3aluCKu HAYIHBIX
cemuuapos IIOMU
Tom 378, 2010 r.

G. Olshanski

LAGUERRE AND MEIXNER
SYMMETRIC FUNCTIONS, AND
INFINITE-DIMENSIONAL DIFFUSION PROCESSES

ABSTRACT. The Laguerre symmetric functions introduced in the note are
indexed by arbitrary partitions and depend on two continuous parame-
ters. The top degree homogeneous component of every Laguerre symmet-
ric function coincides with the Schur function with the same index. Thus,
the Laguerre symmetric functions form a two-parameter family of inhomo-
geneous bases in the algebra of symmetric functions. These new symmetric
functions are obtained from the N-variate symmetric polynomials of the
same name by a procedure of analytic continuation. The Laguerre sym-
metric functions are eigenvectors of a second order differential operator,
which depends on the same two parameters and serves as the infinitesimal
generator of an infinite-dimensional diffusion process X (t). The process
X (t) admits approximation by some jump processes related to one more
new family of symmetric functions, the Meixner symmetric functions.

In equilibrium, the process X(t) can be interpreted as a time-
dependent point process on the punctured real line R\ {0}, and the point
configurations may be interpreted as doubly infinite collections of particles
of two opposite charges and with log-gas-type interaction. The dynamical
correlation functions of the equilibrium process have determinantal form:
they are given by minors of the so-called extended Whittaker kernel, in-
troduced earlier in a paper by Borodin and the author.

1. INTRODUCTION

1.1. Preface. The present note is a research announcement; the detailed
exposition will appear elsewhere. The goal of the work is twofold: (1)
to introduce new bases {£,} and {9,} in the algebra A of symmetric
functions, and (2) to construct a diffusion process X(¢) in an infinite-
dimensional cone . The two subjects are interrelated: The algebra A
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serves as the algebra of “polynomial observables” on the cone ﬁ, and
the basis elements £, € A are the eigenfunctions of the infinitesimal
generator of the process X (t). As for the basis {90, }, its elements are the
eigenfunctions of the infinitesimal generator of an auxiliary jump process.

The basis elements £, € A are called the Laguerre symmetric functions.
They are indexed by arbitrary partitions v and depend on two continuous
parameters. The diffusion process X (t) depends on the same parameters.
It possesses an invariant symmetrizing measure W, which also serves as
the orthogonality measure for the Laguerre symmetric functions.

1.2. Finite-dimensional counterparts. All the basic objects — the La-
guerre symmetric functions, the cone ﬁ, the probability distribution W
on 2, and the diffusion X (¢) on Q — have finite-dimensional counterparts;
I will describe them briefly.

e In dimension 1, these are the classical Laguerre orthogonal polynomi-
als on the half-line x > 0 with the weight measure z°~te=*dz (here b > 0
is a parameter), and the diffusion is generated by the associated ordinary
differential operator

2 d
rT— + (b—xz)—;
da? ( )dx’
the Laguerre polynomials are its eigenfunctions.

e In dimension N = 2,3,..., we deal with the algebra Ay of symmetric
polynomials in N variables x1,...,xxn. Such polynomials are viewed as
functions on the N-dimensional cone

Oy ={z:= (21,...,2n) 101 > - > 2y >0} CRV,

A relevant basis in Ay is formed by the N-variate symmetric Laguerre
polynomials [22], [21], which are orthogonal with respect to the measure
on  with the density

(z1...on)0 tem @1 mEN . H (z; — x;)*.
Ii<j<N

Assuming z to be in the interior of the cone, one can interpret z as a
collection of N indistinguishable particles on the half-line Rsq; then the
above measure determines an ensemble of random particle configurations,
called the N-particle Laguerre ensemble. Again, there exists an associated
diffusion process Xy (t) with state space Qn. In the interior of the cone,
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Xn(t) may be interpreted as a random evolution of N interacting particles
with pairwise repulsion. One may call Xy (¢) the N-particle dynamical
Laguerre ensemble.

e Note also that there exists a lattice version of the Laguerre ensem-
ble, related to natural discrete analogs of the Laguerre polynomials — the
Meixner polynomials. There exists also an associated Markov dynamics,
which is a Markov jump process. In the simplest case N = 1 this is a
birth-death process with linear jump rates.

1.3. Analytic continuation. In the literature, there exist many models
of such a kind, continuous and discrete, associated with various systems of
orthogonal polynomials. A general recipe for building infinite-dimensional
analogs of such models, often applied in Random Matrix Theory, is to use
alarge-N limit transition (see, e.g., the survey paper [14]). However, in the
present work, a different approach is applied. In short, its main idea can be
formulated as extrapolation into complex domain via analytic continuation
with respect to two parameters, the number of particles N =1,2,3,... and
the additional parameter b > 0. Surprisingly enough, although parameters
N and b are of a very different origin, they can be treated on equal grounds.

In comparison with the existing approaches to random-matrix-type dy-
namical models in infinite dimension (see [28, 26, 11-13]), our approach
is to great extent more algebraic.

1.4. Point processes. In the equilibrium state corresponding to the
stationary distribution W, the process X (¢) can be interpreted as a time-
dependent point process X5%2%(t). This interpretation relies on the fact
that the invariant measure W is supported by a dense Borel subset
QO cQ admitting a natural realization as a space of infinite particle
configuration on the punctured real line R* := R\ {0}. It turns out that
the time-dependent point process X®#'(t) is determinantal: its dynami-
cal correlation functions are given by minors of a kernel K (s, u;t,v) on
(R x R*) x (R x R*) — the so-called extended Whittaker kernel, which
initially appeared in [4].

Note that the N-particle dynamical ensembles X n(t) live on the half-
line Rso while the particle configurations of the process X3%t(¢) live on
the punctured real line R*, which is the union of two half-lines. Because
of this duplication effect, the claim that X (¢) cannot be related to the
processes X n(t) through a large-N limit transition becomes intuitively
evident.

