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ASYMPTOTIC ANALYSIS OF A NEW DYNAMIC
SEMIPARAMETRIC REGRESSION MODEL
WITH CROSS-EFFECTS OF SURVIVALS

A new flexible and simple semiparametric model including the cases when
hazard rates cross, go away, are proportional, approach or converge is
proposed. Semiparametric estimation procedures for censored data are
given. A test for absence of hazard rates crossing is proposed.

I. INTRODUCTION

When analyzing survival data from clinical trials, cross-effects of
survival functions are sometimes observed. A classical example is the
well-known data of the Gastrointestinal Tumor Study Group, concern-
ing effects of chemotherapy and radiotherapy on the survival times
of gastric cancer patients (Stablein and Koutrouvelis [10], Klein and
Moeschberger [8], Bagdonavicius, Kruopis and Nikulin [2]).

If the hazard rates of two populations do not cross then we can state
that the risk of failure of one population is smaller then that of the second
in time interval [0, 00). So one of populations is “uniformly more reliable.”
Such hypothesis sometimes is more interesting to verify then the hypoth-
esis of the equality of distributions (homogeneity hypothesis). If, for ex-
ample, the hypothesis is not true for two populations cured using usual
and new treatment methods then it is possible that the new method gives
better results only at the beginning of treatment and some measures must
be undertaken before the crossing of hazard rates (changing of treatment
methodology, etc.).

Denote by A(t|z) the hazard rate of objects under possibly time varying
and multi-dimensional covariate z = (z1,...,2s)7.

For solution of two hazard rates crossing problem we can use one-
dimensional constant in time dichotomous covariate z. In such a case, we
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can suppose that the covariate z takes the values 0 and 1 for the first and
the second group of objects, respectively.

t
Denote by A;(t) and A;(t) = | Ai(u)du the hazard rate and the cumu-

0
lative hazard, respectively, of the ¢th group of objects, ¢ = 1,2, and

oft) = 22, (1)

Hsieh [7] considered the following model:
t
=~ T3t
A(t]z) = e# OO @} TN, A = / Au)du, — (2)
0

A is unknown baseline hazard rate, 2 = (z;,,...,2;,)%, 1 <ip < -+ <

The model of Hsieh does not contain interesting alternatives to crossing:
the hazards rates under different constant covariates cross for any values
of the parameters 8 and v # 0. In two sample problem the ratio

e(t) = {A)) .

is monotone, ¢(0) = 0,c(c0) = oo or vice versa, so there exists the point
to: ¢(to) = 1. If v = 0 then the hazard rates coincide.

Bagdonavicius, Hafdi and Nikulin [3], see also Bagdonavicius and
Nikulin [4], considered more versatile model including not only crossing
but also going away hazard rates:

Atz) = 27O + A3 @), A(t|z):/)\(u|z) du. (3)
0

If z is constant in time then resolving the differential equation (3) with
respect to A(t|z) and taking the derivative of it the model can be written
in the explicit form

Atlz) =7 {1+ e<ﬁ+’v>TZA<t>}eﬂ T, )
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¢
where A(t) = [ A(u)du is the baseline cumulative hazard.
0

In two sample problem the ratio

o(t) = {1+ 7A@

is monotone, c¢(0) = €, ¢(00) = o0 if v < 0 and ¢(00) = 0 if v > 0. So the
hazard rates may cross or go away but can not converge or approach (in
sense of the ratio ¢(t)).

To obtain richer class of alternatives Zeng and Lin [11] include ad-
ditional parameter to above mentioned models: in terms of cumulative
hazards their models are written (Z is supposed to be constant in time),
respectively,

T~

A(t|2) :G((/teﬁTﬂu)dA(u))w ) (5)
0

and
t o1
A(t]z) = G<<1 +/65Tz(“)dA(u)) ) — G(1); (6)
0
here
1+a)r —1
Glo) = L 50, G =logli+a), p=0,
(Box-Cox transformation) or
log(1
G(z) :M, r>0, Gz)==z, r=0.

