3aluCKu HAYIHBIX
cemuuapos IIOMU
Towm 377, 2010 r.

H. Pasten, T. Pheidas, X. Vidaux

A SURVEY ON BUCHI’S PROBLEM: NEW
PRESENTATIONS AND OPEN PROBLEMS

ABSTRACT. In a commutative ring with a unit, Bichi sequences are those
sequences whose second difference of squares is the constant sequence (2).
Sequences of elements x,, satisfying 22 = (z + n)? for some fixed
are Biichi sequences that we call trivial. Since we want to study sequences
whose elements do not belong to certain subrings (e.g. for fields of rational
functions F'(z) over a field F, we are interested in sequences that are not
over F'), the concept of trivial sequences may vary. Blichi’s Problem for a
ring asks, whether there exists a positive integer M such that any Biichi
sequence of length M or more is trivial.

We survey the current status of knowledge for Biichi’s problem and
its analogues for higher-order differences and higher powers. We propose
several new and old open problems. We present a few new results and
various sketches of proofs of old results (in particular Vojta’s conditional
proof for the case of integers and a rather detailed proof for the case
of polynomial rings in characteristic zero), and present a new and short
proof of the positive answer to Biichi’s problem over finite fields with p
elements (originally proved by Hensley). We discuss applications to logic,
which were the initial aim for solving these problems.

1. PREAMBLE

We survey the current status of knowledge for Biichi sequences, and:

e recall several old and propose new open problems;

e present a number of new results (in particular Lemmas 5.2 and 11.1,
most of Section 12, and various ‘small’ results all along the text);

e present various sketches of proofs of old results (in particular: Vo-
jta’s conditional proof for the case of integers and a quite detailed
proof for the case of polynomial rings in characteristic zero); and
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e present a new (very short) proof of the positive answer to Biichi’s
problem over finite fields with p elements (originally proved by Hens-
ley in [9]).

As it is a survey on Biichi’s problem and not on Hilbert’s tenth problem,
we chose to refer only to surveys or books for the latter, except for a
few results that do not appear in those or are of a special importance
for our presentation. We have tried (certainly unsuccessfully) to make a
bibliography as complete as possible relative to Biichi’s problem.

Some of the facts that we present are yet unpublished.

Section 4 explains how a problem of Logic (the (un)decidability of
simultaneous representation of integers by diagonal quadratic forms) leads
naturally to Biichi’s ‘n squares problem’.

In Section 5, we propose an analogue of Biichi’s problem for a general
commutative ring with unit. Then we discuss the ‘conservation’ of positive
and negative answers to Biichi’s problem under various operations (like
intersection and cartesian product) and separate the rings of characterisitc
zero, for which Biichi’s problem has a negative answer, into two types.

In Section 6 we present a formulation of Biichi’s problem that usually
makes positive answers easier to obtain.

In Section 9 we present conditional positive answers to (strong forms
of) Biichi’s problem for number fields and a sketch of proof of a result by
Vojta: if a certain question of Bombieri has a positive answer then Biichi’s
problem for integers has a positive answer.

In Section 10 we present an analogue of Biichi’s problem for rings of
functions and the connection with Logic in this context. We also present
the general method to obtain a positive answer for rings of functions.

In Section 11 we generalize most of the concepts that were developed in
the previous sections to higher powers. We discuss intermediate problems
and explain the connection with Logic.

In Section 12 we explain in details two phenomena that occur in the
case of positive characteristic. In particular we explain how the notion of
a trivial sequence has to be adapted.

Section 13 is a list of open problems. We feel that some of them may
be not too hard to solve, while others may be rather difficult, given the
current status of knowledge in Number Theory.

The authors would like to thank A. Laface, J. Lipman, L. Lipshitz,
L. Moret-Bailly, B. Poonen, A. Shlapentokh and P. Vojta, for useful dis-
cussions and suggestions at various stages of preparation of this article. We
are very grateful to the referee for all his useful and clarifying comments
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and examples.

2. INTRODUCTION

A sequence of rational numbers (or integers, or elements of a commu-
tative ring A with unit) is a Bichi sequence if the sequence of its squares
has second difference constant and equal to the constant sequence (2).
Equivalently, a sequence (x,,) is a Biichi sequence if any three consecutive
terms x,,, T,+1, Tppo satisfy the relation

2 2 2 _
Tpyo — 2%T541 + x5, = 2.

Obviously any sequence of successive elements, z,, = = + n, is a Biichi
sequence. We call such sequences ‘trivial’ and we investigate the existence
of non-trivial Biichi sequences of length M, for ‘large’ M. It has been
conjectured that no such sequences of rational numbers exist, for M large
enough. Experimentally no non-trivial integer Biichi sequences of length
5 have been found, but the problem is still open — note that

11 50 71 88 103
97979797 9

is a Biichi sequence, cf [4].

On the other hand it has been established that in several commonly
used rings there are no ‘proper’ non-trivial Biichi sequences of sufficiently
large length. This is true for fields of rational functions in characteristic
0 and fields of global meromorphic functions (for rings of functions, the
word ‘proper’ is interpreted as ‘non-constant’). In positive characteristic
p > 2, the sequences of the form

() »

where s is a positive integer and f?° # f, are non-trivial Biichi sequences
of infinite length. It has been proved that these are the only examples
of proper non-trivial Biichi sequences of large length in fields of rational
functions (actually even in function fields of curves in large enough positive
characteristic).

We discuss in some detail the above and relevant results in Sections 5
to 12. We also discuss ‘Biichi sequences for higher powers’ which are char-
acterized by the property that the kth difference of their sequence of kth
powers is constant and equal to k!.
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Biichi sequences (for any power k) give rise to varieties of arbitrar-
ily large dimension and those provide a good testing ground for some
conjectures in Number Theory and Arithmetic Algebraic Geometry (cf.
B. Mazur [14] and P. Vojta [29]). Moreover, some of the mentioned prop-
erties permit applications in Logic (this was the initial intention of Biichi,
cf. L. Lipshitz [11]). The main relevant results so far are strong versions
of negative answers to “analogues” of Hilbert’s tenth problem. Hilbert’s
tenth problem, the tenth in the famous list of problems that Hilbert gave
at the International Conference of Mathematicians in Sorbonne (Paris),
in 1900, was:

Hilbert’s tenth problem: To find a process according to which one can
determine, in a finite number of steps, whether a polynomial equation
with integer coefficients has or does not have integer solutions.

