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ON THE BOUNDARY REGULARITY OF
WEAK SOLUTIONS TO THE MHD SYSTEM

ABSTRACT. We prove the partial regularity of the boundary suitable weak
solutions to the MHD system near the plane part of the boundary.

Dedicated to the jubilee of
G. A. Seregin

1. INTRODUCTION

Assume  C R? is a C? — smooth bounded domain and Q7 = Q2x (0, 7).
In this paper, we investigate the boundary regularity of solutions to the
principal system of magnetohydrodynamics (the MHD equations):

v+ (v-V)v—Av+Vp=rotH x H

dive = 0 } in Qr, (L.1)

O¢H + rotrot H = rot(v x H)
} in Qr. (1.2)

divH =0

Here unknowns are the velocity field v : Q7 — R3, pressure p: Q7 — R,
and the magnetic field H : Q7 — R3. We impose on v and H the initial
and boundary conditions:

=0,

=0, (rotH =0, (1.3)

”‘mx(o,T) HV‘an(o,T) )T|8Q><(0,T)

v|,_o =vo, H|,_, = Ho. (1.4)

Henceforth, we denote by v the outer normal to 02 and H, = H - v,
(rot H), = rot H — v(rot H - v). We introduce the following definition:
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Definition. Let I' C 092. The functions (v, H,p) are called a boundary
suitable weak solution to the system (1.1), (1.2) near 'y =T x (0,T) if

(1) v € Lol @n) NWE(Qu) NWEL Q)
H € Ly oo (Qr) N W5 (Qr),

2) p € Ly (Qr) NW,5(Qr),

3) dive =0, divH =0 a.e. in Qr,

4) v|sq =0, H,|aq =0 in the sense of traces,

5) for any w € Ly(f?) the functions

(
(
(
(

tH/v(w,t)-w(w) dxr and t'—>/H(:U,t) ~w(z) dz
Q Q

are continuous,

(6) (v, H) satisfy the following integral identities: for any t € [0,T]

/ v(z,t) - n(z,t) de —/ vo(x) - n(zx,0) dz

Q Q

¢
1
+//(—v-8m+(Vv—v®v+H®H) : Vn—(p+§|H|2divn)da:dt:0,
0 Q

11
for all n e W% (Q¢) such that n‘an( 0,

0,)

[ #t) vl o - [ Ho@) 0,0 do
Q Q

t
+// (—H-@ﬂ/}—l—th-mt@b—(UxH)-rotz/)) dzdt = 0,
0 Q

for all 1 € Wy (Qq) such that y|sax (04 = 0.
2

(7) For every zo = (zo,to) € I'r such that Qg(zo) x (to — R?,t0) C Qr
and for any ¢ € C§°(Br(wo) x (to — R?,to]) such that % ‘89 =0 the
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following “local energy inequality near I'p” holds:

sup [ ¢(oP + () do
tE(to—RZ,to)
Qr(zo)
to

+2/ / <(|W|2+|rotH|2) dzdt
to—R2QR(Z0)
to

< [0 + [H|* ) (0:C + AC) dadt
Juad, (7N 20%
o (1.5)

+/ / (10P +2p)0 - V¢ dudt

to—R2 QR($0)

—2/t0 /(H@H):Vzgdxdt

to—R?2 QR(Zo)

+2/t0 /(va)(V(xH)dmdt.

to—R? QR(Zo)

We remark also that the following identity holds

to
(vx H)(V( x H) dzdt
to—R? QR(Zo)
to

:7 / (v-V§)|H|2dmdt—/ / (v-H)(H - V() dadt.
)

to—Rz QR(ito to—R2 QR(zo)

Here L, ;(Qr) is the anisotropic Lebesgue space equipped with the norm

T s 1/l
@) :=< / ( [isor dx> dt) ,
0 Q

IIf]
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and we use the following notation for the functional spaces:

Wi(Qr) = L0, ;W) = { u € Lyy(Qr) : Vu e Lay(Qr) },
W2HQr) ={ u e WS(Qr) : VPu, du € Lyy(Qr) },
W) = {ue WHQ) : ulon =0 }.

The corresponding norms are defined as follows:

||U||W51)-IO(QT) = [|ul L.y(Qr) T [Vu| Lo 1(QT)>

w22 (gr) = lullwro@e + 1V7ullz. w@r) + 10ullL, (@)

Theorem 1.1. For any sufficiently smooth (v, Hy) satisfying (1.3) there
exists at least one boundary suitable weak solution near Q2 x (0,T"), which
satisfies the initial conditions

[o(,t) —vo()lLa@) — 0, [[H(t) = Ho()llpa@) — 0 as ¢t — +0,
and additionally satisfies the global energy inequality

”UHLz,oo(QT) + ||H||L2,OO(QT) + ||vv||L2(QT) + || rOtH||L2(QT)
< vollza(e) + 1 Hol (o)

The global existence of weak solutions to the MHD Egs. (1.1)—(1.3)
was originally established in [6]. We sketch the proof of Theorem 1.1 in
Sec. 3.

2. MAIN RESULTS

Let B(wg,) denote the open ball in R? of radius 7 centered at z¢ and let
BT (x9,r) denote the half-ball {x € B(wxo,r) | #3 > 0}. For 29 = (w0, to),
Q(Z():T) = B($07T) X (tO - T27t0)7 Q+(207T) = B+(.’I)0,’f') X (tO - 7'2,t0)-
In this paper, we use the following abbreviations: B(r) = B(0,r), Bt (r) =
B*(0,r) etc, B= B(1), Bt = B*(1) etc.

Theorems below present the main result of the paper.
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Theorem 2.1. There exists an absolute constant €, > 0 with the fol-
lowing property. Assume (v, H, p) is a boundary suitable weak solution in
Q7 and assume zo = (g, to) € O x (0,T) is such that xo belongs to the
plane part of 9. If there exists ro > 0 such that QT (z0,70) C Q1 and

1
2
To

/ ( >+ |HP + [p|? )d:vdt<8*,

Q%+ (z0,m0)

then the functions v and H are Holder continuous on the closure
of Q+ (207 TTO)

Theorem 2.2. For any K > 0 there exists €o(K) > 0 with the following
property. Assume (v, H,p) is a boundary suitable weak solution in Qr
and assume zo = (xo,tp) € 0 x (0,T) is such that xo belongs to the
plane part of 0Q2. If

1 1/2
lim sup (; / IVH|? d:vdt) <K (2.6)
—0
' Q(z0,7)
and
1 ‘ 1/2
lim sup (— / |Vo|? da:dt) < €o, (2.7)
—0 r
' Q(z0,7)

then there exists p. > 0 such that the functions v and H are Hélder
continuous on the closure of Q% (2o, p.).

