3aluCKu HAYIHBIX
cemuuapos IIOMU
Tom 385, 2010 r.

M. Bildhauer, M. Fuchs

A GEOMETRIC MAXIMUM PRINCIPLE FOR
VARIATIONAL PROBLEMS IN SPACES OF VECTOR
VALUED FUNCTIONS OF BOUNDED VARIATION

ABSTRACT. We discuss variational integrals with density having linear
growth on spaces of vector valued BV-functions and prove Im(u) C K
for minimizers v provided that the boundary data take their values in
the closed convex set K assuming in addition that the integrand satisfies
natural structure conditions.

Given a closed convex set K C RV, we say that minimizers of some
variational problem have the convex hull property if they are contained in
K in a sense to be made precise provided this is true for their boundary
data. A prominent example is given by mass minimizing integer multi-
plicity m-currents T' with compact support, where m < N and where the
comparison currents S are such that 0S = T for a (m — 1)-current Tp
with compact support and 97y = 0. Then the support of 7" is contained
in the convex hull of sptTp, which is a consequence of the monotonicity
formula for stationary varifolds. We refer the reader to [14, 19.2 Theorem
and 34.2 remarks]. Let us now pass to the setting of variational integrals

Iu, Q) = | f(Vu)dz
/

defined for functions u: R* D> © — RN, Q denoting a bounded Lipschitz
domain. Suppose that we are given a function ug such that

uo € WHLRY),  wo(z) € K ae., (1)

where W} (€2;RY) is the Sobolev space of vector-valued mappings (see,
e.g., [1]). Let us further assume that f(Z) = h(|Z|) with

h:]0,00) — [0,00) strictly increasing and convex. (2)

Key words and phrases: Functions of bounded variation, linear growth problems,
minimizers, convex hull property, maximum principle.
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Then, if u € W(Q;RY) minimizes I[-,Q] w.r.t. the boundary data uo,
ie.,

I[u, Q] < oo, u—up € WE(Q;RY) and
[u, Q] < I[0,Q] forall v € up+ WH(LRN),

it follows that u(z) € K for almost any « € Q. A simple proof is given
by the following observation: let ®: RY — K denote the nearest-point-
projection being Lipschitz with Lip(®) = 1. From [4], comments given
at the beginning of the proof of Theorem 3.96, we see that v = ®(u) is
admissible and satisfies |Vv| < Lip(®)|Vu| = |Vul. Using the properties
of h stated in (2) combined with |Vv| < |Vul, we get from the minimality
of w that I[u,Q] = I[v,Q], and as it is outlined below, this will lead
to Vu = Vu; hence u = v and in conclusion v € K, a.e. We remark
first that a related maximum principle is due to D’Ottavio, Leonetti and
Musciano [9], and second that a similar argument together with a proof of
the chain rule in the Lipschitz setting has been presented in [6]. However,
the reader should note at this stage that a much more general chain rule
formula implying |V(® o u)| < Lip(®)|Vu| is due to Ambrosio and Dal
Maso [2]. As a matter of fact the existence of a minimizer u in a suitable
Sobolev class requires that h is of superlinear growth, and therefore in
general can not be guaranteed if in addition to (2) the function h satisfies
h(t)
t

¢:= lim

t—oo

exists in (0, 00), (3)

which means that now h is just of linear growth.

W.lo.g. we will also assume that h(0) = 0. Based on ideas of De Giorgi
(see the recent book [10] for an overview on his work), of Giusti [11], of
Giaquinta, Modica, Soucek [12], of Goffman and Serrin [13], of Ambrosio
and Dal Maso [3] and of Buttazzo [8] it is possible to introduce suitable
concepts of generalized solutions to the problem

Iu, ) = /h(|Vu|)dx —min in  up+ Wi(QRY). (P)
o)
Let
M:={ue BV(RY):  wis a L'-cluster point of a

minimizing sequence of problem ’P}
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and define K[, Q] : BV((;RY) — R,

Ku, 9] ::/h(|V”u|)daz+E|V5u|(Q)+/E|(u0—u)®N|dH”_1,
Q o0

where BV (Q;RY) is the space of functions of bounded variation (see [4]
or [11]), N is the exterior normal of JQ and where we have used the
decomposition of the vector measure Vu in its absolutely continuous part
Ve®uL L™ and its singular part V®u. According to a theorem of Besicovitch
([4, Theorem 2.22]) we have V%u € L*(Q;R™Y) and