The problem was answered in 1970 when Yu. Matiyasevich, based on
work of J. Robinson, M. Davis and H. Putnam, proved that no such ‘pro-
cess’ (in modern terminology: algorithm) exists - and all this was built on
the work of (among others) K. Gédel and A. Turing who laid the necessary
foundations in Logic (see [13] and [5]).

Later, various authors asked similar questions for rings other than the
integers (first J. Denef and L. Lipshitz). An outstanding problem, the
similar question for the field of rational numbers, remains open. So does
the similar question for any field of rational functions, such as C(z), over
an algebraically closed field. For surveys of such results see for example
[7], [24] or [25].

All the negative existing results (non-existence of an algorithm, or, in
the terminology of Logic, undecidability) have been obtained via defin-
ability results: working in a ring A, one shows that certain, sufficiently
complicated sets, are positive-existentially definable, which in this context
usually means projections of algebraic sets along some of the directions
of the variables. The sets that are thus defined are then used to encode
effectively the set of rational integers together with the graphs of integer
addition and multiplication, which results in an argument of the type: ‘If
there were an algorithm to solve polynomial equations over A, then one
would be able to convert it to an algorithm to solve positively Hilbert’s
tenth problem’; a contradiction that shows that the analogue of Hilbert’s
tenth problem for A is undecidable.

An analogue of Hilbert’s tenth problem for a polynomial ring F[z] or a
field of rational functions F'(z) (where F' is a field, z is a variable) is the
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question:

Is there an algorithm which, given any polynomial equation (in several
variables), with coefficients in Fy[z] (Foy is the prime subfield of F') decides
whether the equation has or does not have solutions in F[z] (or in F(2))?

The answer for F[z] in the characteristic zero case is negative (see Denef
[6], where a negative answer is obtained also for F(z), for F' a formally
real field). A similar result is true if one asks about the solvability in
F[z] of polynomial equations with coefficients in F, but together with
conditions which mean that some of the variables represent non-constant
polynomials (cf. [22]). In logical terminology this amounts to asking the
(un)decidability of the positive-existential theory of a structure (such as a
polynomial ring) in the language L1 = {0,1, +, -, 7} where T is a symbol
of unary relation for ‘z is non constant’. There are very few results for
decidability questions in that language, but Biichi’s problem, whenever it
has a positive answer, is particularly useful in that direction (since Biichi
sequences, viewed as varieties, are defined over the prime subfield) — see
for example any of [18, 19] or [21]. All existing results for questions of
decidability of existential theories over ‘global domains’ (number fields,
fields of rational or algebraic functions, etc.) are of a negative nature
but many problems remain open, e.g. a similar question for F(z), for an
algebraically closed field F'.

We consider that the main contribution of this paper is a large number
of questions for future research that arise naturally from our discussion.

3. DEFINITIONS AND NOTATION

e All rings will be commutative with unit.

e N, Z, Q, R, C stand respectively for the set of non-negative natural
numbers, the ring of integers, and the fields of rational, real and
complex numbers respectively.

e The prime subring of a ring A is the natural image of Z in A.

If A, is a ring of functions in the variable z, we will say that « € A,

is mon-constant if it depends on z.

7 is the ring of algebraic integers.

Q is the field of algebraic numbers.

IF, is the field with ¢ = p" elements, where p is a prime number.

Zy, Qp, C, stand respectively for the ring of p-adic integers, the field

of p-adic numbers and the field of p-adic complex numbers (complete

and algebraically closed).
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e 7/nZ is the ring of integers modulo n.
e Lr={0,1,+, } is the ring language. We adopt the convention that

in any ring the symbols + and - are interpreted by the ring opera-
tions in the usual way and the symbols 0, 1 are interpreted by the
corresponding neutrals.

For any positive integer k£ > 2, P* is a unary predicate which, in
any given ring, is interpreted by

P¥(z) if and only if ‘z is a kth power’.

e £k =1{0,1,+, P*} is Biichi’s language for kth powers.
e £, =1{0,1,+,-,2} is the augmentation of the ring language by the

constant-symbol z, which, in any ring of functions of one indepen-
dent variable, is interpreted as the independent variable.

£k =1{0,1,+, P* f.}, where f. is a symbol of unary function inter-
preted as f(z) = zz, is Biuchi’s language for kth powers and rings
of functions.

The symbol TR®(M) stands for the positive-existential theory of the
L-structure 9.

A Biichi System for kth powers is a formal system (Sk,) of M — k
equations

k1 o
'21 (1)1 ek = k!
i=

(Sjli/[) E (—1)i_n+k[:2_n+kxf =k
i=n—~k
. o | .
E (—1)Z_M+kEZ_M+kxf = k!
i=M—k

in the variables z;, where (" = m (we use the word ‘formal’

because we do not want to specify in the notation the ring in which
we consider the system). Equivalently, if o = (zF)1< < is a se-
quence of kth powers of variables, the system (S%,) can be written
as

A*(0) = (B)1<n<nr—k,
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where A¥ (o) stands for the kth difference sequence of the sequence o.
For example, for k = 2:

(S

is equivalent to

z3 — 223 + 2 =2

2 2 2 2 _
o) Tpyo— 2T, t;, =2

2 2 2 _
Ty — 2%y T T30 =2

(w%\l - 5”%\/1—1) - (:U%\/I—l - 33%\/[—2) =2.

An M -term Biichi sequence is a finite sequence (z,,)1<n<nm satisfying

(Sp).

A Biichi sequence
A trivial Biichi se
x such that zf =

is a finite or infinite Biichi sequence.
quence is a sequence (x,,) for which there exists an
(z 4+ n)* for all n. In any commutative ring with

identity these sequences are trivially solutions of (S%,), for any M
(depending on the ring in which we consider the system, some other

sequences may be

considered as trivial).

DFk(A) is the problem of simultaneous representation of elements of

a subset B of the

ring A by diagonal forms of degree k over B. The

subset B will depend on the context (for example, if A is a number

field, then B will
and 11.