Theorem 2.3. Assume that (v, H,p) is a boundary suitable weak solu-
tion in Qp and denote by T' the plane part of 0X). Then there exists a
closed set ¥ C T" such that for any zy € (I' \ ¥) x (0,T] the functions
(v, H) are Hélder continuous in a certain neighborhood of zp, and

PHE) =0,

where P'(X) is the one-dimensional parabolic Hausdorff measure of ¥..

For the MHD equations, Theorem 2.3 presents a result which is a
boundary analog of the famous Caffarelli-Kohn-Nirenberg (CKN) theo-
rem for the Navier-Stokes system (see [2] and [7]). The boundary regular-
ity of solutions to the Navier—Stokes equations was originally investigated
by G. Seregin in [8] and [9] in the case of a plane part of the boundary
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and by G. Seregin, T. Shilkin, and V. Solonnikov in [11] in the case of a
curved boundary. The internal partial regularity of solutions to the MHD
system was originally proved by C. He and Z. Xin in [4], see also [15, 16].
Note that thought using the methods of out paper one can prove various
e-regularity conditions involving various scale-invariant functionals (such
as in [4]) in the present paper we concentrate on the condition (2.6), (2.7)
as this condition provides the optimal estimate of the Hausdorff measure
of thesingular set ¥ in Theorem 2.3.

Our paper is organized as follows: in Sec. 3, we outline the proof of
Theorem 1.1. In Sec. 4, we prove that the weak solutions of the linearized
MHD equations are Hoélder continuous up to the boundary. Section 5
contains the proof of the Decay Lemma and the sketch of the proof of
Theorem 2.1. Section 6 is concerned with the estimates of some Morrey-
type functionals of weak solutions to the heat equation near the boundary.
These estimates together with the estimates of the scale invariant energy
functionals obtained in Sec. 7 turn to be crucial for the key estimate (8.3).
Finally, in Sec. 8, we present the proofs of Theorems 2.2 and 2.3.

Acknowledgment. The authors would like to thank Nikolay Filonov for
helpful discussions.

3. LOCAL ENERGY INEQUALITY AND EXISTENCE
OF BOUNDARY SUITABLE WEAK SOLUTIONS

Let w denote the usual smooth Sobolev kernel and ws(z) = 6 3w(dz).
By ws * H we denote the convolution of H with ws. Assume that vg and
H{ are sooth divergent-free functions satisfying the boundary conditions
(1.3) and additionally satisfying the properties

vy — v, H{ — Hy in Ly() as § — 0.
Consider the problem

O + ((ws *xv) - V)v — Av + Vp =rot H x (ws * H)

dive = 0 } in Qr, (3.1)

O¢H + rotrot H = rot(v x (ws * H))

divH =0 } in QT: (32)

vlsaxo,r) =0, Hylsaxo,r) =0, (rot H);|saxo,r) =0,
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_ .0 _ )
V],_o = Vos H}t:O = H,.

Using Galerkin approximations and energy estimates it is not difficult to
prove existence of the unique smooth solution (v°, H®, p°) to this problem.
Moreover, these functions satisfy the global energy inequality

1P la @) + 1 s @) + 10 Iz gy + 1 oo
< (oollza + I Hollzu@) )

From this estimate using the interpolation inequality we obtain the esti-
mate

(s % 0%) - V)0l 4 (@) F Il TOt H X (ws % H) Ly o (@r) < e

9
8’2
Applying the coercive estimates for the linear Stokes problem (see, for
example, [14]), we obtain

9 9
1wz, @m *+ IV8 g g0 <

So, the only thing we need is to verify the local energy inequality (1.5).
Then the result of Theorem 1.1 follows if we pass to the limit as 6 — 0.

To simplify notations below we omit the index ¢ and denote by (v, H, p)
the smooth functions (v?, H°,p?). Take zy = (z¢,t0) € OQ x (0,T) and
choose R so that Qg (zg) x (to — R?,tp) C Qr. Without a loss of general-
ity we can put zog = 0, tp = 0. Assume ¢ € C§°(Bg x (—R?,0]) satisfies
%‘89 = 0 and multiply equation (3.1) by the test-function n = (v. In-
tegrating the result over (1, integrating by parts and taking into account
the relation

/ (ws * v;)v;,:Cv;j do = —% / [v|? (ws * v) - V( da.

Q Q

We obtain

ld 2 2 L 2

s | Gl [avep do =3 [P+ AQ) do
Q Q

Q

1
+/T3v-VCdm+§/|v|2(w(5*v).VCd$
Q Q

+/ (rot H X (ws * H)) - (v dz = 0. (3.3)
Q
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Now we multiply the equation for the magnetic field by (H. Integrating by
parts and taking into account the boundary conditions (1.3) after routine
calculations we arrive at the relation

1d 2 2
r / C|H]| dx+/§|rotH| dx
Q Q

1 ‘ .
= §/|H|2(8t§—|—A§) d:n—/ H®H : V*( d:n+/ rot(vXx (ws+xH))-CH dz.
Q Q Q
Integrating by parts, we obtain

/ rot(v x (ws * H)) - CH dx

Q
:/ ((vx(wg*H))-rotHd:U—l—/(vx(wg*H))-(VCXH) dzx.
Q Q
Note that
/C(vx(wa*H))-rotde:/ (((ws* H) xrot H) - v dz.
Q Q

Hence we obtain

1 1
5% / C|H|? da:+/§|1rotH|2 dz = §/|H|2(8tC+A§) dx

Q Q Q

—/ H®H:V* dx-l-/ ((ws * H) x rot H) - (v dx

O o)
+/(vx(w(5*H))-(VCxH) dx. (3.4)
Q

Adding identities (3.3) and (3.4) together, using the conciliation

/(rotH X (ws * H)) - Cvdx +/ ((ws * H) xrot H) - (v doz = 0,
Q Q
and passing to the limit as 6 — 0 we arrive at (1.5). Theorem 1.1 is proved.

