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ON A BOUNDED SHEAR FLOW IN HALF-SPACE

ABSTRACT. In this paper we describe a simple shear flow in half-space
which has interesting properties from the point of view of boundary regu-
larity. It is a solution with bounded velocity field to both the homogeneous
Stokes system and the Navier—-Stokes equation, and satisfies the homoge-
neous initial and boundary conditions. The gradient of the solution can
become unbounded near the boundary. The example significantly simpli-
fies an earlier construction by K. Kang, and shows that the boundary
estimates obtained in [3] are sharp.

1. MOTIVATION

In the present paper, we address the typical question of the theory of
partial differential equations. Assume that we have a “weak” solution to
a system of PDE’s of the parabolic type in a space-time domain. Under
what conditions it is smooth (classical) in subdomains? The correspond-
ing property is called local regularity or local smoothing. Typically, for
classical linear parabolic systems, we have such smoothing in space-time
for both interior and boundary cases if the coefficients of the system are
sufficiently regular. For nonlinear systems, one has smoothing effect in a
neighborhood of a “regular” point. The notion of regular points depends
on nonlinearity. For quasi-linear systems, this usually means Hélder con-
tinuity of the spatial gradient of the solution in a neighborhood of such a
point.

In contrast to classical parabolic equations, the Stokes and Navier—
Stokes systems have special features. In particular, classical smoothing
in space-time is not necessary to take place. To demonstrate that, let us
start with well-understood case of interior regularity.

There are different ways of describing interior smoothing. We shall
formulate a selected statement from [2] in order to show one of them.
Its attractive feature is that the statement can be extended to the case
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of boundary regularity as well, see [3]. In the space-time cylinder Q(2),
consider the non-stationary linear Stokes system

Ovw—Av=f—-Vygq, dive=0. (1.1)
Here and in what follows, the notation
L= (II7I3)7II = ($17x2)7
Q(r) = C(r)x] —r?,0[C R® x R,Q, (r) = Cy (r)x] —r?,0[C R® x R,
C(r) = b(r)x] —r,r[e R3,Cy(r) = b(r)x]0,r[c R3,
b(r) ={a’ eR?: |2'| <r}

is used, v and ¢ stand for the velocity field and for the pressure field,
respectively.
We assume that v and ¢ are a weak solution to (1.1) with the properties

v EWt(Q2), 4 € Linn(Q(2)). (1.2)

As to the external force f, it is supposed that two conditions are satisfied

f € L, n(Q(2)) (1.3)

and
my > m. (14)

Here,

Linn(Q(r)) = Ln(=1%,0; Lin(C(r)))
is a mixed Lebesgue space equipped with the norm

0

oo = ([ ([ e imas) a)*,
= ¢l

and
Wi9(Q(r) = {v € Lin,n(Q(r)), Vo € Ly n(Q(r))},

Wi (Q(r)) = {v € W, (Q(r)),
V20 € Ly u(Q()), 00 € Lin,n(Q(r))}.
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Proposition 1.1. Assume that functions v and q satisfy conditions (1.1)—
(1.4). Then v € W2!,(Q(1)) and ¢ € W,,°, (Q(1)) and the following
estimate is valid:

100 £, w20y + V0L, w01 + IV Ly (000))
< (vl a(e@) + IVOlL,. .2@) + 9L, .(22)
Al Ly (22)))-

Proposition 1.1 shows that we have certain smoothing in space and,
if my is sufficiently large, the velocity field v becomes Holder continuous
in space-time. There are other ways, based on the vorticity equations, to
catch spatial smoothing even with no assumption on the pressure but they
say nothing about smoothing in time and do not work near the boundary.
If f =0, exploiting bootstrap arguments, one can show that the velocity
field has spatial derivatives of any order being Holder continuous in space-
time. So, starting regularity for the pressure determines Holder continuity
in time of all the spatial derivatives of the velocity but does not provide
further regularity in time. Simple example showing this phenomenon of
losing infinite smoothing in time might be as follows: v(z,t) = ¢(t)Vh(z)
and ¢(z,t) = —c(t)h(z), where h is a harmonic function. The same effect
takes place in non-linear case and was pointed out by J. Serrin in [4].

Keeping in mind the heat equation, for which there is no difference
between smoothing effects for interior and for boundary cases, one can
assume the same for the Stokes system. The proposition below shows
that it is true for the velocity itself but not for its spatial derivatives. The
complete analogue of Proposition 1.1 has been proved recently in [3] and
here it is.