B*(A) is Biichi’s
tions 4, 5 and 11.

be the natural image of Z in A). See Sections 4

Problem for kth powers over the ring A. See Sec-

HP} (A) is Hensley’s Problem for ¢ and k over the ring A. See Sec-

tions 6 and 11.
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4. THE ORIGIN OF BUCHI’S PROBLEM

Already in 1938, it was known that any system of diophantine equations
could be reduced in an effective way to a system of equations of degree
at most 2 (see for example Skolem [27], Britton [3] or Davis [5]). Hence,
by the negative answer to Hilbert’s tenth problem, it follows that there
is no algorithm to decide whether or not a system of quadratic equations
has an integer solution. So it is natural to wonder about the existence of
an algorithm which solves systems of diagonal quadratic equations. Hence
Biichi asked:

Simultaneous Representation of Integers by Diagonal Quadratic
FormsDF?2(Z) Is there an algorithm to decide whether any given system
of a finite number of diophantine equations, each of the form

§ 2 _
Qil; =7y
i

has an integer solution?

Following the work of Siegel, it is proved in [8] that there exists an
algorithm to decide whether a single polynomial equation over Z (or over
Q), of degree at most 2, has an integral solution.

On the other hand, the £2-positive-existential theory of Z is undecid-
able if and only if the following problem is undecidable:

TP3(Z) Given a system S of a finite number of diophantine equations,
each of the form
>+ Biyi =1, (2)
4 J

does S have an integer solution (the coefficients «;, ; and v are integers
and each variable y; is distinct from each variable x;)?

Since any integer can be written as u? + v? — w? for some integers u,
v, and w, the existence of solutions for Equation (2) is equivalent to the
existence of solutions for the equation

Sl + 300 0] ) =
i J

where the u;, v; and w; are new variables. So we have:

TPZ(Z) undecidable <= DF?(Z) undecidable.
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Since TE‘; (Z) is undecidable, in order to obtain the undecidability of
TS (Z) it suffices to find an L£?-positive-existential formula that defines
multiplication, that is, a positive-existential formula of £ with free vari-
ables z, y and t which is satisfied in Z if and only if zy = ¢.

One might think that the following observation solves the problem:

since

dry = (x+y)” — (v —y)?

the formula ¥(z,y,t)
FuIv ((z+y)’ =un(z—y)> =vAdt=u—v)

is true in Z if and only if zy = ¢t. But this formula is not an £?-formula,
because in the language £? we cannot in an obvious way express that a
variable is the square of another variable. In the language £2, we can only,
a priori, express that a variable is the square of some other element.

We observe that, over any ring of characteristic other than 2, our prob-
lem is now reduced to finding a positive-existential formula ¢(r, s) in the
language £? which is satisfied in Z if and only if s = r2: if such a ¢ exists,
then the formula

Fuv (p(z +y,u) Ap(x —y,0) N4t =u—v)

is an £2-formula that is satisified in Z if and only if ¢ = zy. This is what
we wanted. So

How can we find such a formula ¢(r,s)?

Let us try to explain how this logical problem gives rise naturally to
Biichi’s n squares problem. We want to find some kind of characterization
of the function f(z) = 22, but we only have the right to sum and say that
something is a square. If we wanted to characterize f among polynomials
in Z[z] and if we could use derivatives with respect to z in our language,
then by saying that the second derivative of f is constant and equal to 2,
we would characterize f up to a degree one term:

{g€Z2]:g" =2} = {#* + az + b:a,b € Z}.

Since we do not have derivatives, we look at the discrete analogue, taking
the second difference of the sequence (g(n)),ez (this is the usual way to
proceed in discretization processes). It is easy to see that we have:

{g € Z[z]:Vng(n +2) —2g(n+1) + g(n) =2} = {z* + az + b:a,b € Z}.
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Since we want a statement about integers and not about polynomials,
we may consider sequences of values of the polynomials g. We obtain the
following equalities of sets

{(un)nez:Vnuy, € Z and upto — 2Upy1 + up = 2} =
{(9(n))nez:g € Zl[z] and Vng(n +2) —2g(n +1) + g(n) = 2} =
{(n* + an + b)nez:a,b € Z}

where the first equality can be proved by solving the recurrence w2 —
2up41 + u, = 2 (it is actually well known that the first set is included in
the second one). In order to eliminate the degree one part in the sequence
(n? 4+ an + b),ez, we consider only sequences of squares in the left hand
side set. After a standard computation, we obtain:

{@nea: s — 2 4% = 2) = {(@ +0))nczie € 2

(of course one could prove this equality of sets directly, but our purpose
was to show how Biichi’s problem comes from the problem of Logic). We
are almost ready except that we are using a universal quantifier. So the
question is:

Biichi’s Problem, or the n squares problem.

B2(Z) Does there exist a positive integer M such that any sequence of M
integer squares, whose second difference is constant and equal to 2, is of
the form (z +n)%, n=1,..., M, for some integer =7

If Biichi’s problem has a positive answer, then it is easy to see that the
L2-formula o(r, s)

M M-2
Juy - - Jupy </\ P2(ui)> A ( /\ Uit2 — 2Uiqp1 + Uy = 2)

i=1 =1

ANs=ur AN2r+1=us —u

is satisfied in Z if and only if s = r2. Unfortunately, Biichi’s problem is
still open.
5. OTHER RINGS

Observe that Biichi’s problem as stated makes sense in any commuta-
tive ring A with a multiplicative unit (instead of Z).
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B2(A) Does there exist a positive integer M such that any sequence of M
squares of A, whose second difference is constant and equal to 2, is of the
form (z +n)%, n=1,...,M, for some x € A?

It is easy to find rings for which the answer is trivially negative. Note
the following;:

General Rule If B2(A) has a positive answer, then for any subring B of
A, B%(B) has a positive answer.

So in particular a positive answer for B2(A) for any ring A containing
Z would imply a positive answer for Z.

Observe first that if the ring A has characteristic 2, then B?(A) has
trivially a negative answer. Indeed, the system (S%,) gives: 22 = z2, if
and only if n — m is even. Hence, any constant sequence of length M will
satisfy (S%,), and such a sequence is non-trivial.