In conclusion of this section, we introduce the following version of the
local energy inequality near the plane part of the boundary.
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Theorem 3.1. Assume (v, H,p) is a boundary suitable weak solution
satisfied the MHD equations in a domain containing the set QT = BT x
(—1,0) such that the plane part of QT belongs to the boundary 99 x
(—1,0). Obviously, we have

'U| _0, H3|

a:3:0 -

07 H173‘

a:3:0 = .1‘3:0 =

Let ¢ € C§°(B x (—1,0]) be a cut-off function such that (3|y,=0 = 0.
Assume b € R? is an arbitrary constant vector of the form b = (b, bs,0).
Then the following inequality holds

sup /C(|v|2 + |F|2) de + 2 / ((|Vv|2 + |rotﬁ|2) dz
te(—1,0)
B+ o+

< / (|u|2+|ﬁ|2)(at<+Ag) dz+/(|v|2+21_3)v~V§ dz
Qt Qt

9 /(F@F) V2 d 2 /(v x HY(VC x H) dz,  (3.5)
Qt Qt
where H = H — b.

Proof. Relation (3.5) is a combination of (1.5) with he relation obtained
from (1.2) multiplied by the test function ) = (b where b = (b1, b2,0) is
a constant vector. The proof is simple and we omit it.

4. LINEAR ESTIMATE

Theorem 4.1. For any M > 0 there exists C(M) > 0 such that for
any a € R? such that a = (a1, a2,0)” and |a|] < M, and for any (u, h, q)
satisfying the linear system

Owu— Au+Vg=rothxa
divu = 0, (4.1)

Oth — Ah = rot(u x a)
divh =0, (4.2)
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Oha
ul, o =0, hsl, _,=0, B ey =0 =12 (4.3)
the following estimate holds:
lelley 3 @eeyy + Illodt v ny)
<O (llully@) + 10 = bllig@) + g = cllzai@n).  (@4)

Here, b € R? is an arbitrary vector of the form b = (by,b,,0)?, and ¢ € R
is an arbitrary constant.

Proof.
1. Similar to Theorem 3.1 we obtain the relation

lullzy @ty T 1l @+ 2 T IVUlly@+ gy + IVRlL o+ (2))

10 10

< OM) (Jullzaior) + 10 = Moo + ledlaen ) (45)

Here, ¢ = g — c¢. Note that the right-hand side of the last inequality can
be estimated by the right-hand side of (4.4) via Holder inequality.

2. For the function u satisfying system (4.3), we have the following esti-
mate with arbitrary s, [ € (1,+00), and 0 < p <1 < &% (see 9):

[ullwz o+ ()

<C (|| rot h|

Lest@ o)+ Nullza@r) + [Tl a0 ). (46)

Here, C depends on M, r, p, s, and (.

3. Denote by h* the following extension of the function h from QT onto
Q: we take h*(x,t) = h(z,t) for z3 > 0 and take

{ h2($17$27w37t) = ha(xlamb_w&t) fOI“ Za < 0
3 .

h§($17$27$37t) = _h3($17$27_$37t)
We denote also g = rot (u x H) and let g* be the extension of g from
Q1 onto @ obtained in the following way: for g; and g» we take the even

extensions and for g3 we consider the odd one. Then functions h*, u*
satisfy the equation

Oh™ — AR =¢" in Q. (4.7
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4. For the function h* satisfying the heat equation (4.7), the estimate
similar to (4.6) holds

19wz o < € (197 Neasiion + 1B = Bllzyiay)-

Here, s, l € (1,400),and 0 < p < r < 19—0 are arbitrary and C' depends on
M, r, p, s, and [. This estimate provides the inequality

||h||wf)-ll(Q+(p)) <C (HVU| L, (QT(r)) + ||h - b”La(Q"’))‘ (4-8)

5. First we apply (4.8) with s =1 =2 and p = %, r = . Taking into
account the energy estimate (4.5) we obtain the estimate of the norm
||h||W22,1(Q+(%)) by the right-hand side of (4.4). Then using the imbedding
theorem W;%Q*(%)) — W%O(QJF(%)) we obtain the estimate of the
norm ||Vh||L%(Q+(%))

6. Now applying (4.6) with s = %, l =
the estimate

M3

and p = %, r= %, we obtain

lullwss @iy <O (Ir00kllz @i + Iullzaior) + 1Ty a0m)-
3%

By Holder inequality, we estimate | roth|y . (Q+(2)) by the norm
32
VA ., (@Q+(2)), which was already estimated on the previous step. On
3

the other hand, by the imbedding theorem we obtain

IVl oewwrgm S Clellwg  @rign- (49

=3

Wl

7. Estimate (4.9) implies in particular that Vu € Lg s (Q*(%))- Applying
(4.8) with s =2, I = 2, we obtain the estimate

Iz @+ e < © (IVulz, 4 @z + 10 = blliaan))-
8. Finally, we apply (4.6) with s =9, = % and obtain

s gz <€ (10l 4 @e 2 + Iullza@h) + Tlaen)-
2
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9. Gathering all the estimates together we arrive at the estimate

HUHWjé @+ T ||h||w;% (@+(1))

<) (llullzyir + 10 = bllzy@e) + lla = el u@t) )-

The statement of the theorem follows now from the imbedding Wf”ll(QT)
— C*2(Qr)asa=2-2—-2>0, wheres =9,1 =32, and o = .
Theorem 4.1 is proved.