1.5. Lattice approximation. Although X(¢) does not arise from a



84 G. OLSHANSKI

large-N limit, it admits a lattice approzimation. Namely, X (t) can be
obtained as a scaling limit of some jump processes depending on an addi-
tional parameter £ € (0,1), as £ T 1. These jump processes were studied
in detail in [4]. Their state space is the set of all partitions. This count-
able set also can be realized as a set of particle configurations on the
lattice Z + % of half-integers; here the number of particles is finite but
not restricted. The second basis {9, } C A mentioned above just arises
in connection with these jump processes. The elements 901, are called the
Meizner symmetric functions; they depend on three parameters: to the
two parameters of the Laguerre symmetric functions one adds the third
parameter £ € (0,1). In the limit as £ 7 1, one has 9, — £,, similarly to
the approximation of the classical Laguerre polynomials by the Meixner
polynomials.

1.6. Concluding remarks. The results announced in the present note
continue those of [1, 4-6], and all these works have a connection with the
asymptotic representation theory of the symmetric groups. It is interesting
to compare the results of these papers and the present note with those
of the papers [2, 3, 7], which are related to representations of the unitary
groups. Although the construction of a Markov dynamics in [7] relies
on a different approach, [7, Appendix] also exploits the idea of analytic
continuation. Note that in the context of the unitary groups, the Laguerre
polynomials are (to some extent) replaced by the Jacobi polynomials.

Finally, I would like to note that the representation theory of reductive
groups and Lie algebras also affords examples in which finite-dimensional
objects arise as a degeneration of infinite-dimensional ones, and, con-
versely, infinite-dimensional objects may be reconstructed from finite-
dimensional ones through analytic continuation in parameters. For in-
stance, the principal series representations or highest weight modules may
be viewed as analytic continuation of the irreducible finite-dimensional
representations.

2. THE ONE-PARTICLE CASE

There is a well-known relationship between systems {¢,;n =0,1,2,...}
of orthogonal polynomials of hypergeometric type on R and some one-
dimensional Markov processes X (t) (see, e.g., [27]). Namely, the state
space of X (t) is a closed subset I C R — the support of the orthogonality
measure of {¢,, }, and the infinitesimal generator of X (¢) is a second order
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differential (or difference) operator D, such that

Doy = —pndn, pn = 0.

The orthogonality measure w for the polynomials ¢,, serves as an invariant
and symmetrizing measure of X (¢). The transition function of X (¢) has
the form

P(t;z,dy) = Z e—“ntﬂ;i%()) w(dy). (2.1)

The simplest examples are provided by the classical Jacobi, Laguerre,
and Hermite polynomials:

e Jacobi polynomials: I is the closed interval [—1,1], w has density
(1 — )2 (14 x)*~! with parameters a,b > 0, and

d? d
e +[b—a—(a+b)z ]d:v

D=(1-2%)—
e Laguerre polynomials: I is the closed half-line [0, +00), w has density

zP~le™* with parameter b > 0, and

2

d d

e Hermite polynomials: I is the whole real line, w has density e‘xz/z,
and ‘
d? d
=——z—.
dx? dw

In the Hermite case, X (t) is the Ornstein—Uhlenbeck process. In the
Laguerre case, X (t) is closely related to a squared Bessel process (see,

g-, [9])-
3. THE N-PARTICLE CASE

Here we recall a well-known construction providing a multidimensional
generalization of the above picture.

Fix N = 1,2,3,.... Instead of univariate polynomials we will deal
with symmetric polynomials in N variables z1,...,zy. Denote by Ay the



86 G. OLSHANSKI

algebra formed by such polynomials (the base field is R or C depending
on convenience). The interval I is replaced by the subset

Ié\rfd ={(zx1,...,en) CIN tzy > - > an),
and we regard A as an algebra of functions on Ié\[d. Let v = (v1,...,vN)

range over the set of partitions of length £(v) < N. We set

d vi —i\Lj

where the determinant is of order IV and Vy is the Vandermonde,

VN:VN(Cﬂl,...,ﬂ?N): H (CUZ'—ZL“]').

1<<j<N

The ¢,|n’s are symmetric polynomials forming a basis in Ay. Moreover,
it is readily verified that they are pairwise orthogonal with respect to the

measure
N

wn(dzy ...dey) = (Vn)? [ [ w(da:) (3.2)

i=1

on Ié\[d.

This construction seems to be well known; see, e.g., Lassalle’s papers
[19-21]. Formula (3.1) is similar to the classical expression for the Schur
symmetric polynomials (the Schur polynomials appear if one substitutes
¢n(x) = z™; they are not orthogonal polynomials though).

Further, the analog of D is the operator
Dy = V1\710(D’“+---+D””N)oVN+dN1, (3.3)
where D% stands for a copy of D acting on variable x; and
dy =po+ -+ pn-1.

If D is a differential operator,
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then Dy is a partial differential operator,

N
o2 24()) | 0

i — Ty 8331

Due to the special choice of dy, the constant term in Dy vanishes.

Although the coefficients in front of the first derivatives have singu-
larities along the hyperplanes x; = x;, the operator Dy is applicable
to symmetric polynomials and preserves the space Ay. The polynomials
¢, N are eigenfunctions of Dy:

N
Dnéyin = — <Z(Nui+N—i - HN—i)) Gu|N-

i=1

Finally, Dy serves as the (pre-)generator of a Markov process Xy (t)
Ié\[d with invariant symmetrizing measure wy .

The first example of such a process Xx(t) has been investigated in
[8]; it corresponds to the system of Hermite polynomials. As shown in
that paper, Xy (t) is obtained from a matrix-valued Ornstein-Uhlenbeck
process through the projection onto the matrix eigenvalues. One may say
that X (t) is the radial part of this matrix-valued Markov process.