Also, if A = Q is the field of algebraic numbers, then for any M, any

sequence of the form

S SN v

is a solution of the system (S3,). Actually, B*(Z N R) has a negative
answer: take for example the sequence (vn? + 1)p>1. We ‘suspect’ that
B?(Z,) (where Z, is the ring of p-adic integers) has a negative answer as
well.
We may distinguish two kinds of rings in which Biichi’s problem has a
negative answer:
e Type 1: Rings for which there exists an infinite non-trivial Biichi
sequence.
e Type 2: Rings for which there exist non-trivial Biichi sequences of
any length, but there is no infinite one.
All the examples we gave here are of type 1, but we believe that it is
possible to cook up a ring of type 2.

Philosophy of the Problem:
1. If there are too many squares in the ring, then Biichi’s problem for
this ring should have a negative answer.
2. If there are really too many squares in the ring, then Biichi’s problem
for this ring should have a negative answer of type 1.

We suspect that, in any characteristic, the intersection of two rings for
which Biichi’s problem has a negative answer does not necessarily have a
negative answer (the opposite would be too nice to be true).
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Open Problem 5.1
1. Let C be a ring of characteristic 0 and A and B be subrings of C'.
If B%(A) and B?(B) have a negative answer then does B?(A N B)
necessarily have a negative answer?
2. Do there exist rings A and B of type 1 whose intersection is of
type 27

To find a counter-example to Open Problem 5.1 (1) above is harder than
proving B2(Z), because of the General Rule given above (see Section 12
for a counter-example in positive characteristic). Observe also that Open
Problem 5.1 (2) makes sense only for rings of characteristic zero.

Can we find rings for which B?(A) has trivially a positive answer?
Let us show that B?(Z/4Z) has a positive answer with M = 3. The
squares are 0 and 1. Suppose first that z2 41 = 0 for some n. Then from
x3 o — 222 +af = 2, we see that 2%, = x7 = 1. Next, if for some n
we have 22, =1 then we get 22, = 2 = 0. Hence, the only solutions
of the system (S3%,) satisfy 22 = (z + n)?.

In [9], Hensley proves that B?(F,) has a positive answer with M = p.
By direct computation (checking all possible cases), we see that actually
M = 4 is enough in order to get a positive answer to B?(FF5) (and this M
is optimal). We do not know what the optimal M is for F, in general.

Lemma 5.2. Let A and B be rings. Then B*(A x B) has a positive
answer if and only if both B%(A) and B?(B) have a positive answer.
Moreover, if B?(A) has a positive answer with M = M4 and B?(B) has
a positive answer with M = Mp, then B2(A x B) has a positive answer
with M = max{Ma, Mp}.

Proof. Let M4 be such that (S3;, ) has only trivial solutions in A and Mp
such that (S3,,) has only trivial solutions in B. Let M be the maximum
of My and Mp and suppose that some o = ((z1,¥1),...,(Zpm,Yynm)) IS a
solution to the system (S%;) in A x B. Through the canonical projections
m:A X B — A and m: A X B — B, we get solutions 7 (o) of (Sy) in
A and m3(o) of (Sp) in B, which must be trivial by hypothesis, hence
satisfying 22 = (x + n)? and y2 = (y +n)? for some # € A and y € B.
Hence o satisfies

(27, y7) = ((z + 1), (y + n)*) = [(z,y) + n(1, 1))

for each n.
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Conversely, if for any N we can find a non-trivial sequence (z;)¥ , in
A, then ((z;,4))Y, is a non-trivial sequence of length N in A4 x B. O

From Lemma 5.2 we see that B?(Z/60Z) has a positive answer for M =
5 (actually M = 4 works and is optimal since Z/60Z = Z/5Z x Z]4Z x
Z/3Z and it is optimal for all B*(Z/5Z), B*(Z/AZ) and B*(Z/3Z)).

6. HENSLEY’S PROBLEM

D. Hensley in [9] noticed that Biichi’s Problem for integers could be
formulated in a quite simpler way (known by people working in Difference
Equations).

Much of what we will present here works for any characteristic other
than 2, but for simplicity we work in zero characteristic (see Section 12 for
the case of positive characteristic). Consider a solution (z,) of the system
(S3,) over any ring of characteristic 0. It is easy to see that the quantity

22— a2
un:ﬁ—(n+1) (3)

(for n > 2) does not actually depend on n. Oberve that p2 belongs to the
ring. Hence pu,, belongs to the ring for each n.

Assumption 6.1Suppose that there exists v € A such that p,, = 2v.

We get,
22— 22 =2(n— v+ (n—1)(n+1),

n

hence

x3 —2vn —n? =z} —2v— 1.

Therefore, we have
22— (v+n)? =z - (v+1)?

and x2 — (v +n)? does not depend on n. Write this quantity a. If we can
prove that a = 0 then we will have showed that all the solutions of (S%,)
are trivial, and obtain a positive answer to B?(A).

On the other hand, suppose that B2(A) has a positive answer for some
integer M. Any sequence of the form

(1/+n)2—|—a, 1<n<M,
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has second difference constant equal to 2. Hence, if it is a sequence of
squares, then there exists € A such that for each n

(v+n)?+a=(z+n)?

(since B2(A) has a positive answer). In particular, for n = 1, we have
vV 4+ 2 4a =2+ 2z,

and for n = 2, we have
v +4v +a=2° +4z.

Taking the difference, we obtain v = « and conclude that a = 0.
This analysis leads us to the following:

Hensley’s Problem:
HP3Z(A). Does there exist a positive integer M such that, if for some
fixed elements v and a of A the quantities

(v+n)?+a

are squares forn =1,..., M, then a =07

We proved in the above discussion that B?(A) implies HP2(A) for any
ring A of characteristic 0, and that B?(A) is equivalent to HP2(A) for
any ring A of characteristic 0 if Assumption 6.1 holds. In [16], the first
author shows that this assumption holds in any ring A such that, either 2
is invertible in A, or A/4A is isomorphic to Z/4Z (it comes from an easy
study of cases of the system (S%,) modulo four).

It turns out that it is usually much easier to work with Hensley’s for-
mulation of Biichi’s problem than with the original formulation by Biichi.
Nevertheless, it is Biichi’s formulation that is needed in order to obtain
logical consequences.

7. OPTIMAL BOUNDS FOR THE LENGTH OF SEQUENCES

We may reformulate B?(Z) in the following way:
BZ(Z) Does there exist an integer M such that no M -term non-trivial
Biichi sequences exist?