Corollary 4.1. Let us introduce the functional

1/3
Y (v,H,p) : = ( / |v|? d:ndt)

Qt(r)
2/3
b7 ( f =Bl doct) (4.10)
Q+(r)
1/3
+( f \H — b, (H)[? d:ndt) ,
Qt(r)

where b, (H) := ((Hy)o+(r), (H2)g+(r),0). Then for any M > 0 there is
a constant Cy(M) > 0 such that for any solution (u,h,q) of the linear
system (4.1)—(4.3), the following estimate holds:

Y- (u7 h: q) < Cl (M) T1/3 Y) (u7 h: q)

5, THE DECAY ESTIMATE AND THE PROOF OF THEOREM 2.1

In this section, we consider the MHD system

v+ (v-V)v—Av+Vp=rotH x H

o OF
dive =0 } n Q7

(5.1)

OH — AH =rot(vx H
: e g,

divH =0 (5.2)
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Vlgg=0 =0, Hjlyzy=0 =0, Hm}zs:0 = H273}x3:0 =0. (5.3)

We denote by Y (v, H,p) the functional introduced in (4.10). We also
denote by Y, (v), Y, (H), and Y, (p) the functionals

Y. (v) ::< / ol dxdt)l/g,

Q* ()
- 1/3
n&n:<;/|H—mede ,
Q* ()
. 2/3
Yr(p) =T ( f |p_ [P]B+(7—)|3/2 dzdt )
Q*(r)

Theorem 5.1. There exists an absolute constant eg > 0 such that for any
M > 0 there exists C. = C.(M) with the following properties. For any
boundary suitable weak solution (v, H,p) of the MHD system (5.1)—(5.3),
the following implication holds: if

Yl(vaHap) < ¢€o

and
|(H1)g+| + [(H2)o+| < M,
then
Y, (v, H,p) < C. 7/% Y1 (v, H,p). (5.4)
Proof.

1. Arguing by contradiction we assume there exists a sequence of numbers
em — 0, and a sequence of boundary suitable weak solutions (v™, H™, p™)
such that

Y'l(vmaHmapm) =&m — 0
and

Y (o™ H™,p™) > C.m/3e,,.

2. Let us introduce functions

u™(z,t) = é v (x,t),
") = — (7 t) = s (),
W, t) = % (#7(@,) - a™),



ON THE BOUNDARY REGULARITY 31

Then

Yi(u™ h™, ") =1, Y™ k™ q") > Crt/?, (5.5)

and (u™, h™, q™) satisfy the following equations in D'(QV)

Ou™ + e (u™ - V)u™ — Au + V@™ =10t A X (€, h™ +a™)
divu™ = 0, (5.6)

Oh™ — AR™ =rot (u™ X (g,,h™ + a™))
divh™ = 0, (5.7)

oy

| = _ony
zg=0 — 8373

z3=0 8.’1}'3

u™| 0, hy'

=0. (5.8)

'1:3:0 z3:0

3. Conditions (5.5) imply in particular the boundedness
sup (||um||L3(Q+) + 1™ | Ly + ”quL%(Qﬂ) < +oo0. (5.9)
From the local energy inequality near the boundary (3.5) we obtain

1™ | @+ () + 1B N Ls @+ (2))
™z @rgy T IR lwzegrigy < € (5.10)

From Egs. (5.6), (5.7), and (5.8) we also obtain the estimate

||6tum||1,%(_1,0;w%*1(3+)) + ||athm||L%(_1,0;W%*1(B+)) <C.
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4. Hence we can extract subsequences
u™ — u in L3(QT),
R™ — h in L3(Q"), (5.11)
¢" = ¢ in L3(Q"),

h™ — h in W;”<Q+(g ) (5.12)

9
A hoin Ls <Q+ <1—0 : (5.13)
a™ — a in R3
5. Passing to the limit in Eqgs. (5.6)—(5.8), we obtain

Ou — Au+ Vg=roth xa in QT

divu =0 in QF, (5.14)
u|x3:0 = 07

Och — Ah = rot(u x a) in QF,

divh =0 in QF, (5.15)

o O

h3|1‘3:0 = 07 8—$3|’”3:0 - 8:1«/.3 |a:3=0 =

0.

6. From (5.13) we conclude

lim Y,(u™)=Y,(u), lim Y;(h™)=Y;(h)

m—-4o0 m——+oo

and hence

limsup Yy (u™, B, ¢"™) < Y (u) + Y (h) + limsup Y (¢™). (5.16)

m— o0 m—0oQ0
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As (u, h,q) is a solution to the linear problem (5.14)-(5.15), from Theo-
rem 4.1, we obtain

Y, (u) + Y, (h) < C(M) 7% Y1 (u, h, q). (5.17)

7. Now we are going to estimate lim sup ?T(qm). For this purpose we

m—0o0
decompose (u™,¢™) and (u, q) as
u™ = u + ul’, ¢" =q" + 45,
U = Uy + Uz, q=q +qz,
where (uf?, ¢") € W2l (ITT) x Wy (IIT) are determined as a solutions
872 872
of the following initial boundary-value problems in II* = R3 x (—1,0):
Orul® — Aul + Vqi* = f™ in Il
divu® =0 in Il
'U/;n|t=—1 =0, u;n|a:3=0 =0,

where f™ is defined by the expression rot A" X (€™h™ +a™) —e™u™ - Vu™

on the set Q*(55) and extended by zero onto the whole ITT. Similarly,

(u1,q1) are determined by the relations

Oru; — Aug + Vg = f in H+,

div Uy = 0 in H+, (518)
U1 l¢=—1 =0, Ut |gg=0 = 0,
where f determined by the expression roth X a on the set Q*(%) and

extended by zero onto the whole ITT.

8. As functions uf* — u; and ¢ — ¢1 are the solution of the first initial
boundary-value problem in II™ with the right-hand side f™ — f and zero
initial and boundary conditions, we obtain the estimate (see, for example,
[14, Proposition 2.1])

||U11n||W§1§ (I1+) +[IVa"|lL (I1+)
82

2 3
82

SO ey y@rgplut” —wmllyz ey +1IVE" = Varll, ;)
89 2.3 g5

<OI™ = Fliy vy (519
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Note that
||fm||L%)%(Q+(%)) < C(M)

(5.20)
||fm_f||L%'%(Q+(%))_’0; as  m — oQ.

So, taking into account the imbedding W% (QT (3)) — L3 (QT(5)) we
812

can conclude that 9
' —q i Lg(QT(35))

and, hence, for any 7 € (0, %)
mli_r’noo YVo(at") = Yr (@)

On the other hand, (u1,q1) is a solution of the linear Stokes problem in
Q™. Hence from Corollary 4.1, we conclude

Y () < CM) 73 Yo (qu).