In the present work we focus on the Laguerre case.

on

4. THE LAGUERRE SYMMETRIC FUNCTIONS

Let e1,es,... denote the elementary symmetric polynomials,
€1 :ina eZZinij €3 = Z LiZjTk,
i i<j i<j<k
and so on. Here it is tacitly assumed that the indices range over {1,..., N},

where IV is the number of variables. As well known, the algebra Ay of
N-variate symmetric polynomials is isomorphic to the algebra of ordinary
polynomials in ey, ..., en-

Our first step is to make a change of variables: take {e1,...,en} as
new (formal) variables instead of natural coordinates zi,...,zN.
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Theorem 4.1. The N-variate Laguerre operator Dy : Ay — Ay can
be rewritten as the following second order partial differential operator in
variables e, ...,en:

al 0? i)
Dy = m;:1 Amnm + nzz: Bna—ena

where

Apn = (m+n—1-2k)emtn_1—krex

and
B,=-ne,+(N—-n+1)(N+b—n)e,—1

with the convention that eg = 1 and e, =0 for k > N.

The next step is to replace Ay by the algebra A of symmetric functions.
For our purpose, it is convenient to define A as the algebra of polynomi-
als in countably many formal commuting variables e, ez, ..., which are
assumed to be algebraically independent.

For N =1,2,..., let Jy C A denote the ideal generated by elements
er with & > N. The quotient algebra A/Jy is naturally isomorphic to
An, so we get a canonical algebra homomorphism 7y : A — Ay, which
we call the Nth truncation map.

Definition 4.2. Let z and 2’ be complex parameters. Consider the formal
second order differential operator in countably many variables ey, es, . ..,
obtained from the N-variate Laguerre operator Dy by removing the re-
lations en+1 = eny2 = --- = 0, dropping the restriction m,n < N, and
replacing the factor (N —n +1)(N +b— n) in the definition of coefficient
B, by (z—n+1)(z —n+1):

2= 3 gl Y
o demOen ~ Oen,
where A, is given by exactly the same formula as above,

min(m,n)—1

Amn = Z (m+n—1-2k)entn_1-r€r,
k=0
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and
B,=-ne,+(z-n+1)(z —n+1e,_1.

Observe that ® is correctly defined as an operator A — A; we call it the
Laguerre operator in A.

If 2= N and 2’ = N + b — 1, then ® preserves the ideal Jy C A and
hence factorizes to an operator in the quotient A/Jy = Ap; the result-
ing operator coincides with Dp. Note that this property, combined with
the polynomial dependence on parameters z,z’, determines the operator
uniquely. In this sense, ® may be viewed as the result of analytic contin-
uation (or extrapolation) of the N-variate Laguerre operators Dy with
respect to parameters N and b.

Let {L,} denote the system of monic Laguerre polynomials with pa-
rameter b > 0 (see, e.g., [18]). Recall that, in our notation, the weight
function is #’~*e~". Next, let {L,|n} denote the system of N-variate
symmetric Laguerre polynomials defined in accordance with the determi-
nantal formula (3.1). We are going to define elements of A that may be
viewed as are analogs of the polynomials L,y ;. To do this we apply the
same principle of analytic continuation in N and b as we have employed
in the definition of ®.

Theorem 4.3. For an arbitrary partition v = (v1,vs,...), there exists
a unique element £, € Alz,2'] := A ® C|z, 2], such that for any natural
number N > {(v) and any b > 0,

™ (SV‘Z:N,Z’:N-H)—I) = Lunb-

Here mn : A — Ay is the Nth truncation map introduced above.

Definition 4.4. We call the elements £, the Laguerre symmetric func-
tions.

Recall the definition of the Schur symmetric functions: these are ele-
ments of A indexed by arbitrary partitions v and expressed through the
generators e, by the following formula (the Ndgelsbach—Kostka formula,
see [23])

S,, = det[e,,/_iﬂ-];

here v’ stands for the partition given by transposing the Young diagram
corresponding to v, and the order of the determinant is an arbitrary in-
teger > £(v’). As well known, the Schur functions form a distinguished



90 G. OLSHANSKI

homogeneous basis in A, and

deg S, = |v] = Zl/i.

Let us explain the notation used in the next theorem. We identify
partitions and the corresponding Young diagrams. Given a couple u C v
of Young diagrams, we denote by dim v/p the number of standard Young
tableaux of the skew shape v/u. The symbol [0 € v/u denotes a box in
v/p, and ¢(0) denotes its content, equal to the difference j — 7 of the
column number j and the row number ¢ of the box.

Theorem 4.5. The expansion of the Laguerre symmetric function £, in
the basis of the Schur symmetric functions has the form

Ly = Z C(V,H;Z,Z/)Su,

wCr

where

Ol s 2,) = (~1)Wi-il BV T oy 4 o)),
Qo L

Since C'(v,v;z,z") = 1, the top homogeneous component of £, is equal
to Sy:
£, =S, + lower degree terms.

It follows that the Laguerre symmetric functions with any fixed values of
parameters z and 2’ form a basis in A.

For the empty diagram corresponding to the zero partition, v = &,
we have £5 = Sy = 1. This is the only case when £, and S, coincide:
for v # @, £, is an inhomogeneous element, so that the basis {£,} of
Laguerre symmetric functions is an example of inhomogeneous basis. In
this respect, it differs from other bases in A that are commonly used in
algebraic combinatorics.

A box O in a Young diagram v is said to be a corner box if the shape
v\ O obtained by removing [J from v is again a Young diagram. Let v~
denote the set of all corner boxes in v. For instance, if v = (3,2,2) then
v~ comprises two corner boxes, 0 = (1,3) and 00 = (3,2).

Theorem 4.6. The action of ® on the Schur functions is given by

DS, = YIS, + Y (2 +c(O)(Z' +e(0)Sno-
Oev—
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Theorem 4.7. The Laguerre symmetric functions are eigenvectors of
the Laguerre operator ® with the same values of parameters (z,z"). More
precisely,

DL, = —|v|L,.

5. FORMAL ORTHOGONALITY
Definition 5.1. For any fixed (z,2') € C?, introduce the formal moment

functional v : A — C by setting

Y1) =1, &(Of) =0 forany f €A,
where the Laguerre operator ® is taken with the same values of the pa-
rameters as 1.

The definition is correct by virtue of the last theorem. Indeed, it implies
that that the range of © is the span of the Laguerre functions £, with
v # &, while the vector 1 = £ € A is transversal to this span. Note that
1 depends polynomially on the parameters z, z’.