Taking G(z) = =z the models of Hsieh [7] and Bagdonavicius and
Nikulin [4] are obtained.

Henderson [6] remarks that it is difficult to see the role of three pa-
rameters in these models. Estimation procedure in such general models is
also very complicated.

We propose a general model including crossing of hazard rates and wide
class of alternatives of non-intersecting hazard rates which can not only
go away but also to approach. This model does not contain additional
parameters (as p or r).
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2. THE MODEL

The model:
BT AW /
At|z) = = t), A@) = [ Muw)du, (7
(tl2) 1 +eBTZ(t)JrvTE(t)[eA(t)e’Tz(” —1] ®) ®) / (wdu, (7)
0
A is unknown baseline hazard rate.
Set
/_3Tz+ze"T;
=874, glz,2,0) = - (8)

1+ efTxtrTZ[erer ™ _ ]’
In the case of two hazard rates crossing problem z = z. Note that

c(t) = g[A(?),1,6]. 9)

If the model (7) is used then the ratio of hazard rates ¢(t) is monotone
and
c(0) =€’ c(o0) =e 7.

So e shows the value of the ratio of hazard rates at the beginning of life
and e”7 — at the end.

In dependence of the values of the parameters § and «y the ratio c(t)
has the following properties:

1. If B> 0,7 > 0 then it decreases from e® > 1 to e™ € (0,1), so the
hazard rates of two populations cross in the interval (0, 00).

2. If 3 < 0,7 < 0 then it increases from e® € (0,1) to e™” > 1, so the
hazard rates cross in the interval (0, c0).

3.If 3> 0,7 < 0,8+~ >0, then it decreases from e® > 1toe™ > 1,
so the hazard rates do not cross.

4.1f 3>0,7<0,8+ v <0, then it increases from e’ > 1to e™ > 1,
so the hazard rates do not cross.

5 If B < 0,7 > 0,8+~ > 0, then it decreases from e® € (0,1) to
e~ 7 € (0,1), so the hazard rates do not cross.

6. If 3 < 0,7 > 0,8+~ < 0, then it increases from e® € (0,1) to
e~7 € (0,1), so the hazard rates do not cross.
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7. If B = —~ then the ratio is constant as in Cox model.

8. If vy = 0,8 > 0 then the ratio decreases from e® > 1 to 1, so the
hazard rates meet at infinity.

9. If y = 0,8 < 0 then the ratio increases from e¢” € (0,1) to 1, so the
hazard rates meet at infinity.

10. If v > 0, 8 = 0 then the ratio decreases from 1 to e~ € (0,1).
11. If v < 0, 8 = 0 then the ratio increases from 1 to e™7 > 1.
12. If v = 8 = 0 then the hazard rates coincide.

So the hazard rates may cross, approach, go away, be proportional,
coincide.

If B+ > 0 then not only hazard rates but also the survival functions
cross. Indeed, in such a case the hazard rates cross at the point

to=A" (e m 2= ) g
o=AT e N5 ) > O

If >0, >0 (or 8 > 0,y > 0) then the difference Az(t) — A1(2)
is positive (negative) in (0,%p) and negative (positive) in (o, 00), so the
difference of cumulative hazards As(t) — A1(¢t) has U (N) form. Taking
into account that As(0) — A;(0) = 0, tlirg()(Aﬂt) — A (b)) = —o0 (+0)
we obtain that the cumulative hazards and the survival functions cross in
some point t1 € (o, 00).

3. ESTIMATION

Suppose that n objects are observed. The ith from them is observed
under the covariate z;.

Denote by T; and C}; the failure and censoring times for the ith object,
and set

X; =min(T;,Cy), 0 = Lir<oqys
Ni(t) = Lyricesi=1),  Yit) = 1ix,>0);

here 14 denotes the indicator of the event A.