10

9. We need to estimate Yo (¢1). From imbedding theorem L (BT (3)) —
W3 (BT (%)) we conclude
8

Yo(q)<C ||V‘I1||L%)%(B+(i))'

10

For the solution (u1,q;) of the initial-boundary value problem (5.18) we
have the estimate

||’U’1||W§')1%(Q+(%)) + ||VQ1||L%'%(Q+(2)) <C(M) ||Vh||L%'%(Q+(%))'

10

Using Holder inequality ||Vh||L%)%(Q+(1%)) <C ||Vh||L2(Q+(%)) and tak-

ing into account the weak convergence (5.12) from which we conclude

IVRlLa@t gy < Bmint VA" 1,0+ ()

10

and using (5.10) we obtain

10

Yo (1) < C(M).
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10. Now we consider functions (u%*, ¢4") determined by relations
uy' =u™ =y, @t =" gy (5.21)

. . s O+ ().

These functions satisfy the homogeneous Stokes problems in Q™ (15):

9
Oul — Aul' + Vg =0 in QF (1—0>,

divul=0 in Q+(1—90>,

u;n|$3:0 =0,

Orus — Aus + Vg, =0 in Q+<

divuy =0  in Q*(
Uz |ps=0 = 0.
Then

||u£n||W92é(Q+(%))+||Vq£n||L9)%(Q+(%))

< C(||U31||L3(Q+(%))+||Q§”||L (Q+(%)))-

3

2
Note that due to (5.21), (5.9) and the first inequalities in (5.19), (5.20)
we have the estimate

||U31||L3(Q+(%)) + Hqén”L%(QJr(%))

< ||Um||L3(Q+(1—-°;J)) + ”quL%(Q+(%)) + ||UT||L3(Q+(%)) + ||QT||L%(Q+(%))
< C(M).

On the other hand, from the Holder inequality, we obtain for any 7 € (0, %)

T = [l - el do)
Q*(r)
. 3
<or? < / |Vgy|2 d:cdt)
QT (7)
< Cré ||Vq§n||L9%(Q+(%)) <C(M) 75.

N
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11. Summarizing all previous estimates we arrive at

Wl

limsup Y, (¢™) < lim ?T(qin) + lim sup ?T(qgn) <C(M) 75.
m—0o0

m—0o0 m—0o0

Taking into account (5.16) and (5.17), finally, we obtain

limsup Y, (u™, K™, q"™) < C(M) 75.

m—0o0

This estimate contradicts (5.5) whenever C, > C(M). Theorem 5.1 is
proved.

Theorem 2.2 follows from Theorem 5.1 in the standard way by itera-
tions of the estimate (5.4), scaling arguments, and combination of bound-
ary estimates with the internal estimates obtained in [15]. See details in [8,
9,11, 12].

6. ESTIMATES OF SOLUTIONS TO THE HEAT EQUATION

In this section we study solutions of the heat equations with the lower
order terms:

0H — AH = divlve H—- H Q) in QF.
’U|$3:0 = 07
H3|l'3=0 = 07 Ha,3|a;3=O = 0; a = ].,2

Namely, we assume the functions (v, H) possess the following properties:

v, He W,°(Q"),

6.1
Ulgs—0 =0, H3|z,—0 =0 in the sense of traces, (6.1)

for any n € C§°(Q;R?) such that n3|,,—0 = 0 the following integral iden-
tity holds

/(—H-am+VH:Vn) dodt = —/G:Vn dzdt, 6.2)
Qt Qt
where G =v® H — H ® v, and

dive =0, divH =0 ae in QV. (6.3)

We start with the auxiliary results:
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Teorem 6.1. Assume conditions (6.1), (6.2) hold. Denote by v* and H*
the extensions of the functions v and H from Q% onto Q obtained in the
following way: the components v}, H}, a« = 1,2 are the even extensions
of the components vy, Hy, « = 1,2, and the components v, H; are the
odd extensions of vy, Hz. Define also the function

G"'=v"'®@H"—H*"®uv".
Then the following relation holds:
OH* —AH* =divG* in D(Q). (6.4)
Moreover, if (6.3) is satisfied, then

dive* =0, divH* =0, in D'(Q).

Proof of Theorem 6.1. The result is a direct consequence of the bound-
ary conditions v|y,—¢ = 0 and H3|;;—0 = 0. Theorem 6.1 is proved.

Now we introduce the following functionals

‘ 1/2
E(r):(% / Wk da:dt) :

Qt(r)
1 . 1/2
Q+(r)
1 1/q
F,(r) = (r5_q / \H| d:vdt) .
Q+(r)

Theorem 6.2. Assume conditions (6.1)—(6.3) hold. Then for any r €
(0,1) the following estimate holds

1H L, oty < o (1+E(2r)) (FZ(2T)+E*(27°)+T) (6.6)

Proof of Theorem 6.2. Cosider the function

__ar
T a7



38 V. VYALOV, T. SHILKIN

where ¢ € C§°(Q(2r)) is a standard cut-off function. The following rela-
tions are true:

/ VH* : Vydedt = [ YEHOVC
(1+ [H*[?)=
Q(2r) Q(2r)
H* 2 H* 212
+ / C< |V | 1 |V| | | 3) dwdt:
(L+[H*[2)z  4(1+ |[H*[*)*

Q(2r)
and 1
(1L+ |H*))|[VH*|* - ZIVIH*IZI2 > |[VH*”.
Hence we obtain the estimate

. |VH*|2 .

VH* :Vnydzdt > C P d dt — |VH*||V(| dxdt.
+ *

Q(2r) Q(2r)

Testing the equation (6.4) by the function n we obtain

H*2
sup /C + |H**) > dr + / CL“dxdt

te(=r20) o) oo (14 |H*?)2
/ 10,C|(1 + |H*[?)? dadt + / |VH*||V(| dedt
Q(2r) Q(2r)
+ / divG* - n dxdt.
Q(2r)

Note that
divG* = (H* - V)v* — (v* - V)H" a.e.in Q.
Integrating by parts we obtain
/ (v* - V)H* - n dadt = / (u* - V(L+ |H**)Y? dedt
Q(2r) Q(2r)

—_— / v* - Ve + | H*P)Y? dedt
Q(2r)
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Hence

/ divG™ - dzdt < c |Vl o+ @2 1H || oo+ 2r)
Q(2r)

C C
+o )| 2o+ 1 H | L@+ (2r)) + . )|z, (@+(2r)

Taking into account the Poincare inequality for v and the Holder inequal-
ity, we obtain the estimate

1
1H L, i@ < (1F + 190l a@r 2 ) 1 E Lo 20

+ erd |V Hl|Lygr ary + ¢(r + 78 [ V0l 1y@romy )
which implies (6.6). Theorem 6.2 is proved.