Vau( ) = lim VU’(BP(x))

i T (B, () @

holds for £"-a.a. z € €. Note that on account of (3) the recession function

foo(Z) := lim @ Z e R™Y,

t—

equals ¢|Z|. Hence, we have the more familiar formula

K[u,Q] = /f (Vou d:v+/foo(|v8 |>d|vsu|

+/foo((uo —u) @ N)dH" !

for the extension of I to the space BV (Q;RY). We recall the following
facts established in [7] (compare also [5, Appendix Al]):

@) I[- Q) = K[, 2] on up + W(QRN);

ii) K[, ] — min admits at least one solution in BV (; RY);
(111) these minimizers are exactly the elements of M;

iv) inf I[,Q = inf KI[,Q

RN
oL (RN BV (;RN)

Based on these facts it is reasonable to address the elements of the set
M as generalized solutions of problem (P).
Now we can state our main result:
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Theorem 1. Suppose that ug satisfies (1) for a closed and convex set
K c RY. Assume further that we have (2) and (3) for the density h.
Then it holds u(z) € K, a.e., for any generalized solution of problem (P).

Corollary 1 (Maximum-principle). Suppose that h satisfies (2) and (3).
Assume further that ug € WL(Q;RN) N L (Q;RY). Then any gener-
alized minimizer u € BV (Q;RN) of problem (P) satisfies ||ul|pq) <
||u0||L°°(Q)-

Remark 1. The proof of Theorem 1 given below immediately extends to
integrands of the form

F2) =3 "WlZ)), Z=(2,...,2,) eR™, Z RY,

i=1

with functions hi, ..., h, satisfying (2) and having the property that

t—oo t

exists in (0, 00). In this case, it holds

foolZ) = 2.

i=1

Of course any other additive decomposition of f depending on the moduli
of the Z; can be considered, e.g.,

F(Z) = hi (VI Z1]? + 122|?) + ha(|Zs])

or

F(Z) = h(1Z1]) + ha (V] Za]? + | Z5]?)

are admissible in the case n = 3. In fact, a careful inspection of the proof
of the chain rule shows the validity of

0:(® 0w)| < Lip(®)[dul, i=1,...,n,

so that |0;(® o u)| < |0;ul.
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Proof. We fix a Lipschitz domain Q> Q, extend 1 to an element of
WL(Q;RY) with values in K and let

BV, (Q;RY) .= {wEBV(ﬁ;RN):w:uo on Q—Q}

Following [12] we define

I[w, Q] ::/f( da:+/foo IVS dIVs |
Q

- /h(|vaw|)dx +2|Viw|(Q)

for w € BV,,(;RY), and as outlined in [7] we have
Iw, Q) = K[wq, ] + const .

Conversely, if v € BV (€;RY) and if we put

ﬁ::{“ on {0 }eBVuO(Q;RN),

ug on Q-0

then L
1[0, Q] = K[v, ] + const,
where const = [ h(|Vug|)d z. Due to this observation it is sufficient to
Q-Q
consider a solution u € BV,,, (;RY) of

I[,Q] - min in BV, (2;RY)
and to prove that u(z) € K almost everywhere.
For this purpose, we consider the retraction ®: RY — K and let as

before v := ® o u. According to the comments given at the beginning of
the proof of Theorem 3.96 in [4] v is in BV (Q; RY) and (recall Lip(®) = 1)

Vo[ < Lip(®)|Vu| = [Vul, ()

where |Vu| and |Vu| denote the total variations of the vector measures
Vv and Vu. Here we like to emphasize again that a general chain rule



10 M. BILDHAUER, M. FUCHS

formula as stated for example in Theorem 3.101 of [4] is due to Ambrosio
and Dal Maso [2], and that (5) is a simple consequence of this important
formula. Clearly v € BV, (Q;RY) so that

-~ -~

Iu, Q] < I[v, Q). (6)

Now we use (4) for u and v which implies in combination with (5) for
L*a.a. x €

a . Vl(Bp() _ . [Vu|(By(x)) a
= < =
V= T B @) S W B, Y
and the monotonicity of h gives
/h(|V“v|)dx < /h(|V“u|)dx. (7)
5 5