Theorem 5.2. For any Young diagram v,

¥(S)) =[]+ (D)2 + (D)) - (%)

Oev

This formula provides an alternative (equivalent) way of introducing
the moment functional.

Theorem 5.3. For any two Young diagrams v and u,
U (€,8) = 0 [ [ (2 + @) + (D)), (5.1)
Oev

where §,,, is Kronecker’s delta.

This result shows that the Laguerre symmetric functions are pairwise
orthogonal with respect to the inner product in the space A defined by

(f:g) = (f:g)z7z’ = ’l/}(fg)a f:g €A (52)

Obviously, the inner product is nondegenerate if (and only if) z and 2’
are not integers, for then the product in the right-hand side of (5.1) never
vanishes.
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Remark 5.4. Assume 2z and 2’ are not integers. Then the Laguerre sym-
metric function £, is characterized by the following two properties:

(1) £, differs from the Schur symmetric function S, by lower degree
terms;

(2) £, is orthogonal, with respect to inner product (5.2), to all elements
of A of lower degree (that is, of degree strictly less than deg £, = |v|).

Alternatively, without any assumption on the parameters, £, is char-
acterized by (1) together with the following property replacing (2):

(27) £, is an eigenfunction of the Laguerre operator D.

6. THE ORTHOGONALITY MEASURE FOR
THE LAGUERRE SYMMETRIC FUNCTIONS

Definition 6.1. By the Thoma cone we mean the subset Qc R x
RS x Ry consisting of triples w = («, (3,0), where

a=(m>a>-20), B=B1=p>20), 60,

and
oo

> (ai +B;) <6.

i=1
The Thoma simplex ) is the subset of Q determined by the additional
condition 6 = 1.

Both © and § are closed subsets of the product space R2°F1 := R x
R> xR equipped with the product topology; 2 is compact and Qis locally
compact; Qis precisely the cone with base (2.

Let Fun(€) denote the space of continuous functions on the Thoma
cone; this is an algebra under pointwise multiplication. We embed A into
Fun(f) by setting

o0

N 1+ a;t
14+ ent” > [] : _ﬁ:t, (6.1)
n=1 i=1

where ¢ is an auxiliary formal variable and

Y:i=6—) (a;+pB).
=1
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More precisely, the correspondence, which is written in terms of the gen-
erating series for {e, }, turns each e,, into a function e, (w) on the Thoma
cone. This function is continuous. The correspondence e, — e, () is ex-
tended to the whole algebra A by multiplicativity. In this way we get an
algebra morphism A — Fun(ﬁ), which is an embedding. For any f € A
we denote the corresponding continuous function on € by f(w).

Equivalently, in terms of another system of generators of the algebra A,
the Newton power sums p,,, the embedding A — Fun(Q2) can be defined
by setting

pi(w) =90, pu(w) = Za? — Z(—Bi)” for n > 2.
i=1 i=1

In the algebra A, there is a distinguished involutive automorphism,
which is defined on the generators p, as p, — (—1)""!p,. Under this
automorphism, S, — S, /. The above formula shows that in the realization

A C Fun(), this automorphism amounts to transposition a < 3.

Definition 6.2. Let us say that (z,2') € C? is admissible if both z and
2" are nonzero and

[[GE+e@E +e@) >0
Oev

for any Young diagram v.

The family of admissible couples (z, z’) splits into the union of the three
subfamilies:

e The principal series: both z and z’ are nonreal, 2z’ = Z.

e The complementary series: both z and 2z’ are real and are contained
inside an open interval (m, m + 1) with m € Z.

e The degenerate series: (z,z') = £(N,N+b—1) or (z/,2) = £(N, N+
b—1), where N =1,2,... and b > 0.
Theorem 6.3. Assume (z,2’) is admissible. There exists a probability
measure W = W, . on the Thoma cone Q such that all functions from A

are W -integrable and the formal moment functional ¢ with parameters
(z,2") coincides with expectation with respect to W:

¢(f):/f(w)W(dw) for all f e A.
o
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These properties determine W uniquely. Moreover, the functions from A
are dense in the Hilbert space L*(Q, W).

By virtue of Theorem 5.3 this implies that the measure W with ad-
missible parameters (z,z) is the orthogonality measure for the Laguerre
symmetric functions.

In the case when z = N =1,2,... and 2’ = N +b— 1 with b > 0 we
recover the Laguerre measures wy on the N-dimensional cone

QN = {(331 2 ... LN 2 0)}

Here we embed SNIN into the Thoma cone by setting a; = z; for i =
1,...,N and § = > z; (so that all remaining a- and f-coordinates are
equal to zero).

An immediate consequence of the theorem is

Corollary 6.4. Assume that the couple (z,z’) is admissible and nonde-
generate, i.e., belongs to the principal or complementary series. Then the
Laguerre symmetric functions, viewed as functions on the Thoma cone,
form an orthogonal basis in the Hilbert space L2(Q, W, ./).

7. PROPERTIES OF THE ORTHOGONALITY MEASURE

Here are some properties of the measures W, .. with admissible param-
eters (z,2’):

o W, ., are obtained from the so-called z-measures on the Thoma sim-
plex by a simple integral transform along the rays of the Thoma cone. See
[1, Sec. 5].

o W, .- does not change under transposition z < z’. Within this sym-
metry relation, the measures corresponding to different couples of param-
eters are pairwise disjoint: this follows from [17].

e The involutive map a < 8 of the Thoma cone transforms W .. to
W_. ..

o . ., is supported by the subset of the Thoma cone formed by those
triples w = (a, 3,0) for which § exactly equals Y (a; + 3;), i.e. v = 0.
This subset is Borel and everywhere dense in Q. (Note that + is not a
continuous function in w, it is only lower semicontinuous.)
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Theorem 7.1. If (z,2’) is in the principal or complementary series, then
the topological support of W ./ is the whole space ().

(The topological support of a measure is the smallest closed subset
supporting the measure.)