The main result of this section is following.

Theorem 6.3. Assume conditions (6.1)-(6.3) hold. Then there exist ab-
solute positive constants €1, a and ¢ such that for any € € (0,¢1) and any
K >0if
sup E(r) <e and sup E.(r) < K (6.7)
re(0,1) re(0,1)

then for any 0 <r <p<1

F(r)y<ec (%) F>(p) + ce(K +1). (6.8)

Proof of Theorem 6.3.

1. Denote by v* and H* the extensions of functions v and H from Q* onto

Q described in Theorem 6.1. Fix arbitrary r € (0,1) and let { € C>(Q)
be a cut off function such that ¢ = 1 on Q(r) and supp¢ C B x (—1,0].
Denote II = R? x (—1,0) and denote by G the function which coincides
with G* on (%) and additionally possesses the following properties: Ge

Wll’O(H) NLs (1), G is compactly supported in II, and

g
’5

||G||L18,%(n) < C||G*||ng,%(Q(£)) < CHGHL%%(Q+(§)) (6.9)

-
-
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2. We decompose H* as .
H*=H+H,

where H is a solution of the Cauchy problem for the heat equation

OH —AH =divG  in II
gy ’ 6.10
{ H|t=—1 = 07 ( )
defined by the formula H =TIxdivG = —VF*C:;, where I is the fundamen-
tal solution of the heat operator. The function H satisfies the homogeneous
heat equation

OH—-AH=0 in Q(3). (6.11)

3. Take arbitrary 6 € (0, 3). We estimate |[H||1,(q+(sr)) in the following
way

I H | oo+ o)) < NH | La(@eor)) 612)
< H ] Lac@or) + 1 HI Lo(@eor) '
For ||I§||L2(Q(gr)) we have
15| Ly@eory) < ¢ 1H| Loz (6.13)

As H satisfies (6.11) by local estimate of the maximum of H via its L,-
norm we obtain

.
c6? |HlLyqz)

5 * 7
¢ 0% (|1H | o) + 1 H | a@p))

I H || Lo(06r)

<
(6.14)
<

4. So, we need to estimate ||I?[||L2(Q(§)). As singular integrals are bounded
on the anisotropic Lesbegue space Ls; (see, for example, [14]) for the
convolution h = I' * G we obtain the estimate

Bz

(Q(r) <G,

(-

5

-

6
1°'5

On the other hand, from the 3D-parabolic imbedding theorem (see [1])

3 2 3 2
‘17271 c 1171,0 1—- (242 _Z_Z2 2 0
s,l (Q) »,q (Q): as S + l P q ’
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forp:q:2ands:%,l:gandforﬁ:—Vﬁweobtain

1 L@y S € Gz s o)

6
1’5

(Note that the constant ¢ in this inequality does not depend on r). Taking
into account (6.9) we arrive at

1

1 llzo @y < € IG5 @+3)- (6.15)

5. From the definition of G we obtain

alon

0
6
1GNL s s @+ 5 <€ / o ® HIL 4y U
—T2/4

Applying the Hélder inequality and Sobolev imbedding W3 (BT (r)) «—
Lg(B*(r)) for v we obtain

oo

0
6 6
Gl giaren <c | [ 10lE oo 1S, (oo
_T-2/4
.
6 6
se IVOllZa e o 1L, B+ 2
_T-2/4 ¢

Interpolating Lg-norm between L; and Lg and using the imbedding
WE(BT(r)) < Lg(B*(r)) again we obtain

1 2
1z g 8+ (r/20) < WHIE, 34y [ g3+ 2
1 2 _z2 3
< ||H||21(3+(T/2))(||VH||22(B+(T)) +r 3||H||22(B+(r))>
Hence we arrive at

1
1G24 s@+zn < ¢ IHIE, L@+

1

o

0

8 4 4 2
X / ||VU||22(B+(T))(||VH||22(B+(T)) +r 5||H||22(B+(7«))) dt
_T-2/4
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Applying the Holder inequality we obtain

1
1G24 g@ren < MHIE, _igrieson V0l a@r

2 _2 2
X (||VH||22(Q+(r)) +ros ||H||22(Q+(r>>)

6. Estimating ||H| 1, __(q+(r/2)) using Theorem 6.2 we obtain

1 1
3 3

1G] si@rgy < et (14 B0 (Br) + B(r) +7)

18 6
11°5

. , ) (6.16)
<190l @) (IVHI @ oy + 7 HIHI g oy )

7. Gathering estimates (6.12)—(6.16) together we arrive at

1H || a0+ or)) < € 02N H | Loy + € TE VOl Ly ()
X (1+E(r)) ’ (FZ(T)+E*(7°)+7°> ’ (||VH||§2(Q+(T)) +ros ||H||§2(Q+(,a))>

3
2

Dividing this inequality by (r)2 we arrive at

Fy(0r) < ¢ 6 Fx(r)

1

+ ¢(0) E(r) (1 + E(r)) ° (F2(r) +E(r) + r).

Hence we obtain

W=

Fy(0r) < ( o + () E(r)(1 + E(r)) )F2 (r)
+e(®) B (1+B@) (B.() +1).
Taking into account assumptions (6.7) for € < 1 we obtain

Fy(0r) < ( o + c(9)e )F2(r) +e(@)e(K + 1),

valid for any r € (0,1) and any 6 € (0, 3].
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8. Choosing 6 € (0, 3] so that

1
g ==
“ =7

and then choosing ¢; € (0,1) so that

1
Z + 0(0)51 <

N | =

we obtain the estimate
1
Fy(6r) < 3 Fy(r) + ce(K +1).
Iterating this estimate we derive (6.8). Theorem 6.3 is proved.