Quoting [4, Proposition 3.92(a)], for a function w € BV(Q;RN) we may
write

o Loca g TUB@) _
Viw = VwLS,y, Suw—{CUEQ-l‘}ﬁ)l CB,@) }, (8)

and deduce from (5) that
Sy C Su, )

since

[Vol(B,(z)) < [Vul(B,(z)).
Next, we use (5), (8), and (9) and obtain

[V0[(Q) = |Vv|(Su) < [Vul(Sa) = [Voul(), (10)

which in combination with (7) leads to

By (6), we must have
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and, by (7) and (10), this is only possible if

/h(|V“u|)d:ﬂ :/h(|V“v|)d:ﬂ, (11)
Q Q
Voul(©) = [V*o|(Q). (12)

From (11) and |V%v| < |V%u| and requirement (2) it is immediate that
|Vo| = |V%| L -a.e. on . (13)
If E C Q is a Borel set, then analogous to (10) we obtain from (5) and (9)
[VPul|(E) = |[Vu|(S, N E) < |Vul(S, NE) =|V°u|(E). (14)

At the same time, using (14) with E replaced by ) — E and (12), we find
that

~

V0|(E) = [V*0|(Q) = [V*0|(2 = B) > |V*0|(©Q) - |V*u|(Q - E)
= |V*u|(@) - [V°u|(2 - B) = [V*ul(E).

In view of (14), it is shown that

[Veu| = [V70|. (15)
Suppose that
E”({az € Q: Vou(z) # V“v(az)}) > 0. (16)
We have
(V| + V| — |[V*u + V®|)dz > 0, (17)

[VeutVeu]

since otherwise
|V + V| = |Vl + |V

a.e. on [V%u # V%] and, therefore,

Veu = AV®
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on this set with a nonnegative function A. However, (13) then leads to the
contradiction A = 1. From (17) we get recalling (2)

a u+v 1 a 1 a
/h(‘v ( 5 )Ddx</h(§|v u| + 2|V v|)dx
Q

/h(|V“u|)dx+%/h(|V”v|)dx,
Q

Q

N = O

<

and since |V*(u + v)| < |Vfu| + |[V?v| it follows from (13) and (15) that

f[“;”,ﬁ] < T, 0. (18)

But (u + v)/2 belongs to BV, (Q;RY), thus the strict inequality (18)
contradicts the minimizing property of u, and assumption (16) is wrong
which means N

Véu =V% L"-a.e. on Q. (19)

Consider the measure p := |V®u|. Using (15) we find p-measurable func-
tions O, O,: O — R"N s.t. |0, =1 =|0,| p-a.e. and

Viu =0, py, Vv=0,_u. (20)
Let us assume that
‘v{“é”)‘(ﬁ) < |Vou|(@). (21)

This implies on account of (19)

f[“*”,ﬁ} - /h(|V“u|)dx+E
Q

~ ~

() < Iu, Q]

sfutv
()

which is in contradiction to the minimality of u. Therefore we have in
place of (21)

2

= u(Q).

1

Q
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Hence,

/(|eu| 1 10u]) dp = u(@)

Q

N | =

1
u(@)s§/|@u+@v|dug
Q

and in conclusion
|0y + Oy = [Ou] + |0,] p-ace.
For this reason, we can write
0, = A0,

with A nonnegative and p-measurable, but |0, = 1 = |0, gives A = 1,
ie, O, = 0, p-a.e. From (20) it follows V®u = V?®v, which, together
with (19) shows that Vu = Vwu. Quoting Proposition 3.2 of [4], we see
u— v = const and u = ugp = v on Q-0 yields v = v and in conclusion
u(z) € K, a.e. The proof of Theorem 1 is complete. O

For the sake of completeness, we have a look at the scalar case for
which it is possible to give up the special structure of the integrand and
to obtain a maximum principle close to the classical one. To be precise, let
us assume that F: R” — [0, 00) is strictly convex together with F'(0) = 0.
For up € Wi (Q2) we consider again the variational problem P

I[u, Q] = / F(Vu)dz —min in uo+ WH(Q), (P)
Q

and observe

inf up < u < sup ug (22)
oQ 19}

provided that we can find a soluton u € W () of (P). In fact, if we
assume M := supyq o < 00, then from

Iu, Q] < I[min(u,M),Q}

we deduce that
/ F(Vu)dz =0,

[u>M)
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and 0 < F(Vu/2) < F(Vu)/2 on [Vu # 0] implies Vu = 0 on [u > M].
Hence, V max(u, M) = 0, which shows u < M.