Proposition 1.2. Assume that we are given functions v € W,,9,(Q+(2)),
q € Ly o(Q4(2), and f € Ly, n(Q4+(2)) with mq > m satisfying the
system

Ow—Av=f—-Vygq, dive=0 in Q4(2),

and the homogeneous Dirichlet boundary condition

v(z’,0,t) = 0.
Thenv e W' (91 (1)) and g € W0, (Q4 (1)) with the estimate

10l L., @i + VPVl @) + VAL, (24
< clvllz, ner@) +IVVllL,, er@) + 4L, .ere)
F Ny n (24 2))-
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If we assume f = 0 and 1 < n < 2, then, by embedding theorem,
v is Holder continuous in the closure of the space-time cylinder Q. (r)
for some positive r > 0. Holder continuity is defined with respect to the
parabolic metrics and the corresponding exponent does not exceed 2—2/n.
Our aim is to construct a simple and transparent example of shear flow
in half-space showing that in contrast to the interior case, in general,
there is no further smoothing even in spatial variables. It is a significant
simplification of K. Kang’s example for the Stoke system published in [1].

2. BOUNDED SHEAR FLOW IN HALF-SPACE

In this section, we are looking for non-trivial bounded solutions to the
following homogeneous initial boundary value problem

Ov—Av=-Vgq
dive=0

} in Rﬁ_x] —4,0[, (2.1)
under the homogeneous Dirichlet boundary condition
v(@',0,t) =0 2’ €eR* —4<t<0, (2.2)
and homogeneous initial data
v(z,—4) =0 z€R3. (2.3)
Here R3 = {o = (2/,23) : 23 > 0}.

Taking an arbitrary function f(¢), we seek a non-trivial solution to
(2.1)—(2.3) in the form of shear flow, say, along x;-axis:

v(z,t) = (u(xs,1),0,0), qle,t) = —f{)z1.

Here, a scalar function u solves the following initial boundary value prob-
lem

atu(yat) - Uyy(yat) = f(t), (2-4)
u(0,t) =0,
U(y, _4) = 07

where 0 < y < 400 and —4 < t < 0 and u,, = 8%u/dy>.
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It is not so difficult to solve (2.4)—(2.6) explicitly. So,

Y

Valr+4)
|
0

Keeping in mind that our aim is to construct irregular but summable

solution, we choose the function f as follows

f(t):ml%, 0<a<l/2 (2.8)

T RNy A
u(y,t) = ﬁ_/4f(t 4)d d¢. (2.7)

Then, direct calculations give us:

(i) u is a bounded smooth function in the strip |0, +00[x]—4, 0[ satisfying
boundary and initial conditions;

(ii) uy(y,t) > c(a)yriss for y and t subject to the inequalities y* > —4t,
0<y<3,and —9/8 <t <0.

(iii) Let s, s1, [, and [; be numbers greater than 1 and satisfy the condition

K:max{%(l—%),l—%}<a<%. (2.9)

Then
CAS Wsl,ko(c‘ﬁ‘(g)x] - 9/470[)7 qc Ls1,l1 (C+(3)><] - 9/4,0[)

Now, assume we are given numbers 1 < m < 4+oo and 1 < n < 2,
letting s = s; = m and [ = [; = n and choosing « so that inequality (2.9)
holds. The functions v and g constructed above for the chosen a meet all
the conditions of Proposition 1.2 with f = 0. However, Vv is unbounded
in any neighborhood of the space-time point z = (z,t) = 0.

Moreover, since, for any solution to (2.1)—(2.3) having this special form,
convective term v - Vo is zero, it is a solution to the full Navier—Stokes
system as well. If we let s =1 =2, sy =13 = 3/2, then K = 1/3 and
there is « satisfying condition (2.9). It is not so difficult to show that with
this set of numbers, s, s1, [, [1, and «, the corresponding solution to the
Navier—Stokes system

Ov+v-Vo—Av=-Vgq, divo=0

satisfies to initial and boundary conditions (2.2) and (2.3) and is a suitable
weak solution in Q4 (2). Moreover, the space-time z = (x,{) = 0 is a
regular point of the velocity field v but the gradient of v is unbounded in
any neighborhood of z = 0.
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