7. ESTIMATES OF ENERGY FUNCTIONALS

In the previous section we defined functionals F(r), E(r), and E.(r),
see (6.5). Now we define few more functionals. Note that all these function-
als are invariant with respect to the natural scaling of the MHD system.
Forr <1, q€[l, %] and s € [1, %] we introduce the following quantities:

— 1 2 1/2
A=, o [ )"

Bt(r)
1 . 1/2
A.(r) = (— sup / |H|? dy) ,
T te(—r2,0)
Bt(r)
1 1/q
Cy(r) = (r5—‘1 / |v]? dydt) ,
Q*(r)
1 2/3
D(r) = (T'_Z / lp — [P]B+(r)|3/2 dydt) ,
Q*(r)
v 1.3 2/3
D) =rEE( [ 19el ) )"
“r2 B+(r)

C(r)=Cs(r), F(r)=Fs(r), Di(r) =Das(r).

First we formulate the set of results following from the general theory of
functions:
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Theorem 7.1. Assume v, H € Wy*(Q*1) and p € W3'% (Q*) are arbi-
872
trary functions. Assume v|y,—o = 0. Then the following inequalities hold:

AZMEZ() +FE()]  (7.1)

Q
=
I
5
=
o
=
Y
=
7

D(r) < eDi(r), D;(r) <cDg(r), Vs>1. (7.2)

Proof of Theorem 7.1. The proof follows from interpolation inequal-
ities and imbedding theorems. Proof of the similar inequalities for the
Navier-Stokes system can be found in [5].

Now we formulate a theorem concerning boundary suitable weak solu-
tions to the MHD system.

Theorem 7.2. Assume (v, H,p) is a boundary suitable weak solution to
the MHD equations in Q*. Then for any r € (0,1) and 6 € (0, %) the
following inequalities hold

A(r/2) + Au(r/2) + E(r/2) + E.(r/2)
<c (Calr) + B(r) + CHr)D () + CH(r))
s (05 (A2 (F)E2(r) + F3 (r)AZ (r)E} (r)) (7.3)
D.(0r) <c b (D*(r) + E(r))
+e(0) (AFNEH () + AL (FEME.(r)  (74)
Proof of Theorem 7.2, estimate (7.3).

1. Estimate (7.3) follows from (1.5) in a standard way. We just explain
the specific estimates of the terms

L = / |H|*(v- V() dedt and I := / (v-H)(H - V() dxdt.
QF(r) QF(r)
2. I; we transform in the following way

b= [ (HP=(HPlas )@ VO) dodt
Q*(r)
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Applying the Holder inequality we obtain

L < / IV = DL s o Dol

Applying the inequality | f — [f]lg+(r ||L3 B+ < Vst we
arrive at

Bl < / IV Pl o [0l o

/ VE g oy |V E g o 0l o oy

2/3 1H | Lo, o @+ D IVH | oo+ (m) 1V Lo+ (1)

<
S or Au(r)EL(r)C(r)

3. For I, we obtain relations

Izz/ (v H) = [+ Hlge oy ) (H - VC) dadt
Q(r)

Hence

12| < /|| (- H) = [0 Hlpw) ||y e () H Lo+ () dt

C C
< s @) / ||V(U'H)||L%(B+(r)) dt <~ | Hllzz @+ ()

0
<[ (190t a0+ IV s o el o)

2

C
< 75 1z @t o)

-r

x (190l a@r o | H Lyt iy + IV @t oy ol st i)
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So, we obtain

| < er Aur) ( B)F@) + EC(r) )

Proof of Theorem 7.2, estimate (7.4).

1. To obtain (7.4) we apply the method developed in [8, 10] see also [11].
Denote II, = R} x (—r?,0). We fix r € (0,1] and 6 € (0, %) and define a

function g : I} — R? by the formula

_ [rotH x H—(v-V)u, in QF(r),
9= { 0, in I\ QF(r)

Then we decompose v and p as
v=0+0, p=p+p,

where (v, p) is a solution of the Stokes initial boundary value problem in
a half-space

8tﬁ—A5+Vﬁ:g, . +
{ divo =0 in 1L,
i)\|t=0 = 07 ﬁ|x3=0 = 07

and (v, p) is a solution of the homogeneous Stokes system in Q% (r):

00— AT+VE=0, . .
{ dive =0 Q7).

-]

2. For Vp and Vp the following estimates hold (see [10], see also [13]):

IVBllL g s @+ () + —||V“||L@ 5 (@F(m)
35’2 35’2
( [1H x vot Hl|1 g o (@+(r) + (V- V)VlL g 5@+ ) )
3502 3572
31
HVPH Lss 3(Q*(0r)) Scfe ( _HVUH Lss 3(Q*(r)) + HVp”L@ 3(Q*(r) )
35’2 35’2 35’2
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3. From the Holder inequality we obtain
1 < rot Hl|L g 4 (@+(r)
352

<erd HIG, or oIV Lot ) HH I 0 ()
(v V)vllL,,

36 3
35’2

1
@+ Ser® v V)vlg 4 @+
1 3 3
Scrt HU”LZ‘OO(QHr))||vv||L2(Q+(r))
Representing v = v — 0, p = p — p and gathering all above estimates for p
and U we obtain

4
3

D.(0r) <6} ( D.(r) + E() + AT B (1) + A (B () FH ()

+e®) (AFMEL () + AL (B F(r) )
Theorem 7.2 is proved.

8. CKN CONDITION AND PARTIAL REGULARITY OF SOLUTIONS
In this section we present the proofs of Theorems 2.2 and 2.3.

Theorem 8.1. Denote by &(r) the following functional
E(r) = A(r) + Au(r) + Di(r),

and let €1 > 0 be the absolute constant defined in Theorem 6.3. For any
K > 0 there exists a constant ¢(K) > 0 such that for any € € (0,¢;] and
any boundary suitable weak solution (v, H,p) of the MHD system in Q
if

sup E(r) <e, sup E.(r) < K, (8.1)
re(0,1) r€(0,1)
and
Fy(1) < M, (8.2)

then for any 0 <r <p<1

B
£r) @(2) Elp) + c(K)(1+ pM). (8.3)
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where 3 > 0 is some absolute constant.

Proof of Theorem 8.1.