D. Hensley in [10, Theorem 2.1] characterizes all the non-trivial (non-
negative increasing) 3-term Bilichi sequences of integers up to any fixed
integer z.
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Theorem 7.1 (Hensley). Let = be a positive integer. Let o, be the set
of all non-trivial 3-term Biichi sequences (x1,z2,x3) with 0 < 1 < 2 <
x3 < x. Let 7, be the set of pairs (u,v) of positive integers such that

e u IS even;

e v divides v® —1;

e u? <2(v? —1); and

o u? +4uv +2(v? — 1) < 2ux.

The following maps

Op — T
(1, 22,23) — (222 — 21 — 23, T3 — T2)
and

Ty — O

v vi—-1 u v2—1 u v2—1
(o) (—gt g tvt— g Tt

2

are reciprocal bijections. Moreover, there exist positive constants a and (3
such that, for large enough z,

o< |Ux|

<p

zlogx
where |o,| stands for the cardinal of o.

It seems that Biichi knew the existence of infinitely many non-trivial
4-term Biichi sequences. For example, taking the square of the sequence
o = (6,23,32,39), we get the sequence (36,529,1024,1521), whose first
difference is the sequence (493,495,497) and second difference is (2, 2).
Hence o is a non-trivial 4-term sequence which satisfies (S7).

Hensley in [10] (in a note just after the end of the proof of Theorem
2.1) indicates a way to generate infinitely many non-trivial 4-term Biichi
sequences. Indeed, taking w an arbitrary positive integer, u = w + 3 and
v = 2w? + 6w + 1, the sequence

_ v -1
r1 = 2u —Uu
To=x1+2u+v

r3 =Ty + v

T4 =23+ V— 2w
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is a non-trivial 4-term Biichi sequence. Hensley then observes that since
x4 is a degree 3 polynomial in w, there exists a constant a such that, for
any x large enough, at least ax3 non-trivial 4-term Biichi sequences exist.

We do not know whether or not there exists any non-trivial 5-term
Biichi sequence of integers. In this direction, R. G. E. Pinch in [Pinch]
proved that ‘many’ non-trivial 4-term Biichi sequences cannot be extended
to 5-term Biichi sequences. Actually the original problem posed by Biichi
was:

Open Problem 7.2Does there exist a non-trivial 5-term Biichi sequence?

8. BUCHI’S PROBLEM WITH CONSTANT # 2

Various researchers (Allison [1] in 1986, Pinch [23] in 1993, Bremner
[2] in 2003, and Browkin and Brzezinski [4] in 2006) have been studying
the following problem:

A Generalized Bichi’s Problem for Squares:
B2%(Z, ) Does there exist an integer M such that the system of equations

2 2 2 _ —
Tpyy — 2T, +x, =0 n=1...,M~-2,

where ¢ € 7, has only solutions whose squares are the squares of an
arithmetic progression (other types of solutions are called non-trivial)?

We refer to Browkin and Brzezinski [4] for a general survey of results
in this direction.

Changing the constant 2 of the original problem seems to be related to
B?(K) where K/Q is a finite extension. For example, solving the system
of equations

@i, —2rr  +22 =3, n=1...,M-2

over Z is equivalent to solving the system

2 ’ 2 ’ 2 ’
< §$n+2> -2 (\/;anrl) + <\/;£Un> :2, n = 1,...,M—2

over Z.
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9. NUMBER FIELDS

In 2001, P. Vojta gave a new piece of evidence for B2(Z) (actually
even for B?(Q)) to have a positive answer, under the assumption that the
following (open) question by Bombieri would have a positive answer:

Bombieri’s Question

Let X be a smooth projective algebraic variety of general type, defined
over a number field k. Does there exist a proper Zariski-closed subset Z
of X such that X (k) C Z7

Using Bogomolov theory, Vojta is then able to show:

Theorem 9.1 (Vojta [29]). If Bombieri’s Question has a positive answer,
then there are only finitely many non-trivial 8-term Biichi sequences of
rational numbers.

So if Bombieri’s question had a positive answer, then Vojta’s theorem
would imply in particular that B?(Z) would have a positive answer for
some M > 8.

We present here a sketch of the proof of Vojta. Note that the proof
works for any number field K just by replacing Q by K in the proof (this
was first noted by Yamagishi [30]).

Sketch of the proof of Vojta’s result. Let X, = PZ and for n > 2
define X,, C P¢ to be the complete intersection surface

2 2, .2 9.2
T3 — 205 + a7 = 213

] — 222 + 23 = 222

2
n

x2 — 222 | + a2, =21l
The variety X,, is smooth with canonical sheaf Ox, (n—5). This says that
X, is of general type for n > 6. Since [0 : --- : 0: 1] ¢ X, for n > 2, the

rational map
[o @y txp] = [xor@y i Tyt
defines a morphism 7, : X;,, — X,,—1 of degree 2, ramified along the

smooth curve
C, =X,n{z, =0}
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Given an algebraic complex surface X, an invertible sheaf L on X and a

section
w € H°(X2, L ® S*(2,))

we say that a curve Y C X with normalization i : ¥ — Y is w-integral
if the pull-back i*w vanishes identically on Y. Note that the condition of
being an w-integral curve, locally requires Y to be a solution of a certain
differential equation on each affine chart of X. A standard computation
shows that the form

W= 2 1T2dr; @dzy + (1 — 2} — 23)dr) @ dre + T1T2dTy @ doy 4)
extends to a section
wa € HO(X27 OX2(5) & 52(QA1X2))

The condition of being an w»-integral curve becomes locally equivalent to
the condition of being the solution of the differential equation that comes
from expressing one affine coordinate in terms of the other in Equation
(4). So, the only ws-integral curves on X, are:

e the 4 trivial lines £, = +x5 — xo;

e the 3 lines at infinity zog = 0, 1 = 0 and z» = 0; and

e some smooth conics.