Set N(t) = 32 Ny(t) and Y() = 3 Yi(t).
j=1 i=1
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3.1. Modified partial likelihood estimators

At first we propose simple estimators of the unknown parameters which
are not fully efficient (but very good in the case of finite samples) and can
be used as initial estimators. Possession of such estimators is very impor-
tant because efficient non-parametric maximum likelihood estimators are
complicated.

According to the definition of Andersen, Borgan, Gill, and Keiding [1],
the partial likelihood function is

n o0 ) d;
20) =] | [ 25520 av| (10)

i=1 0

where
n

SO (u, A,0) =Y Yi(u)g(A(u), zi(u),6).
i=1
One can see that L(f) depends on the unknown cumulative hazard A.
It is very natural, see Bagdonavicius and Nikulin [5], to replace it by its
“pseudo-estimator” A (still depending on #) which is defined recurrently
from the equation:

t
At,0) = __AN(w)
’ _0 S0 (u—, A,0)

This “estimator” is obtained using the martingale property of the N; —
[ YidA,.

So, according Bagdonavi¢ius and Nikulin [5], we consider the modified
likelihood function

— LT g, 6), %), "
L(0)_H[ 0/ S0 (e K.0) dN;(u)| .

j=1

We use Splus program and the general quasi-Newton optimization algo-
rithm seeking the value of § which maximizes the modified partial likeli-
hood (MPL) function with respect to 6.

For fixed 6 computing of modified loglikelihood function is simple. Let
Ty < --- < T} be observed and ordered distinct failure times of unified
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data, r < n. Note by d; the number of observed failures of the objects at
the moment T7".
Then the modified loglikelihood function is

Z Z{lng (T}, 2(j1),0),0) —In SO(T7, A, 0) };

j=1 I=1

here (jl) is the index of the Ith object failed at the moment T7, | =
1,...,d;.
The values of the functions A and S are computed recurrently:

A0;0) =0, S©(0,4,0) =D ¥;(0)g(A(0;6), ZeBTZJ
j=1
A(T7;6) = #:
S©)(0, 4, 6)

S(O)(T1*7Ka9) ZY'](Tl) (A(Tl 79)azj(T1*)70)7

j=1
NT?;0) = AT -0)+#
TR so 1y AL 6)
SOy, A Zy T5:6),2;(17),0) (j=2,...,7).

The initial value 8y = (8o, 1), where By as an estimator of 5 using the PH
model, may be chosen.

3.2. Nonparametric maximum likelihood estimators

The nonparametric likelihood function (NPLF, Zeng and Lin [11]),
which is parametric in fact for any fixed n, has the form

n

LMy es Am) = H H [/\{—}(t)g(l\{_}(t),zi,ﬁ)]dN"(t)

i=1 t

exp{ - / mu)g(A{_}(u),z@-,0>dA{_}<u>}
0
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m  dj J n m
:H H/\jg(Z/\l,z(jl),9> exp{ ZZY; ]g Z/\l’z“ },
j=1 s=1 =1 j=1

i=1

here A( () is the step function with the jumps A; at the points 17,
J=1,...,m; A(;(0) =0, and A(_y(T}) = A;. NPLF is a modification
of the parametric likelihood function (PLF) for # with known A (PLF
contains the known values A; of the hazard function A only at the points
T7}) considering \; as unknown parameters and replacing A(t) by the step
function A¢_y(2).

The log-likelihood function is

J
{m A+ 1ng<Z)\l,z(]~s),9>

-3 S vsn).

The estimators 6, X]’ of the parameters § and A; can be computed using the
backward recursive method given in Zeng and Lin [11]. In the considered
case of NPLF, this method gives the following formulas.

