

o dego(B)) < 6d°°D | degq(¢) < 600 dr
o dog,(B;) < 80UNGOWTE) | deg, () < 50T art %"
e deg, . (Bj),deg, ., . (¢)< JOon®).
o degy, 1, (Bj) < dsd0U) @O ),

degy, . .7,(¢) < d260(r3)d,=3d0(n3)_
o deg,(B;)) < degy(¢) < dOU™) etp < dO(m).
o I(B}) < (M + My)dy 60 gon’r*d)

U(¢) < (M, + Ma)do6OT) grd®).

2dO(n3)

Proposition 3.4 proves that the components of the varieties V(%) are the
varieties Wéi) associated with leaves v, of T(%). The following corollary
describes them.

Corollary 3.6. FEach element F of the finite partition of the parameters
space of Theorem 3.5 satisfies:

(1) The number of absolutely irreducible components is constant in F,
i.e., for any a,b € F, the number of absolutely irreducible compo-
nents of the variety V(%) is equal to that of V%),

(2) Each absolutely irreducible component W@ of V(@) js represented
by a parametric representative system and by a parametric effective
generic point. The bounds on the degrees and the binary lengths
of the expressions involving in their representation are as in Theo-
rem 3.5.

Proof. By Lemma 0.2, we can examine if a variety ngffl) of the tree T(®)
given by an effective generic point is a component of V() or not. The
other items of the corollary follow from Theorem 3.5. (]

We will prove this theorem by induction on the level m of the trees of
components (i.e., the codimension m). At each step of this induction, the
parameters space will be divided suitably to lead to the results desired in
Theorem 3.5.
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3.2. Basis of the induction

For m = 1, one takes hy = fi € Fluy,...,u,, Xo,X1,...,X,] and
we apply the algorithm of the absolute factorization of parametric poly-
nomials (Theorem 2.14) to h;. This algorithm decomposes P into con-
structible sets such that for each set U; among them, it computes poly-
nomials Gy,...,Gs € F(C,u)[Xo,...,X,] and a polynomial x € F(u)[C]
which represent the absolute irreducible factors of hy for all specialization
a € U; of the parameters (see Theorem 2.14).

For any a € Uy, there exists ¢ € F, a root of x(*) such that the varieties
thf ), where v; ranges over all nodes of level 1 of T(®) are the hypersurfaces
W].(”) = V(G§c7a)), 1 <j <s.Theset {G;} is a parametric representative
system of the variety Wj(“). To compute a parametric effective generic

point for each W].(a), we use Lemmas 2.2 and 2.3 from [Gri] which we
recall in the following:

Lemma 3.7. Let V = V(¢1,...,9s) C P"(F) be a projective vari-
ety of codimension m, defined by homogeneous polynomials gi,...,gs €
F[Xy,...,X,]. Then the following conditions are equivalent:

(1) VnV(Xo,...,Xn-m) =9.
(2) The system of equations

gi(XO;thO; e ;tn—mXoaXn—m+1; e ,Xn) = 0, 1 S ) S S

with coefficients from the field F(t1,...tn—m), where ti,...th—m
are algebraically independent over F', has only a finite number of
solutions in P™(F(ty,...t,—m)) and has no solutions at infinity,
i.e., solutions which are contained in the hyperplane V (Xj).

Moreover, under these conditions, for any irreducible component W of

the highest dimension of V, i.e., dim(W) = n — m, the rational functions
X, Xpo

s g form a transcendence basis of F(W) over F.

Lemma 3.8. One can construct a family My, p—m 4 consisting of (n —
m + 1)-tuples of linear forms in X, ...X, with coefficients in H such
that for any variety V. C P"(F), codim (V) = m, deg(V) < d, there
exists (Yo,...,Yn—m) € Mp pn—m,q such that VNV (Yy,...,Yoop) = @.
Moreover, card(My, n—m.a) = (nidnﬁ_l) and My, p—m,q can be constructed
in polynomial-time in card(M,, p—m.4)-
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Remark 3.9. One finds a better construction of Lemma 3.8 in [12], but
in our case, it does not improve the bounds on the degrees of the output
of the algorithm.

For each element (Yo(t), ce Yét_)l) of the family M, ,_1 4, Wwe associate
subsets U; ; and (717,5 of Uy defined by:

Up={act, W0V, .. v\)=0 forall 1<j<s)

and

Ui =Uizs\ U Uy
1<t'<t

Lemma 3.8 proves that the sets [71,t, 1 <t < card(My, p—1,4) form a
partition of U;. Each set Uy is the F-realization in U; of the following
quantifier formula:

ac, G;(0,...,0,1)#0, x(C)=0 1<j<s.

