В. Н. Дубинин

О КОМПОНЕНТАХ ЛЕМНИСКАТЫ, НЕ СОДЕРЖАЩИХ КРИТИЧЕСКИХ ТОЧЕК ПОЛИНОМА, ОТЛИЧНЫХ ОТ ЕГО НУЛЕЙ

Введение

Пусть R — рациональная функция степени n, представимая в виде R=P/Q, где P и Q — полиномы, не имеющие общих нулей, причем P — полином степени n, а Q — полином степени < n, и пусть $R(0)=0,\ R'(0)\neq 0$. Шейл-Смолл поставил вопрос об определении хотя бы какой-нибудь окрестности точки w=0, в которой можно было бы выделить однозначную ветвь f(w) обратной функции $z=R^{-1}(w)$, f(0)=0, удовлетворяющую неравенству

$$\operatorname{Re} \frac{wf'(w)}{f(w)} \ge \frac{1}{n}$$

(см. [1, п. 10.3.2]). Полученное неравенство представляло бы интерес касательно формы линий уровня |R(z)|= const в области однолистности функции R. В данной заметке рассматривается близкая задача, но только для полиномов $P(Q\equiv 1)$. Именно, доказывается следующая

Теорема. Пусть P – полином степени не выше n, и пусть E – связная компонента лемнискаты $|P(z)| \leq 1$, не содержащая критических точек полинома P, отличных от его нулей. Тогда для любой точки $z \in E \setminus \{a\}$ выполняется неравенство

$$\left| \frac{(z-a)P'(z)}{P(z)} \right| \le n,\tag{1}$$

где a — нуль полинома P, принадлежащий компоненте E. Равенство в (1) для любой точки z достигается в случае $P(z)=cz^n,\,c\neq 0.$

Ключевые слова: полином, лемниската, симметризация Штейнера.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 08-01-00028) и ДВО РАН (грант No. 09-I-П4-02).

Если компонента E на содержит критических точек, то из (1) следует, что для соответствующей ветви f обратной к полиному P функции в круге |w| < 1 имеет место неравенство

$$\left| \frac{wf'(w)}{f(w) - a} \right| \ge \frac{1}{n}.$$

Это слабее постановки Шейл-Смолла, однако в отличие от [1] мы допускаем наличие критической точки в E. Полученный результат имеет следующее геометрическое истолкование. Пусть для простоты a=0 и $\log(\cdot)$ означает однозначную ветвь логарифма, отображающую плоскость с разрезом вдоль вещественной положительной полуоси на некоторую полосу ширины 2π . Для любой линии уровня $c(\tau)$ ($|P(z)|=\tau<1$) "кривая" $\gamma(\tau)=\log c(\tau)$ соединяет противоположные стороны указанной полосы и, следовательно, ее длина $\geq 2\pi$. С другой стороны, образ $\gamma(\tau)$ при отображении $\log P(\exp(\cdot))$ покрывает вертикальный отрезок длины 2π не более, чем n раз. Следовательно, на кривой $\gamma(\tau)$ найдется точка ζ , в которой коэффициент растяжения

$$|\log P(\exp \zeta)|'| \le n,$$

что означает неравенство (1) в некоторой точке $z=\exp\zeta$ линии уровня $c(\tau)$. Наша теорема утверждает, что на самом деле это неравенство имеет место в любой точке кривой $c(\tau)$. Требование, чтобы множество E не содержало критической точки, отличной от нуля, является существенным. Например, для полинома $P(z)=z^3/2-3z^2/4$ лемниската $|P(z)|\leq 1$ содержит обе критические точки z=0 и z=1, и, следовательно, является связной. Точка z=2 принадлежит этой лемнискате, но

$$\frac{2P'(2)}{P(2)} = 6 > 3.$$

Следствие. Если в условиях теоремы в некоторой точке $z \in E$ выполняется P(z) > 0, то для полярной производной $D_a P$ относительно точки a справедливы оценки

$$\operatorname{Re} D_a P(z) = \operatorname{Re} [nP(z) - (z-a)P'(z)] > 0, \quad \operatorname{Im} D_a P(z) > 0.$$

Доказательство теоремы будет дано в §2 и оно восходит в идейном плане к доказательству гипотезы Хеймана о покрытии вертикальных отрезков при конформном отображении круга [2].