The theorem implies that a nonzero continuous function on ﬁ, which is
square integrable with respect to W ./, is a nonzero vector in the Hilbert
space L? (ﬁ, W, .). In particular, the natural map assigning to a bounded
continuous function a vector in this Hilbert space is an embedding. This
assertion fails in the case when (z,2’) belongs to the degenerate series.

8. THE LAGUERRE DIFFUSION PROCESS ON THE THOMA CONE

In this section, (z,2') is a fixed couple of parameters from the principal
or complementary series.

Recall that we may regard A as a dense subspace in the Hilbert space
H := L2(,W..,) and then {£,} becomes an orthogonal basis in H. The
Laguerre operator ® : A — A is diagonalized in this basis,

DL, = —|v|S,,

so that the eigenvalues of © are 0, —1,—2,..., where 0 has multiplicity 1
and corresponds to the basis vector £ = 1. It follows that ® generates
a strongly continuous semigroup P(t) of contractive selfadjoint operators
in H,

Pt)L, =e g, t>o0.

Theorem 8.1. The semigroup P(t) is a conservative Markov L*-
semigroup

By definition, this means that P(¢)1 = 1 and P(¢) preserves the cone
of nonnegative functions in H. The first claim is obvious, the second one
is nontrivial; its proof relies on the approximation by some jump Markov
processes, see Sec. 14.

The next claim says that P(t) is actually a Feller semigroup (in one of
the versions of this property). Let C'(€) C Fun(£2) be the space of bounded
continuous functions on Q with the supremum norm and Co(Q) C C()
be its closed subspace formed by the functions vanishing at infinity. Both
C(€) and Cy () are Banach spaces contained in H, but Cy () is separable
while C(Q) is not.
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Theorem 8.2. The semigroup P(t) preserves Co(Q) and induces a
strongly continuous contractive semigroup in this Banach space.

One of the ingredients of the proof is the separation of variables con-
struction described in the next section.

The theorem implies that P(t) gives rise to a Markov process X (t) on
Q with cadlag sample trajectories. Actually, more can be said:

Theorem 8.3. With probability one, the trajectories of X (t) are contin-
uous.

By the very construction of the Markov process X (t), the probability
measure W, . is its invariant and symmetrizing measure.

9. SEPARATION OF VARIABLES

Extend the algebra A by allowing division by e; (that is, localize over
the multiplicative semigroup generated by e;) and denote the resulting
algebra by A®<t:

A = Cler, ey sea,e3,...] DA

Since the coefficients of the Laguerre differential operator © : A — A
(see Definition 4.2) are polynomials in variables e,, ® can be extended to
an operator DXt ; ASXt — Aext,

Set
=epe; ", n>2,

ri=e;, e,

and
o__ o __
eg =¢€] = 1.

The algebra A®*' can be identified with C[r,r~!;e3,€3,...].

Theorem 9.1. Under this identification, the operator Dt : A®Xt — Aext
takes the form

9? 0 1
ext __ — _ e — o
D _<T8r2+(c r)ar>+r©,
where
c:=2z7z

and

0= ) A 872+ZB° 0
B M deo Des, " des,

m,n>2 nz1



LAGUERRE AND MEIXNER SYMMETRIC FUNCTIONS 97

with
min(m,n)—1
AL . = —mne, e, + Z (m+n—1-2k)e, .. | e
k=0
and

By =-nn—1+4c¢en+(z—n+1)(z' —n+1)e,_;.

This result shows (at least on algebraic level) that the process X(t)
is the skew product of the one-dimensional Laguerre diffusion with pa-
rameter ¢ = 22’ > 0 and a Markov process on the Thoma simplex €2,
which is generated by the operator ©°. This can be compared to the
splitting of the multidimensional Brownian motion into the skew prod-
uct of a one-dimensional diffusion (a Bessel process) and the spherical
Brownian motion, see, e.g., [10].

In more detail: The algebra A®*' is realized, in a natural way, as an
algebra of functions on Q \ {0}. In this realization, elements of the sub-
algebra A° turn into homogeneous functions of degree 0 with respect to
homotheties of the cone (2. Since the Thoma simplex (2 is a base of the
Thoma cone, we may regard A° as an algebra of functions on 2. Note
that A° is dense in the Banach space C(€) of continuous functions on
2. Thus, ©° becomes a densely defined operator in C(f2). As shown in
[6], the closure of ©° generates a diffusion process X°(¢) in the Thoma
simplex.! Continuing the analogy with the multidimensional Brownian
motion one can say that in this picture, X°(¢) is a counterpart of the
spherical Brownian motion and the variables e? play the role of spherical
coordinates.

10. CORRELATION FUNCTIONS

Set R* = R\ {0} and let Conf(R*) be the space of locally finite point
configurations on R*. Following [1], we define a projection 2 — Conf(R*)
by setting

w=(a,5,0) —{a; :a; Z0}U{=05;: B; # 0}.

Two points of Q are mapped to one and the same configuration if and
only if they differ only by the value of the coordinate §. Consequently, the
restriction of the projection on the subset

O i={w:6=> (a;i + )}

n [6], the operator D° is written down in a different coordinate system.
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is injective.

The equilibrium version X2 (t) of the process X (t) is obtained by tak-
ing the stationary distribution W as the initial one. The process X5t¢(¢)
is stationary in time; moreover, since W is a symmetrizing measure, one
may extend the time parameter ¢ from the half-line [0, +00) to the whole
real line R. We know that the stationary distribution W is concentrated
on the subset €. It follows that the finite-dimensional distributions of the
equilibrium process may be viewed as probability measures on the spaces
(Q)* k=1,2,.... Next, applying the above projection, we may interpret
every k-dimensional distribution (k = 1,2,...) as a probability measure
on

(Conf(R*))* = Conf(R* LI --- UR*),
k times

which is again a space of configurations. Such measures can be described in
terms of the correlation functions. In other words, these are the dynamical
or space-time correlation functions of a time-dependent point process.

Theorem 10.1. The space-time correlation functions of the equilibrium
process X5%%(t) are determinantal. That is, they are given by minors of
a kernel K (s, x;t,y), where s and t are time variables and x,y € R*.