By application of the main algorithm in Lemma 2 of [10] to this formula,
one gets equations and inequations which define the constructible set U ;.

We fix a certain ¢ and we take Yo(t) = YO,...,YTEt_)l = Y,_1 which
are linearly independent over H by their construction (see the proof
of Lemma 3.8, i.e., the proof of Lemmas 2.2 and 2.3 in [27]), we
complete them to a basis Yp,...,Y,, of the space of linear forms in
Xo, ..., X, with coefficients in H. By Lemma 3.7, the rational func-
n—1

tions t; = %, ceytpo1 = YYO form a transcendence basis of F(Wj(a))

over F for all j and for all a € (717t. We represent each G as an ele-
ment of F(C,u1,...,u,)[Yo,...,Y,] and we write it in the form G; =

Gi(YE” ..., YP?), where Gj € F(C,ur,...,un)[Zoy-- -, Zn)s Zoy- - Zn

P
are new variables. One poses 0; = (%) and

6;(Z) =Gj(Lt1,...,th—1,Z) € F(Cyur, ..., ur)(t1,...,tn—1)[Z].
For any a € Uy, the polynomial q&;c’”)(Z) € F(t1,...,th—1)[Z] ad-
mits 6; as a root. This defines an effective generic point of Wj(”). The
number of arithmetic operations in H of the basis of the induction is
(6d2)o(7’2[) (ddl)o("”zlds) and its binary complexity is

(pMM; M2)O(1) (5d2)0(r2z) (ddl)O(nr2ld3)'

These bounds follow from Theorem 2.14 and from those of Lemma 2 in [28,
p. 28].
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3.3. Induction hypothesis

We suppose at the step m + 1 of the induction that the polynomials
hi,...,hy are computed and all the nodes v of level < m of the trees of
components are constructed in the following way: The parameters space
P is decomposed into Ny, < (8ddy)°mnm*®) constructible sets such that
for each set U, among them, the following properties hold.

There exists a linear transformation Yy, ...,Y, of variables such that
each absolutely irreducible variety W,, of codimension j < m, associ-
ated with a node v; is represented by a parametric representative system
(x, %1, . -.,%nN) and by a parametric effective generic point (¢, By, . .., By)
as in Theorem 3.5 but with the following bounds on the degrees and the
binary lengths:

o dego(1)), dego(x), dego(Bj), dega(p) < ddotmd),
o deg,(v;), deg,(x), deg,(B;), deg,(¢) <O qOmrd),
e degy,  1,(¥;), degr, . 7,(X),
degy, _7,(B;), degy,  7,(¢) < 890 dydOtmrd).
o degy 4. ..(Bj), degy 4. (¢) < dom),
o deg,(Bj) < degy(¢) < d°(™ and p” < d°(m).
o 1(1h;), 1(x), L(B;), l(¢) < (My + My)dO ") dydO(mrd®),
o N < (O(mn),

3.4. Core of the induction

The step m+1 of the induction consists in further dividing each U, into
constructible sets and calculating the polynomial h,,, ;. Also we compute
parametric representative systems and parametric effective generic points
of the absolutely irreducible components ngffz of the variety W(a) =
an) N V(h,(;;rl) which is defined by (11) (the wy,’s are the sons of the
nodes vy, which are not leaves of the tree of components).

3.4.1. Construction of hp,;
The construction of h,,+1 is based on Lemma 0.2 and the following
Lemma [27].

Lemma 3.10. For any a € U,,, the number of nodes v, of level m of
T does not exceed d™.
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Proposition 3.11. Let N := (k — 1)d™ + 1 and ay,...an € H, N
nonzero pairwise distinct elements of H. For any a € U,,, there exists a

polynomial among b\, ... k.., where 1 < s <\,
has = Z Oé‘g_lfj,
1<G<k

which does not vanish identically on ngffl) for any node v,,, of level m of

T'®), which is of the second type (Definition 3.2).
Proof. If not, by Lemma 3.10 and by pigeon-hole principle, there exists a

node v,, of the second type, of level m of T(®) and k elements as, , ..., o,
among aji,...,axn such that h&i)l,...,h&i)k vanish identically on WQE:?
Then fl(a), ceey f,ga) vanish identically on thi) because asg,,...,as, are
pairwise distinct, this is a contradiction with the fact that v, is of the
second type. O

For any 1 < s < N, we associate subsets Up, ; and ﬁm,s of U, which
are defined by:

Unm,s ={a € Up, hg“s) does not vanish identically on Wéi)
for any v, of the second type}

and _
Um7s = m7s\ U Um,s’-

1<s'<s

Proposition 3.11 proves that the sets ﬁm,s, 1 < s < N form a partition of
U,,. Lemma 0.2 proves that each U, , is the realization of the following
quantifier formula which is defined over the field F(t1,...,ty—m) by:

3o, , has(1,31(0,9),...,Bn(0,9)) £0, y(C)=0, ¢(C,6) =0

for all nodes v,, of the second type. By application of the algorithm in
Lemma 2 of [10] to this formula, one gets equations and inequations which
define the constructible set Up, 5.