§1. Вспомогательные построения и утверждения

Пусть P — полином степени n, и пусть E — связная компонента лемнискаты $|P(z)| \leq 1$, не содержащая критических точек полинома P, отличных от его нулей (т.е. точек ζ , для которых $P'(\zeta) = 0$, $P(\zeta) \neq 0$). Пусть a — нуль полинома P, лежащий в E, и пусть z_0 — точка компоненты E, для которой $P(z_0) > 0$.

Обозначим через \Re риманову поверхность функции \Re^{-1} , обратной полиному P. Далее рассматриваем функцию \mathcal{P}^{-1} как однозначную функцию, заданную на поверхности \mathcal{R} , и пусть $\mathcal{P}:\overline{\mathbb{C}}_z \to \mathcal{R}$ есть функция, обратная \mathcal{P}^{-1} в этом смысле. Под проекцией точки $W\in\mathcal{R}$ понимается точка $P(\mathcal{P}^{-1}(W))\in\overline{\mathbb{C}}_w$. Предположим, что луч $\{w : {\rm Im}\, w = 0, \, 0 < {\rm Re}\, w < \infty\}$ не содержит критических значений полинома P (т.е. точек $P(\zeta)$ для которых $P'(\zeta) = 0$ при некотором ζ). Обозначим через \mathcal{L} луч на поверхности \mathcal{R} , точнее, жордановую кривую, однолистно лежащую над указанным выше лучом сферы $\overline{\mathbb{C}}_w$ и соединяющую точки $\mathcal{P}(a)$ и $\mathcal{P}(\infty)$. Пусть $T=\{t_k\}_{k=0}^m$ $0 = t_0 < P(z_0) = t_1 < \cdots < t_{m-1} < t_m = \infty$, — разбиение промежутка $0 \le t \le \infty$, содержащее все те значения t из $1 < t < \infty$, при которых окружность $\gamma(t) := \{w : |w| = t\}$ содержит по крайней мере одно критическое значение $P(\zeta)$ с $\zeta \in E$. Наконец, обозначим через $\mathfrak{C}(t)$ замкнутую жордановую кривую на \mathfrak{R} , пересекающую луч \mathfrak{L} , лежащую над окружностью $\gamma(t)$ и ориентированную соответственно с положительной ориентацией на проекции $\gamma(t)$, $0 < t < \infty$, $t \notin T$; c(t)– образ кривой C(t) при отображении \mathcal{P}^{-1} .

Лемма 1. Приращение аргумента

$$\triangle_{c(t)} \arg P(z)$$

есть неубывающая функция от t на множестве $\{t: 0 < t < \infty, t \notin T\}$.

Доказательство. Пусть $0 < t' < t'' < \infty$, t', $t'' \notin T$. Точки $\mathcal{P}(a)$ и $\mathcal{P}(\infty)$ находятся по разные стороны от кривой $\mathcal{C}(t'')$ и от кривой $\mathcal{C}(t'')$ на поверхности \mathcal{R} . Следовательно, непересекающиеся жордановые кривые c(t') и c(t'') отделяют точку a от ∞ на сфере $\overline{\mathbb{C}}_z$. Поэтому одна из них лежит во внутренности другой. Далее, двигаясь по лучу \mathcal{L} от $\mathcal{P}(a)$ до $\mathcal{P}(\infty)$, сперва встречаем кривую $\mathcal{C}(t')$, а затем $\mathcal{C}(t'')$. Это означает, что кривая c(t') лежит во внутренности кривой c(t''). Следовательно, число $N_{t'}$ нулей полинома P, лежащих внутри c(t'), не превосходит числа нулей $N_{t''}$ внутри c(t'') (с учетом их кратностей).

Осталось воспользоваться принципом аргумента:

$$2\pi N_t = \triangle_{c(t)} \arg P(z), \quad t = t', t''.$$

Лемма доказана.

Точки $\mathcal{P}(a)$ и $\mathcal{P}(\infty)$ расположены по разные стороны от кривой $\mathcal{C}(t)$ при любом $t,\ 0 < t < \infty,\ t \not\in T$. Отсюда следует, что для каждого $k=0,\ldots,m-1$ двусвязная область

$$G_k = \bigcup_{t_k < t < t_{k+1}} C(t)$$

также разделяет точки $\mathcal{P}(a)$ и $\mathcal{P}(\infty)$. В тоже время, кривая $\mathcal{P}(H)$, $H=\{z:z_0+(a-z_0)\tau,\,1\leq\tau\leq\infty\}$, соединяет эти точки. Поэтому для каждого $k=0,\ldots,m-1$ на кривой $\mathcal{P}(H)$ найдется по крайней мере одна жордановая дуга \mathcal{H}_k , лежащая в области \mathcal{G}_k и соединяющая ее граничные компоненты. Таким образом, в принятых выше обобзначениях справедлива следующая

Лемма 2. Для любого $k=0,\ldots,m-1$ область $\mathfrak{G}_k\setminus \mathfrak{H}_k$ односвязна.