For n > 2, call R, C X,, the union of C,, and the pull-back of each C}
via

Th41 O TMg42 O+ O Ty,

for 3 < k < n. Let w, be the pull-back of wy to X,, via the 7. A crucial
part of the proof is that one can find a section

wy, € H(X5,0(7T —n) ® S*(,))

such that the w,-integral curves and the w/,-integral curves are the same
out of the set R,. One can show that each w,-integral curve on X,, is the
pull-back via the 7y, of some ws-integral curve on X,,. Hence if Y C X, is
a w),-integral curve, then Y lies

(a) above a trivial line of X5: in this case Y is one of the 2™ trivial lines

+x) =+29 — 29 = -+ = £T,), — NT; OT

(b) above a line at infinity of X»; or
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(c) above a smooth conic in Xs; or
(d) in R,

If n > 8 then the only case when the w/ -integral curve Y has genus
at most 1 is case (a) (this is done by applying the Riemann—Hurwitz
formula to the composition of the maps 7). Moreover, one can show that
for n > 8, the 2" trivial lines are the only curves on X,, with genus at
most 1. Indeed, it is enough to show that a curve Y C X,, with genus at
most 1 must be w/ -integral. If we write i : ¥ — Y for the normalization
of Y, then

i*wy, € H' (X, Ox, (7= n) ® KF?)

must vanish identically because the degree of i*Ox, (7 —n) is negative for
n > 8 and the degree of IC;%Z is at most 0 (note that the genus of Y is at
most 1).

Let us now prove the theorem. Assuming a positive answer to
Bombieri’s Question for Xg, there exists a proper Zariski-closed set
Z C Xg which contains all the Q-rational points of Xg. Such a set Z
is a finite collection of curves and points. Hence, by Falting’s theorem,
the set of Q-rational points lies (up to a finite number of them) in the
union of all the curves with genus at most 1, that is, the 2% trivial lines.
The points on trivial lines correspond to the trivial solutions of the Biichi
system of equations, and the other ones to non-trivial solutions. Thus we
get only a finite number of trivial solutions for n = 8. Each of them can be
extended only to a solution of finite length because all their subsequences
of lenght 8 are already counted. So we can conclude by taking M large
enough. O

In 2009, the first author [17] adapted Vojta’s method in order to obtain
the following result (for number fields) on representation of squares by
quadratic polynomials:

Theorem 9.2. If Bombieri’s Question has a positive answer, then there
exists an absolute constant N (that can be chosen to be 9 if Bombieri’s
question is true for any surface) such that, for each number field K/Q and
each set {ai,... ,an} of N elements in K, there is only a finite number
of polynomials f = x> + ax + b € K|[z] not of the form f = (z + c)?,
satisfiying that f(a;) are squares in K for each i.

Corollary 9.3. Let K be a number field. If Bombieri’s Question has a
positive answer, then the positive existential theory of K in £? is unde-
cidable if and only if the positive existential theory of K in the language
of rings is undecidable.
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For a survey of results about Hilbert’s Tenth Problem for number fields,
see for example [25].

10. RINGS OF FUNCTIONS IN CHARACTERISTIC O

Consider a ring of polynomials A[z] over the ring A. Since the recur-
rence relation (S%,) defining Biichi sequences has coeficients in the prime
subring of A, from any Biichi sequence (z,,) of A[z] we may obtain a Biichi
sequence in A, by evaluating the independent variable z at any point of A.
Thus we cannot hope to solve Biichi’s problem for the ring A[z] if we do
not know how to solve it for A. But it still makes sense to ask whether
there are non-trivial Biichi sequences in A[z], other than those that may
possibly be in A. Therefore, we ask whether there exist non-trivial Biichi
sequences (zy,) in A[z] such that at least one of the z,, is non-constant.

Biichi’s Problem for rings of functions:

B2(A.) Does there exist an integer M such that any sequence of M squares
in A, not all constant, whose second difference is constant and equal to
2, is of the form (z +n)?, n=1,... ,M, for somez € A.?

In this context, Bichi sequences will refer to Biichi sequences having
at least one non-constant term.

In the case of rings of functions of characteristic 0, Hensley’s problem
becomes:

Hensley’s Problem for a ring of functions in the variable z:
HP2(A.) Does there exist an integer M such that, if for some fixed ele-
ment v of A,, the quantities

(v+n)+a

are all squares for n =0,... ,M — 1 (and not all constant), then a = 07

It is easy to see that the proof given at the beginning of Section 6 is
still valid and shows that if Assumption 6.1 holds in A, then B?(A,) is
equivalent to HP3(A.).

The first positive answer to this question was given by P. Vojta in 2001
[29]. He used Nevanlinna theory and Algebraic Geometry in order to prove
that Biichi’s problem for the field of complex meromorphic functions has
a positive answer for M = 8. In the same article, he obtained a posi-
tive answer for function fields of curves of characteristic 0 (in this case
the bound M depends on the genus) — see [7, 15] and [25] for results on
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Hilbert’s tenth problem for function fields. In particular this solves posi-
tively B2(F(z)) for any rational function field over a field of characteristic
zZero.

In 2006, the second and third authors [19] developed an elementary
method to solve B2(F(z)) that has the advantage to be adaptable to
various other structures (as well as to Biichi’s problem for higher powers
and to the case of positive characteristic — see Sections 11 and 12), but
does not give usually bounds as good as Vojta’s (M = 14 for polynomial
rings and M = 18 for rational function fields).

In 2009, the third author together with A. Shlapentokh proved that
this method is adaptable to any algebraic function field of characteristic 0
(see [26]).

The first author showed that the same method (using Nevanlinna the-
ory) can be adapted to prove that Biichi’s problem for the field M (C,) of
p-adic complex meromorphic functions has a positive answer for M = 42
(see [17], 2009). This improves the undecidability results in [12] by Lip-
shitz and the second author, and in [28] by the third author.

In all known cases, whenever B2(A) has a positive answer for an integral
domain A, we can adapt the proof to the field of fractions of A. So we
wonder:

Open Problem 10.1. Let A be an integral domain and K be its field of
fractions. Assume that B2(A) has a positive answer. Does it follow that
B2(K) has a positive answer as well?

Let us now give a sketch of the method in the simplest case, the case
of the polynomial ring C[z] (see [19]).

B?(Clz]) has a positive answer.
Suppose that we have a system of M = 14 equations

U, =w+n)?+a, n=1,...,14 (5)
where u,, = 2. Taking derivatives we obtain:
u, =2v'v+2nv +d. (6)
Plugging the expression for n obtained from (6) into (5), we obtain

4 U, = (2 +ul, —d —20/0)? + 4%
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which simplifies into

/

4%, = (ul, —a')* + 4%,

Hence the quantity
Wra+a? =4 u, — ) +2ud

=, (41/2xn — 4x;2xn + 4;6;0/) =z,A, (7)

does not depend on n (recalling that u, = z2). Therefore, x, divides
4020 + a'? for all n.