Let us now assume that F' is of linear growth, i.e., with constants a,
A>0,b,and B € R it holds

alf| +b< F(§) < Al¢[+ B (23)
for all £ € R™. Moreover, we require
F(—n)=F(n) foral neR" (24)

Then we have

Theorem 2. Let the strictly convex function F satisfy (23) and (24)
together with F(0) = 0. If u € M denotes a generalized minimizer of
problem (P), then (the slightly weaker variant of (22))

infup < wu(z) < supug (25)
Q Q

is satisfied for a.a. x € ().

Proof. It is sufficient to consider the case M := supgup < oo and to
prove the second inequality stated in (25). We extend ug to a function of
class Wll(ﬁ) on a bounded Lipschitz domain {0 3 Q assuming that this
extension — again denoted by ug — still satisfies ug < M, a.e. (now on ﬁ),
since otherwise we may compose it with the function (t) := min(M,t),
t € R. As outlined in the proof of Theorem 1 the claim of Theorem 2 will

follow if we can show that any solution u € BV, () of

o~ o~ \v&d

Iw, Q] := /F(V”w)dx-l—/ Fm<ﬁ> d|VPw| - min in BV, ()
9] 9]

satisfies u < M a.e. Quoting the chain rule for real valued functions as

stated in Theorem 3.99 of [4], we have v := ¢ ou € BV, (2) together with

Vo = ¢/ (u)Veuc L™ + (¢(u®) — 1/1(u_))1/an_1LJu + ' (W) Vu,

where our notation follows the terminology of [4]. Let us look at the part
' (u)VP*uL L™ of the vector measure Vv being absolutely continuous w.r.t.
L™, It holds ¥'(u) = 0 a.e. on the set [u > M|, wheras ¢'(u) = 1, a.e.,
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on [u < M]. Since the density V%u equals the approximative differential
of u (see [4, Theorem 3.83]), and since the approximative differential of
vanishes, a.e., on [u = M] (see [4, Proposition 3.73(c)]), we get

/F(V”v)d:n = / F(Viu)dz. (26)
Q [u<M]

Notice that the measures V/v and V¢ are mutually orthogonal; hence,
we can write

/Fm<%> V| Z/Foo(w(u+) — (7)) v d H"
Q Ju an
+ / Fuo <w’<a>|§c“|) a|v°|
o

The function +’(u) has values in {0, 1}, which means that

-, Vu Vu .
Foo <¢/(U)|vcu|) < FOO<|—VC’U,|) |V u|—a.e.

At the same time, we have H" 1-a.e. on J,

Foo ($(u™) = (u”))vu)

(u™) — 9 (u7) | Foo (sign[v(u™) — ¢(u™)]va)
= [p(u™) = (u”)|Fo (vu)
< |ut —u|Foo ()

= Foo ((ut —u7)wy).

Here, the first equality sign follows from the fact that the recession func-
tion is positively homogeneous of degree one, the second is a consequence
of (24) and the last equation is established in the same way. Combing the
inequalities from above with (26) and (27) and using the minimality of u
we obtain

/ F(Viu)dz =0, (28)

[u=>M]
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together with
/FOO((z/)(lﬁ) —P(u”))ry)dH ! = /FOO((uJr —uT ), )dH ! (29)
Ju Ju

and

S
g“”

|VC |)d'VC“' / (|§Zu|)dlvw| (30)
Q

From (28), we deduce using the strict convexity of F', together with F'(0) =
0, that
Viu =0 L"ae on [u>M]. (31)

From (29) and
Foo (¥(u™) = 9p(u7)) 1) < Foo((u® —u7)r),
H" !-a.e. on J, it follows that
Foo (1(u™) = 9 (u7)) ) = Foo(u* —u7)ru) (32)

H"*L-a.e. on Jy, since otherwise we would have a contradiction to the
minimality of u. (32) gives

(™) —(u)] = [u” —u”| (33)

H" tae. on J, (recall Fi (t€) = |t|F(€)) but by definition of ¢ this
means

Yh) —vu’) =ut —u” (34)

H" 1-a.e. on J,. In the same way, we obtain from (30), from

e ve
Foo (‘” (@) |ch|) < F°°(|vcz|>

and from the minimality of u that

V(@) =1 |Vul—ae. (35)

Recalling the formula for Vv and using (31), (34), and (35) we arrive at
Vv = Vu; hence, v = u and in conclusion u < M a.e. on Q. ([
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