3.4.2. Reduction to the zero-dimensional parametric case
We fix a certain constructible set ﬁm7s and we are interested in the
varieties:

WL = WD V(@) = Vo, .. e 1Y) ¢ PY(F)

Um
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for any nodes v,, of T(®) of the second type and any value a € ﬁmm where

(x,%1,.-.,%nN) is a parametric representative system of tha).

The following lemma constructs a common transcendence basis of the

field of rational functions of all the components Wéffz

Lemma 3.12. Under the above hypotheses, one can produce a finite
decomposition of ﬁm,s into d°™ sets such that for each set V among
them, there exists a nonsingular linear transformation Zy,...,Z, with
coefficients in H such that any value a € V and any node v, of the
second type of T'® satisfy the following properties

(i) The components Wl(utfz do not lie in the hyperplane V(Z).

n—m—1

.. . . VA
(ii) The rational functions t; := g—;, N form a com-

mon transcendence basis of all components Wlsffz of qui)

Proof. Let M := M, ,,_;,—1,4m+ be a family defined by Lemma 3.8.
For any element (Zy, ..., Zp—m—1) of M, we associate a subset V of Uy, s
defined by:

V= {a € Upmoy W NV (Zoy-., Znm1) = @
for all v,, of the second type}.

Lemma 3.8 proves that the union of the sets V associated with all elements
of M is equal to U, s. Lemma 3.7 proves conditions (i) and (ii). O

We fix a certain set V from Lemma 3.12 with the basis (Zy, ..., Z,). We
write each polynomial ¢; as an element of F(C,u1,...,ur)[Zo,-.-,Zy],
h, as an element of Fluy,...,u,, Zo,...,Z,] and we write V as an inter-
section of the following sets (for all nodes v,, of the second type):

Vo, = {a € Ups, WD NV (Zo,..., Zn-m—1) = D}

Let F' := F(t1,...,th—m—1) and for any node v,, of the second type, we
define a parametric polynomial system S, by:

S . wj(Z07t1Z07---7tn—m—1Z07Zn—ma---:Zn):07 ]-S,]SN
o hozs(Z07t1Z07' v 7tn—m—1Z07Zn—m7 s 7Zn) =0

For any a € V, we denote by Sf,‘fn) the polynomial system with coefficients
in F’ obtained from S, by specialization of its equations on (¢, a), where
¢ is a root of x(*) € F[C]. This system is zero-dimensional in P™+!(F")
and has no solutions at infinity by Lemma 3.7.
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Theorem 3.13. Under the above hypotheses and notations, there is

m2n
an algorithm which decomposes each set V,, into (5dd1)7"3d0( " con-
structible sets such that for each set £ among them, it computes polyno-
mials By —m, - -, Bn € F'(C,u)[Z] of degrees w.r.t. Z bounded by dom*)
and a polynomial x» € F(u)[C]. For any a € &, there exists c € F', a root

ofxga) such that the denominators of the coefficients of B,,_, ..., By do
not vanish on (¢, a) and the following property holds.

The solution set of the system St(,‘fn) is decomposed into dOm*n) classes
S of solutions. For each class S, the algorithm computes a polynomial
I'e F(C,uw)t1,...,tn—m—1,Z] such that a parametric representation of
elements of S is given by

Zew)' o B )
Do) () = 0, (5 n
(g_)p = 57

Moreover, the following bounds on the degrees and the binary lengths
hold:

degq(B;) < §d°m°d) and deg ('), degq(x2) < §O(r?) grid® ™
deg, (B)), degy, _1,(Bj) < dpdO0)gOm*r*d).

deg, (), deg, (x2), degy, 1, (I),

degy, .z, (x2) < do800* @ %™

degy, ¢ . (Bj),deg, . ()< JO(m?n)_

1(B;) < (M, + My)dy60(r*) dO(m*r*a®)

I(T), U(x2) < (My + My)dy 8O0 dr®a® ™"

Proof. We apply the algorithm of Theorem 1.9 to the zero-dimensional
parametric polynomial system .S,, . This algorithm gives a finite partition
of V,,, into constructible sets such that for each set A among them, it
computes polynomials A, Bp_p,,...,B, € F'(C,u)[Z]. For any a € A,

there exists ¢ € F, a root of x(*) such that the solutions of St(,‘fn) are given

by: .
(%2=)" = B

()" - &0
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The bounds on the degrees and on the binary lengths of B; and A follow
from Theorem 1.9 taking into account those of the equations of S,,, by
the induction hypothesis.