Далее нам понадобится понятие емкости конденсатора (см., например, [3]). Для достаточно малых положительных r и ρ на сфере $\overline{\mathbb{C}}_z$ рассмотрим конденсаторы

$$C(r) = (H, \{z : |z - z_0| \le r\})$$

И

$$\begin{split} C(r,\rho) &= (H \cup \{z: |z-a| \leq \rho\} \cup \{z: |z| \geq 1/\rho\} \\ & \cup \bigcup_{P'(\zeta) = 0} \{z: |z-\zeta| \leq \rho\}, \{z: |z-1| \leq r\}). \end{split}$$

Лемма 3. При фиксированном r, $0 < r < |a - z_0|$, для емкостей конденсаторов справедливо равенство

$$\lim_{\rho \to 0} \operatorname{cap} C(r, \rho) = \operatorname{cap} C(r).$$

Доказательство. Воспользуемся непрерывностью емкости и тем фактом, что добавление к пластинам конденсатора конечного числа точек не меняет емкости этого конденсатора:

$$\lim_{\rho \to 0} \operatorname{cap} C(r, \rho) = \operatorname{cap} \left(H \cup \bigcup_{P'(\zeta) = 0} \{\zeta\}, \{z : |z - z_0| \le r\} \right) = \operatorname{cap} C(r)$$

(см. предложения 1.4 и 1.6 из статьи [3]). Лемма доказана.

Введем следующие ниже обозначения и дадим некоторые комментарии к ним.

 $\zeta = f_k(W)$ — однозначная ветвь функции $\zeta = \log(W/P(z_0))$, конформно и однолистно отображающая область $\mathcal{G}_k \setminus \mathcal{H}_k$ в "полосу" $\Pi_k := \{\zeta : \xi_k < \operatorname{Re} \zeta < \xi_{k+1}\}, k = 0, \ldots, m-1$. Здесь $\xi_k = \log(t_k/P(z_0)), k = 0, 1, \ldots, m$. Выбор такой ветви возможен ввиду леммы 2. При k = 1 и k = m Π_k — полуплоскость.

u(z)— потенциальная функция конденсатора $C(r,\rho)$, т.е. вещественнозначная непрерывная на $\overline{\mathbb{C}}_z$ функция, равная нулю на первой пластине конденсатора $C(r,\rho)$, единице на второй и гармоническая в дополнении этих пластин.

$$v_k(\zeta) = \begin{cases} u\left(\mathfrak{P}^{-1}(f_k^{-1}(\zeta))\right), & \zeta \in f_k(\mathfrak{G}_k \setminus \mathfrak{H}_k), \\ 0, & \zeta \in \Pi_k \setminus f_k(\mathfrak{G}_k \setminus \mathfrak{H}_k), \end{cases} \quad k = 0, \dots, m - 1.$$

Доопределим функцию v_k на $\partial \Pi_k$ по непрерывности. Полученную при этом функцию будем вновь обозначать v_k . Нетрудно видеть, что функция v_k удовлетворяет условию Липшица в полосе $\overline{\Pi}_k$, $k=0,\ldots,m-1$, а функция v_j к тому же равна единице на множестве $f_j(\mathcal{P}(\{z:|z-z_0|\leq r\})\cap \mathcal{G}_j),\ j=0,1.$

 $v_k^*(\zeta)$ — результат симметризации Штейнера функции $v_k(\zeta)$, $\zeta \in \overline{\Pi}_k$, относительно вещественной оси (см. [4]). Каждая функция $v_k^*(\zeta)$ липшицева в $\overline{\Pi}_k$ и равна нулю на множестве $\{\zeta \in \overline{\Pi}_k : |\mathrm{Im}\,\zeta| \geq \pi n\}$, $k=0,\ldots,m-1$. Из леммы 1 вытекают неравенства

$$v_{k-1}^*(\xi_k + i\eta) \le v_k^*(\xi_k + i\eta), \quad -\infty < \eta < \infty, \quad k = 2, \dots, m-1.$$
 (2)

 $\zeta=F(z)$ — функция, конформно и однолистно отображающая единичный круг |z|<1 на полосу $|{\rm Im}\,\zeta|<\pi n$ так, что F(0)=0,F'(0)>0.