The correlation kernel K (s, x;t,y) is called the extended Whittaker ker-
nel. It was derived in [4, Theorem B] as a scaling limit of the correlation
kernels of some equilibrium Markov jump processes on partitions. Explicit
expressions for K (s,z;t,y) are contained in that paper.

Note, however, that the paper [4] left open the question whether the
kernel K (s,z;t,y) determines a Markov process (a subtlety here is that,
in principle, it may happen that the Markov property is destroyed in a
limit transition). The results of the present section settle this question in
the positive.

11. THE MEIXNER SYMMETRIC FUNCTIONS

Let Z, C Z denote the set of nonnegative integers. Fix two parameters
b and &, where b > 0 as before and 0 < £ < 1.

The classical Meizner polynomials My (x) are defined as the orthogonal
polynomials corresponding to the following discrete probability measure
supported by Z, :

M=-gpr Y Qe

x!
TEZLy
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where d, denotes the Dirac measure at z (see, e.g., [18]). The measure

wM is is known under the name of the negative binomial distribution.

We use the standardization in which the M),’s are monic polynomials:

M,(x)=z"+....
Consider the following second order difference operator on Z, :
M &b+ x) T B
DMf(@) = S @+ 1)+ T =)
Eb+z)+x
@)

(the factor 1—£ in the denominator is introduced to simplify some formulas
below). DM is formally symmetric with respect to the weight function and
annihilates the constants. The Meixner polynomials are eigenfunctions of
this operator,

DMM,, = —nM,,.

Moreover, they can be characterized as the only polynomial eigenfunctions
of DM,
The N -variate symmetric Meizner polynomials

M,/(ﬂfl,---,ZL“N) = MV\N,b,g(xla"'awN)

are introduced following the recipe (3.1).
Set
prrd ={(z1,...,2N) € Zf tTp > >IN}

and regard polynomials from Ay as functions on Zf ord- Then the Meixner
polynomials M, become orthogonal polynomials with respect to the
atomic measure w on ZY .4 defined according to (3.2).

The polynomials M, are eigenfunctions of an operator DN : Ay — Ay,

which is defined according to (3.3):

DN'M, = —|v|M,,.
This operator can be realized as a difference operator on Z¥ | , acting on

a function f by

DRS(2) =D Ai(@)f (e +e0) + ) Bilw)f(w — =) = C(2) ()
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Here z = (z1,...,zN) ranges over nyord, {€1,...,en} is the canonical
basis in RV, and the coefficients are given by

Eb+x; i —x;+1
At = R T B
gg#i Tt
T; r;—x; —1

T T
gig#i Tt

M=

EON + (1+6) | -
Ola) ; NN -1)

1-¢ B 2
We will need a modified version of the truncation map my : A — Ap;
this is an algebra morphism 7% : A — Ay, which is defined on the
generators p, (Newton power sums) by

Lq

Il
-

N
(k) (@1, on) =D [(zi— N+ 5HF = (=i + 1)"].
i=1
Since the right-hand side is a symmetric polynomial, the definition makes

sense. It can be better understood in terms of the realization A C Fun(Y),
see Remark 12.2 below.

Theorem 11.1 (cf. Theorem 4.3). Let z, 2/, and £ be complex param-
eters. For an arbitrary partition v = (v1,vs,...), there exists a unique
element MM, € A, which depends polynomially on z,z' and rationally on
¢, and such that for any natural number N > {(v) and any b > 0 and
¢ €(0,1), one has

/ —
TN (WV‘Z:N,Z/:N+b—1> - MV|N7b,§'

Definition 11.2. We call the elements 9, the Meizner symmetric func-
tions with parameters z, z’, and €.

Next, we need the Frobenius-Schur symmetric functions. These are
some inhomogeneous elements FS, € A indexed by arbitrary partitions v
and such that

FS, = S, + lower degree terms.

For their definition, properties, and explicit expressions, see [25]. In par-
ticular, one disposes of a simple explicit expression of the Frobenius—Schur
functions through the Schur functions.
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Theorem 11.3 (cf. Theorem 4.5). The Meixner symmetric function 9,
with parameters (z,2z',§) are given by the following expansion in the
Frobenius—Schur symmetric functions:

mu = Z C/(I/,/I,;Z,Z/,g)FSN,

pCr

where

/ / (€ M
C(V,M;Z,Z,f):(_].) (1—_£>

dimv/p

o= ult I G+c@)E + D).

Oev/n

Definition 11.4 (cf. Theorem 4.6). The Meizner operator DM : A — A
with complex parameters (z,z',€) is defined in the basis {FS,} of the
Frobenius-Schur functions by

OMFES, = —|v|FS, + %—f Z (z +¢(0))(z' + ¢(0)) ES,\o-

Oev—

From this definition one sees that ®™ preserves the filtration of A and
depends polynomially on (z, z") and rationally on &, with the only possible
pole at & = 1. The operator ®M is uniquely determined by these properties
together with the following one: If z = N =1,2,..., 2/ = N +b—1
with b > 0, and ¢ € (0,1), then DM preserves the kernel of the map
my : A — Ay and the induced operator in Ay coincides with the N-
variate Meixner operator DX', with parameter b.

Theorem 11.5 (cf. Theorem 4.7). The Meixner symmetric functions are
eigenvectors of the Meixner operator ® with the same values of parameters
(z,2',&). More precisely,

oM, = —|vim,,.
Definition 11.6 (cf. Definition 5.1). For any fixed (z,2',€) € C* with
¢ # 1, introduce the formal moment functional Y™ : A — C by setting
pM1) =1, Y(@Mf)=0 forany f € A.

where the Meixner operator ®M is taken with the same values of the
parameters as M.
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Theorem 11.7 (cf. Theorem 5.2). For any Young diagram v,

YM(FS,) = <1i_§) : Dl_[ (z +c(O)) (" + ¢(O)) - <M>2

This formula provides an alternative (equivalent) way of introducing
the moment functional.