Seta:ZAj,hj:)\j/a, Zhj:]-' We have
Jj=1 Jj=1
d Ay n m
/ _ Ym R * .
(Oh = 52+ S0 (2 ) - 33T (S0 200)
n d Ay
—Am Z E(T;z)gi (Z /\l;ziae) = # + Z(ln g)/l(aa Z(ms)ae)
i=1 mos=1

LN N gl 2 6) — zy )61 (0, 70,6) = 0,

€BTz+vTZ+z57T; [1 _ eBTZJr’YTE]
[1+ eBTerwTZ(ezevT? —1)]?
e’VTZ[l — eBTZ"‘VTE]

1+ e/BTZ-i-’YTZ(exe‘YT; _ ]_) ’

91 (z,2,0) =

)

(Ing)y(z,z,0) =
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dy m
dy, di+1
A i UL CICED D7) )

s=1 l=k+1

S (oo £ 1))
i=1 Zrt1
- E(T1:+1)9<a<1 - i hl):zi79> ]I{k<m—1}]

I=k+2

— athYi(T,:‘)g{ (a(l — Z hl>,zi,9> =0.
I=k+1

i=1

So, if 8, v are fixed then the parameter h,, € (0, 1) verifies the equation

o’h?, ZY " Vgy (a, 2, 0)

o, n
— ahm{ Z(lng)'l(a,z(ms),ﬁ) - Z YZ'(T:;)g(a,zi,H)} —d,, =0,

s=1 =1
and hy € (0,1) (1 < k < m) are computed recursively from the equations

a2h%ZYi(T,:)gi (a(l— Z hl>,zi,9>
i=1

I=k+1

k+1 “
o Fmi(o( 5 1))

s=1 I=k+1

Sl )9

I=k+1
—Yi(Ti11)g ( (1— Z hz) Ziy )]I{k<m—1}]}+dk =0.
I=k+2
So hy = hi(a,8). For given 6 the parameter a verifies the equation
> hi(a,0) = 1.
=

Under simple regularity conditions which are very similar to the con-
ditions written to the model (7) (see Zeng and Lin [11])

050, vl -0) % Ny (0,3%),



38 V. BAGDONAVICIUS, R. LEVULIENE, M. NIKULIN

and the limiting covariance matrix ¥ = ||o;;|| attains the semiparametric
efficiency bound.

4. THE TEXT

Set v = B~. We test the hypothesis
Hy:~v <0 against the alternative H;p :~y > 0.

The hypothesis means that the hazard rates do not cross and the alter-
native means that the hazard rates cross.
By delta method

Vild =) % N(0,0),
where
0 =011 + 267012 + 022,
Let pl(#) = mﬁx[((@,A)] be the profile likelihood (Murphy and Van der

Vaart [9]). Denote by ¥~ = ||[¢%|| the inverse of the covariance matrix
Y. Then under regularity conditions (see Zeng and Lin [11]) for any v =
('Ul, 'Uz)T € R?

1 ~ ~ - ~ ~ _
E[2171(5,7)—pl(5+5nv1,7+5nv2)—Pl(ﬂ—EnUhV—EnUzﬂ LTy to;

here ¢, = ¢/+/n, ¢ € R. So the estimators

511 = L pl(BA) — pl(B+ en,3) — PU(B — en,A)],

neZ

o 1 ~ P 2~

62?2 = —2[2])1(6,7) —pl(B,7 +¢en) —PLB,7 — €n)l,
ne2

R 1 1 ~ ~ ~

0'12 = 5 (O'll +0'22 - E I:Qpl(ﬂ,’)/) —pl(ﬂ+8n,’}/ - 8'”')

—pl(B—en, 7 + sn)])

are consistent.

Consistent estimators o;; of the parameters o;; are obtained take the
inverse of the estimated matrix ¥~! = ||%||. The test statistic has the
form

g
T:\/_§7
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where

o= '/7\2311 + 207012 + B2Gaa.

The hypothesis Hy is rejected if T' > z,,, where z, is the upper a-quantile
of the standard normal distribution.

10.

11.
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