 \widetilde{r} — верхняя грань всех r, для которых множество $F(\{z:|z|< r\})\cap\{\zeta:\operatorname{Re}(-1)^j\zeta<0\}$ принадлежит результату симметризации Штейнера относительно вещественной оси множества $f_j(\mathfrak{P}(\{z:|z-z_0|\leq r\})\cap\mathfrak{G}_j)$ при j=0 и j=1.

 $v(\zeta)$ — потенциальная функция конденсатора $\widetilde{C}(\widetilde{r})=(\overline{\mathbb{C}}_{\zeta}\setminus\{\zeta:|\mathrm{Im}\,\zeta|<\pi n\},F(\{z:|z|\leq\widetilde{r}\})).$ Легко убедиться, что

$$\frac{\partial v}{\partial \xi} = 0 \quad \text{на прямой} \quad \text{Re}\,\zeta = 0,$$

$$\frac{\partial v}{\partial \xi} \leq 0 \quad \text{на любой прямой} \quad \text{Re}\,\zeta = \xi > 0.$$
 (3)

Линии уровня потенциальной функции v совпадают с линиями уровня функции F (т.е. с кривыми $|F^{-1}(\zeta)| = \text{const}$).

Для достаточно гладкой функции λ на открытом множестве $\Omega\subset\mathbb{C}$ положим

$$I(\lambda, \Omega) = \int_{\Omega} |\nabla \lambda|^2 d\sigma.$$

Лемма 4. Справедливо неравенство

$$\sum_{k=0}^{m-1} I(v_k^*, \Pi_k) \ge I(v, \mathbb{C}).$$

Доказательство. Положим $G_k=\{\zeta\in\Pi_k:|\mathrm{Im}\,\zeta|<\pi n\},\ k=0,1,\ldots,m-1,\ \mathrm{if}\ l_k=\{\zeta:\mathrm{Re}\,\zeta=\xi_k,\ |\mathrm{Im}\,\zeta|<\pi n\},\ k=2,\ldots,m-1.$ Для каждого $k,\,0\leq k\leq m-1,$ имеем

$$\begin{split} I(v_k^*, \Pi_k) &= I(v_k^*, G_k) = I(v_k^* - v + v, G_k) = I(v_k^* - v, G_k) + I(v, G_k) \\ &+ 2 \iint\limits_{G_k} \left[\frac{\partial (v_k^* - v)}{\partial \xi} \frac{\partial v}{\partial \xi} + \frac{\partial (v_k^* - v)}{\partial \eta} \frac{\partial v}{\partial \eta} \right] d\xi d\eta \\ &\geq I(v, G_k) - 2 \int\limits_{\partial G_k} (v_k^* - v) \frac{\partial v}{\partial n} \, ds, \end{split}$$

где $\partial/\partial n$ означает дифференцирование вдоль внутренней нормали к границе области G_k (угловые точки исключаются). Учитывая соот-

ношения (2) и (3), получаем

$$\begin{split} \sum_{k=0}^{m-1} I(v_k^*, \Pi_k) &\geq \sum_{k=0}^{m-1} I(v, G_k) - 2 \sum_{k=1}^{m-1} \int\limits_{\partial G_k} (v_k^* - v) \frac{\partial v}{\partial n} ds \\ &= \sum_{k=0}^{m-1} I(v, G_k) - 2 \sum_{k=2}^{m-1} \int\limits_{l_k} \left[(v_{k-1}^* - v) \Big(- \frac{\partial v}{\partial \xi} \Big) + (v_k^* - v) \frac{\partial v}{\partial \xi} \right] ds \\ &= \sum_{k=0}^{m-1} I(v, G_k) + 2 \sum_{k=2}^{m-1} \int\limits_{l_k} (v_{k-1}^* - v_k^*) \frac{\partial v}{\partial \xi} ds \geq I(v, \mathbb{C}). \end{split}$$

Лемма доказана.