Theorem 11.8 (cf. Theorem 5.3). For any two Young diagrams v and

M,
vl
Y™ (0, ) = mﬁw [+ @) + @),
Oev

where §,,, is Kronecker’s delta.

This result shows that the Meixner symmetric functions are pairwise
orthogonal with respect to the inner product in the space A defined by

(f;g) = (f;g)z,z’,g = 1/JM(fg), f,g cA.

The inner product is nondegenerate provided that z and 2’ are not inte-
gers.

Remark 11.9. The two characterizations of the Laguerre symmetric func-
tions from Remark 5.4 extend, with obvious modifications, to the Meixner
symmetric functions.

12. THE ORTHOGONALITY MEASURE FOR
THE MEIXNER SYMMETRIC FUNCTIONS

To speak about the orthogonality measure we have first to find an
appropriate realization of A as an algebra of functions on a space. In the
context, of the Laguerre symmetric functions that space was the Thoma
cone (). Now the relevant space is different: it is the countable set Y of
Young diagrams.

We will need the notion of modified Frobenius coordinates of a diagram
A € Y. This is a double collection (a;b) = (a1, ...,aq4;b1,...,bq) of half-
integers, where d stands for the number of diagonal boxes in A, a; =
Ai — 1+ % equals the number of boxes in the ith row of A plus one-half,
and b; is the similar quantity for transposed diagram \’. For instance, if
A =(3,2,2) then (a;b) = (23,1;2L,11).

272
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Definition 12.1. Let A be the unital algebra of functions on Y generated
by the functions of the form

d
pk(A) :pk(a; _b) = Z[af - (_bi)k]7 k= 1,2,...,

i=1

where (a;b) is the collection of the modified Frobenius coordinates of
a diagram A € Y. Elements of A are called polynomial functions on Y
(see [15]).

Consider the generators py,ps, ... of A (the Newton power sums). The
assignment py — pg(-) extends by multiplicativity to an isomorphism
A — A and hence defines an embedding of A into the algebra Fun(Y) of
functions on the set Y. This is the desired realization.

Remark 12.2. Now we can explain the origin of the map 7y : A — Ay
introduced in Sec. 11. Similarly to the realization A C Fun(Y), realize
An as an algebra of functions on Yy C Y, the subset of Young diagrams
with at most N nonzero rows, by letting the arguments z; of N-variate
symmetric polynomials to be equal to A\; + N — i, where \ ranges over
Yn,i=1...,N. Then 7y is implemented by the natural map Fun(Y) —
Fun(Yy) assigning to a function on Y its restriction to Y.

For a diagram A € Y, denote by A" the set of the boxes that can
be appended to A. As before, A\~ is the set of the boxes that can be
removed from A. By dim A we denote the number of standard tableaux of
the shape A.

Theorem 12.3. Under the realization A = A C Fun(Y), the Meixner
operator ®M : A — A with parameters (z,2’,€) is implemented by the
following operator in Fun(Y), which will be denoted by the same symbol,

DY) = D ANDFAUD) + Y BAO)FA\D) = CA)f(N)

Oex+t Oex—

=Y AADFAUD-FN]+ > BADFAN\D) - FO)],

Oext Oex—
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where
AND) = 12@%(5))(5%(5))%, Oe A,
B(\,0) = 1%5 3 Al dim(A\ 0) dnglA/\\ D pea,
d
O = T (1 + O + 622,

Definition 12.4. Let z, 2’, and £ be complex parameters, |£| < 1. The
associated complex measure on Y, called the (mixed) z-measure, is defined

by

MgV = (1= €)% T (2 + (@) (' + (D)) - €N (dim) , AeY.

|
OeA Al

One can prove that

> M..e(N) =1

AeY

These measures were introduced in [1], and some closely related measures
on the finite sets of Young diagrams with a fixed number of boxes appeared
earlier in [16]. The measures M, ./ ¢ are a special case of Okounkov’s Schur
measures [24].

The next theorem relates the measures M ./ ¢ to the formal moment
functional ™ with the same parameters (see Definition 11.6).

Theorem 12.5 (cf. Theorem 6.3). Let (z,2') be admissible and 0 < £ <
1. Then the mixed z-measure M. ./ ¢ is a probability measure, all functions
from A C Fun(Y) are integrable with respect to M ./ ¢, and

PMF) =Y M. e(N), Ve AC Fun(Y).

AeY

Moreover, A is dense in the weight Hilbert space (*(Y, M, ./ ¢).

This implies that (under the above assumptions on the parameters)
M ./ ¢ serves as the orthogonality measure for the Meixner symmetric
functions.
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Remark 12.6. The classical univariate Meixner polynomials are autodual
in the sense that, in an appropriate standardization, they are symmetric
with respect to transposition of the index and the argument, which both
range over Zy. The similar autoduality property holds for the Meixner
symmetric functions viewed as functions on Y under the realization A =
A C Fun(Y).

Indeed, under this realization, there is a simple expression for the func-
tions FS,(-) on Y:

Al dimA/p
FS, () ={ (A =i} dimA
0, otherwise,

if uCA

where A ranges over Y; see [25]. Change the standardization of 9, by
setting

m, = C”(U; 2, Zlag) ml/u

where

vl g
C"(v;2,7,€) = (L) dllzr/1|1!’/

- [ G+ @) +e(0)

Oev

is a normalizing factor. Then the above formula for FS,(\) combined
with Theorem 11.3 yields the following explicit expression for the func-
tion M (A):

Ly el (L6 P!
MmN = > (-1 ( ¢ > (vl = DAL = [u])!

1S (rNA)
y dimv/p dim A/ u H 1
dim v dim A O (z 4+ (@) (' +c(O))
w

Clearly, this expression is symmetric under v < A:

m(\) =M\ (v), v, AeY.
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13. THE MEIXNER JUMP PROCESS ON THE SET OF YOUNG DIAGRAMS

Return for a moment to the classical Meixner polynomials M, (z) and
the associated difference operator DM on Z, . Let XM(t) denote the birth-
death process XM(t) on Z, whose jump rates are the coefficients of DM.
That is, the rates of the jumps ¢ — x4+ 1 and x — = — 1 are equal to
(1-&)7L¢(b+x) and (1—&) Lz, respectively. This is a well-known instance
of a birth-death process with linear jump rates. The negative binomial
distribution wM is the stationary distribution of XM(¢). The transition
function of XM(#) can be expressed through the Meixner polynomials
according to formula (2.1), where one has to substitute ¢, = M,, and
w = wM.