We will now show that any three distinct z,, have to be coprime. Con-
sider three distinct equations from System (5):

up=w+n)+a, Up=w+m):+a, u.=@w+7r)?+a

and suppose that for some zg € C we have u,,(20) = um(20) = u,(20) = 0.
Hence the degree 2 polynomial equation

(v(20) + X)? +a(z0) =0

has three distinct roots, which is impossible.

Since the x,, are coprime in triples, the degree of their least common
multiple increases as M increases. One can show that if M > 14 then the
degree of the least common multiple of the z,, will be higher than the
degree of 4v 2a + a 2, getting a contradiction unless A,, = 0 by Equation
(7).

At this stage, we still have to solve the differential equation given by
(7) , ,

4w'a+ad” =0. (8)

First observe that v cannot be a constant (we could have proven this from
the beginning, but it would not easily generalize to other rings). Indeed,
if it were constant then a would be constant, hence every x, would be
constant, which would contradict the hypothesis.

From Equation (8) we see that a has to be a square, say a = a?, so the
equation can be written as:

4702 +4a'%a? = 0,
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and we deduce that a = 0 or v/ + o/ = 0.
Case 1: a # 0. We have then

v=cia+ K

for some constant K € C and € = £1. Note that we have

a=a’= <”‘_K)2 - —(v-K)?,

el

hence from Equations (5), we get

2 =w+n)?-wv-K)?=n+K)2v+n—K).

n

If n # — K, write

2
2 Zn
=|—) =2v+n-—-K. 9
Yo (m) ®)
Choose three distinct indices n, m and r, all distinct from —K.

First way (generalizes to various fields): Writing

(Ynymyr)? = 2v — K +n)(2v — K +m)(2v — K + 1),
we obtain a (non-constant) rational parametrization of the elliptic curve
Y2 = (X +n)(X+m)(X +7),

which is impossible.
Second way (generalizes to higher powers): Considering

(yn_ym)(yn+ym):yi—y?n:n—m;ﬁo

we see that both y,, —y,, and y, +y,, are constant polynomials. Therefore,
Yn is a constant polynomial, which contradicts the fact that v is non-
constant (by Equation (9)).

Case 2: a = 0. In this case we also have a = o? = 0. Hence 22 =
(v + n)? for all n, which means that the sequence (z,,) is a trivial Biichi
sequence. [l

Note: The first author in [16] shows how to get a contradiction in Case
1, without the use of elliptic curves. Instead, he shows that the greatest
common divisor of the z/ x,, cannot have too high degree (here we showed
that the least common multiple of the z,, cannot have a degree that is too
small). This combinatorial argument that avoids the use of elliptic curves
turned out to be essential in order to make the method work for other
rings of functions.
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11. HIGHER POWERS

Since Biichi’s problem is about the second difference of sequences of
squares, it is quite natural to study the kth difference of a sequence of kth
powers for any k > 2, or to study the positive existential theory of a ring
over the language £, = {0, 1, +, Py}, where Py is a unary predicate that
stands for ‘z is a kth power’. Let A be a ring.

Biichi’s Problem for kth Powers:

B*(A) Does there exist an integer M such that any sequence of length M
consisting of kth powers of A, whose kth difference is constant and equal
to k!, is of the form (z +n)*, n=1,..., M, for some x € A?

The only result we know so far was obtained in 2008 by the second and
the third authors in [21]: B3(C[z]) has a positive answer with M = 92
(as in the case of squares, the sequences considered have at least one
non-constant term). The method used is a quite tricky adaptation of the
method presented in Section 10 (using a ‘cubic version’ of Hensley’s prob-
lem — see below). We do not know whether the proof can be adapted to
one that would work uniformly for any power, as it seems that the num-
ber of cases to study increases with k. But it probably can be adapted to
k=4, k=25 etc.

It is not hard to show that Hensley’s problem for squares has a ‘kth
power version’.

Hensley’s Problem for Higher Powers:
HP/}(A) Does there exist a positive integer M such that, for any fixed
elements v and ag, ... ,ar_o of A, if the quantities

(v+n)* +ap_oan* 2+ +ain+ao

are kth powersin A forn=1,...,M, thenayg = --- = ag_» =07

For any ring, if B¥(A) has a positive answer then HP} (A) has a positive
answer. We do not know under which conditions the reciprocal is true
(we know only that it is true in the case k = 3 for polynomial rings in
characteristic zero — see [21]).

The following Lemma is proved in the same way as Lemma 5.2.

Lemma 11.1. Let A and B be rings. Then B¥(A x B) has a positive
answer if and only if B¥(A) and B¥(B) have a positive answer. Moreover,
if B¥(A) has a positive answer with M = M4 and B*(B) has a positive
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answer with M = Mg, then B¥(A x B) has a positive answer with M =
max{Ma, Mg}.

For the moment it seems too hard to solve Biichi’s problem for kth
powers in general, but still, there is another indication that it should have
a positive answer in fields of functions or at least in polynomial rings. Let
A be a ring.

Hensley’s Problem for ¢ and k:

HP?(A). Let ¢ be an integer such that 2 < ¢ < k. Does there exist a
positive integer M such that, if for some fixed elements v and ag, . .. ,a7—o
of A the quantities

(v + n)’c +ar_on' ™2+ . +an+ag

are kth powers forn =1,...,M, thenag =--- = ay_2 =07

In [16], the first author proved that HPZ(C[z]) has a positive answer.
He essentially used the method presented in Section 10 to solve B?(C|z])
(but the part of the method using elliptic curves had to be modified). So
it is rather likely that combining the method used in [21] for B3(C[z])
with the method used in [21] for HPY(C[z]) should allow one to prove
that HP¥(C[z]) has a positive answer.

From the point of view of Logic, one may consider the following gen-
eralization of the problem DF?(Z) to any ring A of characteristic 0 and
to higher powers:

Simultaneous Representation of Elements of the Prime Subring
by Diagonal Forms of Degree k

DF¥(A) Is there an algorithm to decide whether a system of a finite
number of equations, each of the form

E k
Qily =7,
i

where «; and 7 are elements of the prime subring of A, has a solution in
A?

