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CURVES OVER EVERY GLOBAL FIELD
VIOLATING THE LOCAL-GLOBAL PRINCIPLE

ABSTRACT. There is an algorithm that takes as input a global field k£ and
produces a curve over k violating the local-global principle. Also, given a
global field £ and a nonnegative integer n, one can effectively construct a
curve X over k such that #X (k) = n.

1. INTRODUCTION

Let k be a global field, by which we mean a finite extension of either Q or
F,(t) for some prime p. Let Qy, be the set of nontrivial places of k. For each
v € Q, let k, be the completion of k at v. By variety, we mean a separated
scheme of finite type over a field. A curve is a variety of dimension 1. Call
a variety nice if it is smooth, projective, and geometrically integral. Say
that a k-variety X satisfies the local-global principle if the implication

X(ky) #92 foral veQ = X(k)#o

holds.

Nice genus-0 curves (and more generally, quadrics in P™) satisfy the
local-global principle: this follows from the Hasse-Minkowski theorem for
quadratic forms. The first examples of varieties violating the local-global
principle were genus-1 curves, such as the smooth projective model of
2y? = 1 — 17z, over Q, discovered by Lind [15] and Reichardt [21].

Our goal is to prove that there exist curves over every global field
violating the local-global principle. We can also produce curves having a
prescribed positive number of k-rational points. In fact, such examples
can be constructed effectively:

Theorem 1.1. There is an algorithm that takes as input a global field
k and a nonnegative integer n, and outputs a nice curve X over k such
that #X (k) =n and X (k,) # @ for all v € Q.
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Remark 1.2. For the sake of definiteness, let us assume that k is pre-
sented by giving the minimal polynomial for a generator of k as an exten-
sion of Q or FF,(¢). The output can be described by giving a finite list of
homogeneous polynomials that cut out X in some P™. For more details
on representation of number-theoretic and algebraic-geometric objects,
see [14, §2] and [2, §5].

2. PROOF

Lemma 2.1. Given a global field k, one can effectively construct a nice
curve Z over k such that Z(k) is finite, nonempty, and computable.

Proof. First suppose that chark = 0. Let E be the elliptic curve X (11)
over k. By computing a Selmer group, compute an integer r strictly greater
than the rank of the finitely generated abelian group E(k). Let Z =
X;(117™) over k. By [10, Theorem 6.6.6], the Jacobian Jz of Z is isogenous
to a product of E" with another abelian variety over k (geometrically,
these r copies of E in Jy arise from the degeneracy maps Z — E indexed
by s € {1,...,r} that in moduli terms send (A, P) to (A/(11*P), 11571 P)
where A is an elliptic curve and P is a point on A of exact order 117).
So the Dem’janenko-Manin method [9, 16] yields an upper bound on the
height of points in Z(k). In particular, Z(k) is finite and computable. It
is also nonempty, since the cusp oo on X;(11") is a rational point.
If chark > 0, let Z be any nonisotrivial curve of genus greater than
1 such that Z(k) is nonempty: for instance, let a be a transcendental
element of k, and use the curve C in the first paragraph of the proof
of Theorem 1.4 in [20]. Then Z(k) is finite by [23, Théoreme 4], and
computable because of the height bound proved in [24, §8, Corollaire 2].
O

Lemma 2.2. Given a global field k and a nonnegative integer n, one
can effectively construct a nice curve Y over k such that Y (k) is finite,
computable, and of size at least n.

Proof. Construct Z as in Lemma 2.1. Let x(Z) denote the function field
of Z. Find a closed point P € Z — Z(k) whose residue field is separable
over k.

If chark = 0, the Riemann—Roch theorem, which can be made con-
structive, together with a little linear algebra, lets us find f € k(Z) tak-
ing the value 1 at each point of Z(k), and having a simple pole at P. If
chark = p > 2, instead find ¢ € k(Z) such that ¢ has a pole at P and
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nowhere else, and such that ¢ takes the value 1 at each point of Z(k); then
let f =1t + gP for some g € k(Z) such that g has a pole at P of odd order
greater than the order of the pole of ¢t at P and no other poles, such that
g is zero at each point of Z(k), and such that ¢ + g? is nonzero at each
zero of dt; this ensures that f has an odd order pole at P and no other
poles, and is 1 at each point of Z(k), and has only simple zeros (since f
and df = dt do not simultaneously vanish). In either case, f has an odd
order pole at P, so (Z)(y/f) is ramified over x(Z) at P, so the regular
projective curve Y with x(Y) = &(Z)(y/f) is geometrically integral. A
local calculation shows that Y is also smooth, so Y is nice. Equations
for Y can be computed by resolving singularities of an initial birational
model. The points in Z(k) split in Y, so #Y (k) = 2#Z(k), and Y (k) is
computable. Iterating this paragraph eventually produces a curve Y with
enough points.

If chark = 2, use the same argument, but instead adjoin to x(Z) a
solution « to a® —a = f, where f € k(Z) has a pole of high odd order at
P, no other poles, and a zero at each point of Z(k). O

Proof of Theorem 1.1. Given k and n, apply Lemma 2 to find YV
over k with Y (k) finite, computable, and of size at least n + 4. Write
Y(k)={y1,---,ym}- Find a closed point P € Y —Y (k) with residue field
separable over k.