We can write A in the form A = ﬁ—; where

Al € F(C7u)[t17"'7tn—m—1az]7 A2 € F[tly---ytn—m—l]-

We apply the algorithm of Theorem 2.14 to the parametric multivariate
polynomial A; in the variables t1,...,tn—m—1, 2. This algorithm decom-
poses A into constructible sets such that for each set G among them,
it computes d°(m*™ polynomials G € F(C,u)[t1,.- ., tn_m—1,Z] and a
polynomial x; € F(u)[C] such that for any a € G, there exists ¢ € F, a
root of x\* which satisfies:

Ale®) = HG(C’”), G©? s absolutely irreducible.
G

We apply now the algorithm of [28] for computing parametric greatest
common divisor (ged) of x and x; in F(u)[C]. It decomposes again G into
constructible sets £, each of them with a parametric ged x2 € F(u)[C],

i.e., for any a € £, the polynomial Xga) is a ged of x(* and Xga) in F[C].

For any polynomial GG, one takes I' := A—(; € F'(C,u)[Z], these poly-

nomials divide the solution set of the system Sq(,‘fn) in the sense of Theo-
rem 3.13. The number of elements of the partition of V,, and the bounds
on the degrees and the binary lengths follow from Theorems 1.9, 2.14, and
from [28]. O
3.4.3. Construction of parametric effective generic point for any
component Wl(utfz

We fix a certain constructible set £ of Theorem 3.13. For any couple
(c,a) € F x &, where c is a root of Xga), one considers the coordinate ring
of the affine variety W% N {Z, # 0} over F:

A=TFW® N {Z #0}] = F[zl, N .,Zn}/(z/;f’a)(l,Zl, T
557“)(1,21,...,Zn),hgi>(1,zl,...,zn))
Let P = F[Zy,...,Zn_m-1] \ {0} C A be a multiplicatively closed sub-

set and P~ A be the localization of A at P. The following lemma is an
adaptation of Lemma 2.5 of [27] to the parametric case.
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Lemma 3.14. Under the above notations, there exist bijective corre-
spondences between the following three sets:

(1) The set of absolutely irreducible components Wé,‘fj of the variety
(a)

Um s

i.e., the set of all sons w,, of the node v,, of T(®.

(2) The set of classes of homomorphisms of algebras P~ A — F’ hav-
ing the same kernel over the field F' = F(t1,...,tn—m-1)-

(3) The set of classes (S,I'(©®) of the system 55213 (see Theorem 3.13).

Corllary 3.15. Under the above notations, we can construct an effective
generic point for any component Wé}a) of the variety Wf,ffl) The bounds

m

on the degrees and the binary lengths of the expressions involved in its
representation are as in Theorem 3.15.

Proof. Let w,, be a son of v,,. By Lemma 3.14, we associate to it a
class (S,T(©%)) of solutions of the system Sq(ffn) and a homomorphism of
F'-algebra o : P™'A — F’ of kernel P11, . Then there is a homo-
morphism P~'A/P~1I, ~—— F’ and one has the following coincidence
of fields

'y = F[a(zn_m)#‘ o a(zn)P"} :

where 7 is a root of I'(©®)_ Thus, one has the following field isomorphism:

7 nl Zl Zn—m—l Zn—m v Zn i Fnl (
F'n|~F| —,... ol = F ).
] (ZO, Dot (B )T () ) < Fovi)

This isomorphism is defined by the following expressions:

(c.a) = = tn-m—1
F c,a , o p* c.a *
W (Z=) - B )
p“ C:ﬂ
(2—) = B ().

The complexity bounds are given in the statement of Theorem 3.13. [
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3.4.4. Construction of parametric representative system for any
component Wl(ua)

m

We fix a son w,, of the node v,,, of the second type and a couple
(c,a) € F x &, where c is a root of Xga)_ We associate to them a vector sub-

space ,, of the space of homogeneous polynomials from F[Z, ..., Z,]
of degrees d™*! which is defined by:

Qy,, = {g € F[Zy,...,Z,] homogeneous
deg(g) =d™*', g=0 on W}

We have Wlsff,z C V(Qy,,), where V(€ ) C P™(F) is the set of common

zeros of all polynomials of €, . To prove the equality between these two
varieties, we will use the following lemma [32, 27].