In [21], the second and third authors observe that if B3(Z) has a positive
answer then DF?(Z) has a positive answer (the same statement would be
true with Q instead of Z if Hilbert’s Tenth Problem for Q were solved
negatively). This is actually true for any power k& > 3 because the (k—1)th



136 H. PASTEN, T. PHEIDAS, X. VIDAUX

difference of a sequence of the form ((z + 1)¥,..., (z +k — 1)*) is of the
form a(z + 1) + b for some a,b € Z, so that we can apply the same trick
as for squares. So suppose that B¥(Z) has a positive answer for some M.
The following formula ¢* (r, 5)

M
Juy - Jup (/\ Pk(u») AA® (. un)) = () As =
i=1
Aar+b= ARV ((uy,... up))
is true in Z if and only if s = r¥.
In relation to B¥(A), Problem DF*(A) has a different statement in the
case of a ring of functions. Let A, be a ring of functions in the variable z.

Simultaneous Representation Problem for Rings of Functions
DF*(A.) Let B be the prime subring of A.. Is there an algorithm to decide
whether a system of a finite number of diophantine equations, each of the

form
2 : k
a;Tr; =",
-

where «;,y € B[z], and with conditions of the form “x; is non-constant”,
has a solution in A,?

Open Problem 11.2. Is it always true that if B¥(A) has a positive
answer and T° (A) is undecidable then DF*(A) is undecidable?

12. POSITIVE CHARACTERISTIC

All rings in this section have characteristic ¢ > 2 not necessarily prime.

We carefully avoided up to this point the case of rings of positive char-
acteristic. This is because there are at least two special phenomena that
occur in this case.

The first phenomenon is the following: if M > ¢, then the system
(S3%,) is equivalent to the system (S?). The reason is that by solving the
recurrence formally we get:

22 =2-n)ri+(n—1a3+ (n—1)(n—2)
for all n = 1,...,M, and so we have z2 = z2 . for all n. So we should
change the formulation of Biichi’s problem in this context. Let A be a
ring.
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Biichi’s Problem for Squares in Positive Characteristic:

B2(A) Does there exist an integer M < c¢ such that any sequence of M
squares of A, whose second difference is constant and equal to 2, is of the
form (z +n)%, n=1,...,M, for some x € A?

Also Hensley’s formulation becomes:

Hensley’s Problem in Positive Characteristic:
HP32(A) Does there exist an integer M < c such that, if for some fixed
elements v and a of A the quantities

(v+n)?+a
are squares form =1,..., M, then a = 07

It is easy to see that if ¢ is prime then: if HP3(A) has a positive answer
then B2(A) has a positive answer (the proof is as in Section 6).

Let us use Hensley’s formulation in order to get a simple proof of the
fact that B?(FF,) has a positive answer (this result was first obtained by
Hensley in [9] using the original formulation by Biichi).

Proposition 12.1. If p > 2 then B?*(F,) has a positive answer with
M =p.

Proof. Let p > 2 be a prime and assume that we have some v,a € IF)
such that (v +n)? +a is a square for n = 1,2, ... ,p. Call R the set of the
p%l squares in Fj,. Therefore we have R 4+ a = R. Then for any m € F,,
we have R+ ma = R+a+---+a = R. Hence if a # 0, then R covers the

whole of IF),, which is impossible. Therefore we have a = 0. O

The second special phenomenon comes from the following observation
which was made by the first author in January 2009: Let A be a ring of
characteristic p > 2 and let # € A. Consider the sequence (z,,) given by

a:nz(:n—l—n)p;r1

Then we have

Hence if
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Condition (C) there exists x € A and a positive integer s such that
£
is satisfied in A then the sequence (z2) is of the form (z + n)? — a for
some non-zero a, which implies that HP3(A) (hence also B%(A4)) has a
negative answer.
In particular this remark allows us to give a negative answer to the
analogue of Open Problem 5.1 (1) in the case of positive characteristic:
e Condition (C) holds in Fp- if r > 1 (taking s =1 and = ¢ Fp) hence
B?(F,-) has a negative answer for r > 1.
e If r and t are coprime then F,r NFy: = F,, (we may see these fields
in the algebraically closure of F,).
e By Proposition 12.1, B?(F,) has a positive answer.
In the case of a ring of functions A, in the variable z, one can always
choose © = z and s = 1 for Condition (C) to hold. Hence, in this situation
Biichi’s problem, in order not to be trivial, should be:

Biichi’s Problem for Rings of Functions of Characteristic p > 0:
B2(A.) Does there exist an integer M < p such that any M-term Biichi
sequence (x,) of elements of A, (with at least one z, non-constant),
satisfies 2 = (z +n)?"t', n = 1,...,M, for some © € A. and some
s € N?

In [20], the second and third authors prove that B?(F'(z)) has a positive
answer (here F' is any field of characteristic > 19). Fortunately, this is
enough in order to prove that the positive existential theory of such fields
F(z) over £? is undecidable whenever it is undecidable over L.

In [26], A. Shlapentokh and the third author prove that HPX(K) has
a positive answer for any function field K (of a curve) of characteristic
> ag + B, where g is the genus of K, « and 8 are computable constants,
and with M > ag + 3.

13. TO BE DONE

In this section we list a number of open problems:

1. Solve B%(Ok) for any number field K (where Ok denotes the ring of
integers of K).

2. Let K be the field of fractions of a domain A. Solve B?(K) whenever
B?(A) has a positive answer.

3. Let K be the field of fractions of a domain A. Is it always true that if
B2(A) has a positive answer then B(K) has a positive answer?
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10.

11.

12.

13.

14.

. Solve B¥(A) for any k, whenever B2(A) has a positive answer. So at the

moment and in order of difficulty: polynomial rings, rational function
fields, function fields and meromorphic functions (over C and C,).

. Solve HP¥(A) for all k whenever B(A) has a positive answer.
. Find a ring A for which B?(A4) has a negative answer, but where no

infinite non-trivial Biichi sequence exists.

. Solve DF*(A) for all rings for which the corresponding Biichi’s Problem

has a positive answer.

. Show that if B¥(A) has a positive answer and Hilbert’s Tenth Problem

for A has a negative answer then DF*(A) is undecidable.

. Find the optimal M whenever B¥(A) has a positive answer.
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