Suppose that char k # 2. Compute a,b € k* whose images in k* /k*?
are Fo-independent. Let S be the set of places v € k such that a, b,
and ab are all nonsquares in k,. By Hensel’s lemma, if v { 2,00 and
v(a) = v(b) =0, thenv ¢ S. So S is finite and computable. Let w € Q;,—S.
Weak approximation [1, Theorem 1], whose proof is constructive, lets us
find ¢ € k* such that ¢ is a square in k, for all v € S and w(c) is odd.
The purpose of w is to ensure that ¢ is not a square in k. Find f € x(Y)*
such that f has an odd order pole at P and a simple zero at each of
Y1, -+ ,Yn, and such that f(yn+1) = a, f(Yns2) = b, f(ynts) = ab, and
fWnta) =+ = f(ym) = c. If char k = p > 2, the same argument as in the
proof of Lemma 2.2 lets us arrange in addition that f has no poles other
than P, and that all zeros of f are simple. Construct the nice curve X
whose function field is £(Y)(v/f). Then X — Y maps X (k) bijectively to
{y1,--- ,Yn}, so X(k) is computable and of size n. Also, for each v € Q,
at least one of a,b,ab, ¢ is a square in k,, so X (k,) # <.

If char k = 2, use the same argument, with the following modifications.
For any extension L of k, define the additive homomorphism p: L — L
by p(t) = t* — t. Construct a,b € k such that the images of a and b in
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k/p(k) are Fo-independent. Let S be the set of places v € k such that a,
b, and a + b are all outside p(k,). As before, S is finite and computable.
Choose w € Q) — S. Use weak approximation to find ¢ € k such that
¢ € p(ky) for all v € S but ¢ ¢ p(ky). Find f € s(Y) such that f has
a pole of high odd order at P, a simple pole at y1,...,yn, and no other
poles, and such that f(yn+1) = a, f(Yn+2) = b, f(ynt3) = a + b, and
f(Yn+a) = -+ = f(ym) = c. Construct the nice curve X whose function
field is obtained by adjoining to x(Y") a solution a to a® — a = f. O

3. OTHER CONSTRUCTIONS OF CURVES
VIOLATING THE LOCAL-GLOBAL PRINCIPLE

3.1. Lefschetz pencils in a Chatelet surface. J.-L. Colliot-Thélene
has suggested another approach to constructing curves violating the local-
global principle, which we now sketch. For any global field k, there ex-
ists a Chatelet surface over k violating the local-global principle: see [19,
Proposition 5.1] and [26, Theorem 1.1]. Let V' be such a surface. Choose
a projective embedding of V. By [12, Théoreme 2.5], after replacing V' by
a d-uple embedding for some d > 1, there is a Lefschetz pencil of hyper-
plane sections of V, fitting together into a family V- P!, where V is the
blowup of V' along the intersection of V' with the axis of the pencil. Since
V — V is a birational morphism, the Lang-Nishimura theorem (see [17],
[13, Theorem 3], and also [6, Lemme 3.1.1]) shows that V has a k-point
if and only if V' does, and the same holds with k replaced by any com-
pletion k,. By definition of Lefschetz pencil, each geometric fiber of the
pencil is either an integral curve or a union of two nice curves intersecting
transversely in a single point. By requiring d > 3 above, we can ensure
that each geometric fiber is also 2-connected, which means that when-
ever it decomposed as a sum D; + Dy of two nonzero effective divisors,
the intersection number D;. D- is at least 2 (the 2-connectedness follows
from [25, Theorem IJ]; that paper is over C, but the argument works in
arbitrary characteristic). This rules out the possibility of a geometric fiber
with two components, so every geometric fiber is integral. The “fibration
method” (see, e.g., [8], [5, 2.1], [7, Lemma 3.1]) shows that there is a finite
set of places S such that for every place v ¢ S and every point t € P!(k),
the fiber of V' — P! above ¢ has a k,-point. For v € S, the set V (k) is

nonempty, and its image in P' contains a nonempty open subset U, of
P!(k,). By weak approximation, we can find ¢ € P!(k) such that ¢ € U,
for all v € S, and such that the fiber of V — P! above t is smooth. That
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fiber violates the local-global principle.

With a little work, this construction can be made effective. On the
other hand, this approach does not seem to let one construct curves with
a prescribed positive number of points.

3.2. Atkin-Lehner twists of modular curves. Theorem 1 of [3] con-
structs a natural family of curves over QQ violating the local-global prin-
ciple: namely, for any squarefree integer N with N > 131 and N # 163,
there is a positive-density set of primes p such that the twist of Xo(NV)
by the main Atkin-Lehner involution wy and the quadratic extension
Q(\/p)/Q violates the local-global principle over Q. See [3] for details,
and for a connection to the inverse Galois problem. The proof involves
Faltings’ theorem [11], so it does not yield an effective construction of a
suitable pair (N, p).

On the other hand, as P. Clark explained to me, a variant of this
construction is effective, and works over an arbitrary global field k. His
idea is to replace Xo(N) above with a modular curve X having both
[o(N) and T’y (M) level structures, for suitable M and N depending on &,
and to apply Merel’s theorem (or a characteristic p analogue) to X1 (M)
to control X (k). See [4] for details.

Remark 3.1. One can also find counterexamples to the local-global prin-
ciple over Q among Atkin-Lehner quotients of Shimura curves: see [5]
and [18].
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