More generally, the coefficients A; and B; of the operator DM (see
Sec. 11) serve as the jump rates of a jump Markov process XN (t) on the
set ZY oq-

Even more generally, the following result holds (see [4]). Assume (z, z’)
is admissible and 0 < £ < 1. We know that then M. .. ¢ is a probability
measure. Its support supp M. .- ¢ is the whole set Y if (z,2’) belongs to
the principal or complementary series, or a proper subset of the form Y
or {A: X € Yn}if (2,2) belongs to the degenerate series.

Theorem 13.1. Let (z,2’) be admissible and 0 < £ < 1. Then there ex-
ists a jump Markov process XLVJZ/75 (t) whose state space is supp M. ./ ¢ and
whose jump rates are the coefficients A(\,0) and B(\,0) of the Meixner
operator M. The measure M, . ¢ is an invariant and symmetrizing mea-

sure for XM, (t).

2,258

The fact that the Meixner operator D™ is diagonalized in the basis
{M,} of Meixner symmetric functions leads to an expression for the tran-
sition function, which we state for the case of nondegenerate parameters.

Theorem 13.2. Let (z,2') belongs to the principal or complementary
series and 0 < ¢ < 1. The transition function P(t; A\, ») of the Markov

process Xg{'z,yg(t) on Y can be written in the form form

a1t I (M), (52)

. — tlv| v LASAZA ,
P(t,)\,%) - ';{6 '(/)M(mt,/m,,) MZ:Z 75(%)
Here \, » range over Y, the 9, ’s are viewed as functions on Y in accor-
dance with the realization A C Fun(Y), and the explicit expression for
YM(9M,9M,) is given in Theorem 11.8.
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14. APPROXIMATION MEIXNER — LAGUERRE

As well known, the Meixner polynomials M, (z) are discrete analogs
of the classical Laguerre polynomials L, (x). Namely, fix parameter b > 0
and let £ T 1. Then one has the limit relation

15%1(1 - f)nMn((]- - f)_lw) = Ln(w)a (141)
where the scalar factor (1 — &)™ is used to keep the coefficient of ™ to be
equal to 1.

The limit relation (14.1) can be easily derived from the explicit expres-
sions for the Laguerre and Meixner polynomials, see [18]. On the other
hand, (14.1) can be explained by convergence of the weight functions:
under the embedding

Zy - R, z— (1-¢&)z, (14.2)

the push-forward of the negative binomial distribution wM on Z, with
parameters (b,€) converges, as & T 1, to the Gamma distribution
(D(b))'ab~te %dz on R,.

One more explanation can be given in terms of the univariate Meixner
and Laguerre operators. In the same scaling limit regime (14.2), as the
mesh of the lattice goes to 0, the Meixner difference operator turns into
the Laguerre differential operator.

We are going to formulate similar statements in the infinite-dimensional
context.

Let G : A — A be the operator multiplying every homogeneous element
by its degree. In accordance with this, the operator (1 — ¢)~¢ : A —
A, which appears in the next theorem, acts in the mth homogeneous
component of A as multiplication by (1 — &)™™, for each m € Z..

The analog of (14.1) is

Theorem 14.1. Let v be an arbitrary partition, 9, € A be the cor-
responding Meixner symmetric function with parameters (z,z',¢) € C3,
& # 1, and £, € A be the Laguerre symmetric function with parameters
(z,2"). One has

lim (1= "1 -~m, = 2,

where convergence holds in the finite-dimensional subspace of A consisting
of elements of degree < |v|.

This is a direct corollary of Theorems 4.5 and 11.3.
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As a corollary of Theorem 14.1 combined with Theorems 4.7 and 11.5
one gets the following analog of the approximation of the univariate La-
guerre differential operators by the Meixner difference operator:

Theorem 14.2. Let ®©™ : A — A be the Meixner operator with param-
eters (z,2',€) € C3, £ #1, and ® : A — A be the Laguerre operator with
parameters (z,z'). One has

Jim (1 oMo (1-¢“=2.

Here we mean simple convergence on arbitrary elements f € A. Note
that both the pre-limit and limit operators preserve the filtration of A, so
that application of the both operators to a given f is contained in a fixed
finite-dimensional subspace of A.

For £ > 0 define the embedding

LE:Y—’ﬁ, )\:(a;b)'_)(a7676)7

where (a;b) = (a1,...,aq;b1,...,bq) are the modified Frobenius coordi-
nates of A € Y, by setting

ea;, 1<d eb;, 1<d
i {0, i>d {0, i>d’ A =2 (o + 52)
The image ¢ (Y) is a discrete subset of Q. As e | 0, it becomes more and
dense in 2. This is the analog of the embedding (14.2) (¢ =1 —&).
The analog of the approximation of the Gamma distribution by the
negative binomial distributions is

Theorem 14.3 (cf. Sec. 5in [1]). Let (z,2’) be admissible and £ € (0,1).
As £ 1 1, the pushforward of the measure M, ./ ¢ under the embedding

ti—¢ : Y —  weakly converges to the measure W ..

Recall that the weak topology on measures means convergence on
bounded continuous functions. Actually, more can be proved: conver-
gence holds on any test function on ﬁ, which is continuous and grows,
as w = (a, f,9) — oo not faster than a power of §. In particular, as test
functions one can take elements of A C Fun({2); then, by virtue of The-
orems 6.3 and 12.5, the claim of the theorem means convergence of the

formal moment functionals,

lim Mo (1-7 =,
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which agrees with Theorems 5.3 and 11.8.

Finally, the approximation Meixner — Laguerre holds on the level of

Markov dynamics, which is used in the proof of the very existence of the
diffusion process X (t).
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