1. Without loss of generality we can assume K > 1. Then from (6.8) we
obtain
Fy(r) < er*M + cK.

From this inequality and (7.1) we obtain
1 i 1 1 a1
Or) < c E3(r)ez, F(r) <052(r)(K2 +T2M2) (8.4)

2. Assume 7 € (0,1) and 6 € (0, ). From (7.3) with the help of (7.2) and
the Young inequality we obtain

gr) < (FZ(29r) + D*(29r))

+0(8) (Ca(r) + Cr) + C(r) + CH()AF (NEE (r) + F

Wi
—
<
N

* poj=
~
=
~

Wl
—
<
N
—

Taking into account (8.4) and (8.1) we obtain
£r) < ¢ (F2(29r) + D*(29r))
+cl0) (1 + EF(r)ef +EXM)e] +efet ()i
+(KF +riMEd () (85)
Applying the Young inequality ab < ea? + C.b"" we obtain
£0r) < 35(7«) + c(F2(29r) + D*(29r)) + e(0)c(K) + c(0)r® M.
3. From (6.8) and (7.4) we obtain
Fo(20r) + D.(20r) < c0® (F2(r) + D*(r)) +ee (14 K)
+e(6) (AFEH () + AR (")F# (1)B.(r))

Taking into account (8.4) and the obvious inequality F»(r) < A.(r) we
arrive at

F5(20r) 4+ D..(20r) < c0*E(r) + c(K)
+ c(e)( B(r)ed + e (r) (K= + r%Mlz)K)
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Applying the Young inequality we get
1
F5(20r) + D.(20r) < (Z + CHQ)S(T) +c(0)e(K)(1 +r*M)
4. Gathering the estimates we obtain

5wn:g(i+cwﬁsog+cwymxx1+r%wy

We fix 6 € (0, 3) so that
1 o 1
Hence

E(fr) < %5(7“) +¢(0)e(K)(1+r*M).

Iterating this inequality we obtain (8.3). Theorem 8.1 is proved.

Theorem 8.2. Assume all conditions of Theorem 8.1 hold and fix py €
(0,1) so that
poM < 1. (8.6)

Then for any 0 < r < p < po the following estimates hold:

A(r) + Au(r) <o (—) (46 + A.(p)) + ¥ D(p) + G(E, 2

P (8.7)

D(r) < c (;) Dip) + (&) (4% () + aF () + G(E. ) -

where v > 0 is some absolute constant and G is a continuous function
possessing the following property:

for any fixed K >0 G(K,e) -0 as e—0. (8.9)

Proof of Theorem 8.2.
1. From (7.1) taking into account (8.6) we obtain

Fpol=

C(r) < Az(r)ez,  F(r) <AZ(r)(K? +1) (8.10)
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2. Take arbitrary r € (0, pp) and 6 € (0, 3). Denote by £(r) the following

functional

E(r) = A(r) + Au(r),
Then from (7.3) similar to (8.5) using (8.10) we derive

£.(0r) < Fy(20r) + C=(20r) D= (260r)

+e(0)(E2(r)e + €3 (et + 3 (r)Ichet + £3(r)(KCE +1)ed)

Applying the Young inequality and using (7.2) we obtain

E.(0r) <

| =

3. From (6.8) we conclude

F(20r) < c8“E.(r) + G(K,¢).

£.(r) + c(O)G(K, ) + Fo(20r) + C¥(20r)DE(20r)  (8.11)

(8.12)

4. From (7.4) for r < po with the help of (8.10) and the Young inequality

we obtain

-

1

D, (20r) < ¢ 6°D.(r) + c¢(0)c(K)EE (1) + c(0)G(K, )

&l

Hence from (8.10) we obtain

Applying the Young inequality we arrive at
1 1
C=(26r)D* (26r) < g6 (1) + 5g%D*(m + c(B)G(K,e)
5. Gathering estimates (8.11)—(8.14) we obtain the inequality
1 1.
£.(0r) < (Z + cm) E.(r) + 5 DL(1) + c(O)G(K, )
Choosing 8 € (0, 3) so that

1
Zheh* ==
+c 5

(8.13)

(8.14)
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we obtain

£.(0r) < % E.(r) + %sip*(r) +0)G(K, €)

Iterating this inequality we obtain (8.7).

6. Choosing in (8.13) € (0,1) so that
1
g8 — =
T3

and iterating the obtained inequality we derive (8.8). Theorem 8.2 is
proved.

Theorem 8.3. For any K > 0 there exists a constant €o(K) > 0 such
that if the condition (8.1) holds with € < €, then there exists p, € (0,1)
such that

(Cloo) + F(p) + D(p)) < &2,
where the constant €, > 0 is defined in Theorem 2.1.
Proof of Theorem 8.3.
1. From (8.3) we obtain

lim sup D, (r) < ¢(K).

r—0

2. From (8.7) we derive
li?jgp (A(r) + A*(r)) < et liI‘I)I_?(l)lp D(p) + G(K,¢)
<eice(K) + G(K,e).
3. From (8.8) we obtain
li?jgp D.(r) < ¢(K) lirzljgp (Aﬁ (p) +AE (p)) +G(K,e)
G
4. From (7.1) we conclude

lim sup (C(r) + F(r)) < (e} + K#) limsup (A(r) + A*(r))

r—0 r—0

-

1

<(e? + K%)(g%c(K) +G(K, s)) °)
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5. Taking into account (8.9) for any K > 0 we can find 9(K) > 0 such
that for any e € (0, &)

1

() (shelk) + Gk, 9)) " + G(K,8) <

and

Hence for € € (0,¢q)

lim sup (C(r) + F(r) + D*(r)) <el.

r—0

Theorem 8.3 is proved.

Proof of Theorem 2.2. Assume condition (2.6) holds and let go(K) > 0
be the constant defined in Theorem 8.3. From (2.6), (2.7) we obtain there
exists B > 0 such that

sup E(r) < e and sup E.(r) < K.
re(0,R) r€(0,R)

Denote (vf, HE p®) the functions

v(x,t) = Ru(zo + Rz, to + R*t),
H*%(z,t) = RH (¢ + Rz, ty + R*t),
p2(z,t) = R?p(xo + Rz, to + R?t).

Then functions (v, H® pf) satisfy all conditions of Theorem 8.3. The
result follows from Theorem 8.3 and Theorem 2.1.

Proof of Theorem 2.3. The result is a direct consequence of Theo-
rem 2.2 and measure theory, see [2, 7, 5, 8].
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