Lemma 3.16. Let W, C W, C P"(F) be two projective varieties
with deg(WW1) < d. Then there exists a homogeneous polynomial g €
F[Zy,...,Z,] of degree < d which vanishes identically on Wy. More-
over, for any absolutely irreducible component W3 of Wy which is not
an absolutely irreducible component of Wy, one has dim(Ws NV (g)) =

Proposition 3.17.
W =V(Qy,,)

Proof. Suppose that there exists an element £ € V(Q,,,,) and £ ¢ Wlsff,z
We apply Lemma 3.16 to the varieties Wy := Wlsff,z and Wy := Wlsff,z u{¢}
with deg( lsffn) < deg( 1(,1)) < d™*! then there exists a polynomial
g € Qy,, and so g(§) = 0, thus g vanishes identically on W5 and for any
absolutely irreducible component W3 of Ws, one has W3 NV (g) = W,
this is a contradiction with Lemma 3.16. O

Lemma 3.18. Under the above hypotheses, there is an algorithm which
decomposes £ into dO(m*n®) constructible sets F. For each F , it computes
a parametric representative system Uy,..., Uy € F(C,u)[Zo, ..., Zy] of
W, . The bounds on the degrees and the binary lengths of these polyno-
mials are as in Theorem 3.5.

Proof. Proposition 3.17 proves that if {g1,...,gn} is a basis of Q,,,
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then
Wlsg,z = V(g17 .. 79M), where M := dlmf(ﬂwm)
41
n
Lemma, 0.2 proves that a polynomial g € F[Zy, ..., Z,] of degree d™t! is

an element of ,,  if and only if

Znm \" Zn\"
Lty tn—m— e | = =0
g<717 7nm1:< ZO > ) 7<Z0

iIl F(tl, - ,tn_m_l)[n],

e

P
where the expressions of the rational functions (g—g) are given by the

isomorphism (*) from the end of the proof of Corollary 3.15 which defines

an effective generic point of Wlsff,z This equation defines a parametric ho-
mogeneous linear system by taking all coefficients of the monomials in
t1,-.-,th—m—1,7 equals to zero. We apply the parametric Gaussian algo-
rithm [32] to this system, it decomposes & into d°(m°"*) constructible
sets such that for each set F among them, it computes polynomials
Uy,..., ¥y € F(C,u)[Zo,...,Z,] such that for any a € U, there ex-
ists ¢ € F, a root of Xga) € F[C] satisfying the following property. The
vectors of coefficients of \115““), e \Ifg\?a) € F|Z,...,Zy] form a basis of
the solution set (2, of the above parametric homogeneous linear system.
O

3.5. Complexity analysis of the algorithm of Theorem 3.5

We analyze here the complexity bound of the step m + 1 of the induc-
tion. Indeed, the complexity of the construction of the A" = (k—1)d™ + 1
sets [}m,s is just that of the quantifier elimination algorithm [10], it is
(5d1d2)0(r2l)d0(mr2ld2)‘

The complexity of the construction of all sets £ of Theorem 3.13 is
determined by those of the algorithm of solving zero-dimensional para-
metric polynomial systems applied to the system S,, (Theorem 1.9) and
the algorithm of absolute factorization of parametric polynomials (Theo-
rem 2.14). By taking into account the bounds established in Theorem 3.13,
this complexity is bounded by:

(0dy dy) O gr1a® ™™™
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This bound is double exponential in m?n because that of Theorem 2.14
is single exponential in the degree of the factorized polynomials (here this
degree is dO(m*n)).

When we pass from the step m to the step m + 1 of the induction, the
bounds pass from single exponential to double exponential. This follows
from Theorem 2.14 as above, but the degree of the factorized parametric
polynomial A, is still equal to dO(m*n) for any step of the induction. Then
at the final step of the induction, these bounds still are double exponential
in n. Thus the number of arithmetic operations in H of the algorithm is

4ldO(n3)

(6d1 dZ)O(r4l) dr
and its binary complexity is

4 4ld0(n3)

(pMy M)° M (8dydy)C ™D dr

We gratefully thank Professor Dimitri Grigoriev for his help in the
redaction of this paper, and more generally for his suggestions about the
approach presented here.
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