§2. Доказательство теоремы

Достаточно доказать неравенство (1) в произвольной точке $z_0 \in E \setminus \{a\}$, для которой $P(z_0) > 0$, считая при этом, что луч $\{w : \operatorname{Im} w = 0, 0 < \operatorname{Re} w < \infty\}$ не содержит критических значений полинома P. Примем обозначения, введенные в §1. Следующая цепочка соотношений вытекает последовательно из конформной инвариантности интеграла Дирихле, теоремы Полиа и Сеге о симметризации функций (см. [4]) и леммы 4:

$$\operatorname{cap} C(r, \rho) = I(u, \mathbb{C}) \ge \sum_{k=0}^{m-1} I(v_k, \Pi_k)$$
$$\ge \sum_{k=0}^{m-1} I(v_k^*, \Pi_k) \ge I(v, \mathbb{C}) = \operatorname{cap} \widetilde{C}(\widetilde{r}).$$

Привлекая лемму 3, имеем в итоге

$$\operatorname{cap} C(r) \ge \operatorname{cap} \widetilde{C}(\widetilde{r}). \tag{4}$$

Для вычисления асимптотики емкости конденсаторов при $r \to 0$ воспользуемся известными формулами (см., например, [3, (1.6) и (1.8)]), в которых r(B,a) означает внутренний радиус области B относительно

точки $a \in B$. В результате получаем

$$cap C(r) = -\frac{2\pi}{\log r} - \frac{1}{2\pi} (\log r (\mathbb{C}_z \setminus H, z_0)) \left(\frac{2\pi}{\log r}\right)^2 + o\left(\left(\frac{1}{\log r}\right)^2\right)
= -\frac{2\pi}{\log r} - 2\pi (\log[4|a - z_0|]) \left(\frac{1}{\log r}\right)^2 + o\left(\left(\frac{1}{\log r}\right)^2\right),
r \to 0$$

Далее, вторая пластина конденсатора $\widetilde{C}(\widetilde{r})$ представляет собой "почти круг" радиуса $(r|P'(z_0)|/P(z_0))(1+o(1))$ при $r\to 0$. Отсюда

$$\operatorname{cap} \widetilde{C}(\widetilde{r}) = -\frac{2\pi}{\log(r|P'(z_0)|/P(z_0))} - 2\pi \left(\log r\left(\{\zeta : |\operatorname{Im} \zeta| < \pi n\}, 0\right)\right) \\
\times \left(\frac{1}{\log(r|P'(z_0)|/P(z_0))}\right)^2 + o\left(\left(\frac{1}{\log r}\right)^2\right) \\
= -\frac{2\pi}{\log(r|P'(z_0)|/P(z_0))} - 2\pi (\log(4n)) \\
\times \left(\frac{1}{\log(r|P'(z_0)|/P(z_0))}\right)^2 + o\left(\left(\frac{1}{\log r}\right)^2\right) \\
= -\frac{2\pi}{\log r} \left(1 - \frac{\log|P'(z_0)/P(z_0)|}{\log r} + o\left(\frac{1}{\log r}\right)\right) \\
- 2\pi (\log(4n)) \left(\frac{1}{\log r}\right)^2 + o\left(\left(\frac{1}{\log r}\right)^2\right) = -\frac{2\pi}{\log r} \\
- 2\pi (\log|4nP(z_0)/P'(z_0)|) \left(\frac{1}{\log r}\right)^2 + o\left(\left(\frac{1}{\log r}\right)^2\right), \quad r \to 0.$$

Подставляя найденные асимптотические выражения в неравенство (4), приходим к заключению

$$|a-z_0| \le |nP(z_0)/P'(z_0)|.$$

В наших предположениях полученное неравенство совпадает с неравенством (1) ($z=z_0$). Случай равенства проверяется непосредственно. Теорема доказана.

Литература

- 1. T. Sheil-Small, Complex polynomials. Cambridge Univ. Press., Cambridge, 2002.
- 2. В. Н. Дубинин, О покрытии вертикальных отрезков при конформном отображении. — Мат. заметки **28**, No. 1 (1980), 25-32.
- 3. В. Н. Дубинин, Симметризация в геометрической теории функций комплекспого переменного. — Успехи мат. наук **49**, No. 1 (1994), 3-76.
- 4. W. K. Hayman, Multivalent functions. Cambridge Univ. Press., Cambridge, 1994.

Dubinin V. N. On the components of the lemniscate containing no critical points of a polynomial other than its zeros.

Let P be a complex polynomial of degree n and let E be a connected component of the set $\{z: |P(z)| \leq 1\}$ containing no critical points of P other than its zeros. We prove the inequality $|(z-a)P'(z)/P(z)| \leq n$ for all $z \in E \setminus \{a\}$, where a is the zero of the polynomial P lying in E. Equality is attained for $P(z) = cz^n$ and any $z, c \neq 0$.

Институт прикладной математики ДВО РАН, ул. Радио 7, 690041 Владивосток, Россия *E-mail*: dubinin@iam.dvo.ru

Поступило 17 мая 2010 г.