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DIOPHANTINE REPRESENTATIONS

ABSTRACT. Celebrated theorem established by Martin Davis, Hilary Put-
nam, and Julia Robinson in 1961 states that every effectively enumerable
set of natural numbers has an exponential Diophantine representation.
This theorem was improved by the author in two ways:
e to the existence of Diophantine representation,
e to the existence of so-called single-fold exponential Diophantine
representation.

However, it remains unknown whether these two improvements could be
combined, that is, whether every effectively enumerable set has a single-
fold (or at least finite-fold) Diophantine representation.

In the paper, we discuss known results about single-fold exponential
Diophantine representations, their applications, possible approaches to
improving to the case of genuine Diophantine representations, and what
would follow if such improvement is impossible.

1. INTRODUCTION

In 1900, David Hilbert stated his famous “Mathematische Probleme”
[10]. The tenth of the 23 problems concerned Diophantine equations;
namely, Hilbert asked for an algorithm, for deciding, given an arbitrary
Diophantine equation, whether it has solutions in (rational) integers or
not.

In 1961, Martin Davis, Hilary Putnam, and Julia Robinson [6] showed
that for the wider class of exponential Diophantine equations such an
algorithm is impossible. This result was obtained as a corollary of

DPR-Theorem. Every effectively enumerable set 9t of n-tuples of nat-
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ural numbers has an exponential Diophantine representation

(a1,...,ap) E M <=
Jzy ... e BL(ar, . ..,0n,T1,T2,. .., Ty) =

Eg(ay,...,Qn,T1,T2,...,Tm), (1)

where Ep, and Egr are exponential polynomials, i.e., expressions con-
structed by combining variables and particular positive integers using the
usual operations of addition, multiplication and exponentiation.

By natural numbers we mean positive integers 1,2, . . .; lower case italic
letters will always range over the natural numbers.
The DPR-theorem was improved by the author in two directions:

e in 1970, the author showed (original proof in [15], later simplifica-
tions in particular in [18]) the existence of Diophantine represen-
tations for every effectively enumerable set, that is, one can always
take for Ey, and ER in (1) ordinary polynomials with natural number
coefficients;

e in 1975, the author showed (original proof in [16], later simplifica-
tions in particular in [18]) that every effectively enumerable set has
a single-fold exponential Diophantine representation, that is a rep-
resentation of the form (1) with the additional property: for given
values of the a’s, the x’s, if they exist, are unique.

It still remains unknown whether these two improvements of the DPR-
theorem can be combined:

Open problem. Does every effectively enumerable set have a single-fold
(or at least finite-fold) Diophantine representation?

In this paper, we discuss known results about single-fold exponential
Diophantine representations, their applications, possible approaches to
improving to the case of genuine Diophantine representations, and what
would follow if such improvement is impossible.

2. KNOWN RESULTS ABOUT SINGLE-FOLD
EXPONENTIAL DIOPHANTINE REPRESENTATIONS

The first construction of single-fold exponential Diophantine represen-
tation given in [16] was a modification of the original proof of DPR-
theorem given in [6] (in the latter paper the proof consisted in elimination
of the single bounded universal quantifier from Davis normal form [5]).
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Other proofs of the of existence of single-fold exponential Diophantine rep-
resentation given, in particular, in [17, 11, 18] were based on Ernst Kum-
mer’s theorem ([12], see also [18]) concerning factorization of the binomial
coefficients and lead more directly to single-fold exponential Diophantine
representation.

Kummer’s theorem also allowed one to obtain a small bound on the
number of unknowns (that is, existentially quantified variables) in (1),
namely, it is sufficient to have m = 3 [17]. This bound was improved
in [11] to the case of unary exponential representations in a construc-
tion of which only the one-argument exponentiation 2% occurs. On the
other hand, Hilbert Levitz [14] showed that unary exponential Diophan-
tine equations with one unknown are decidable and hence the only further
reduction of the number of unknowns in unary exponential Diophantine
equations that still remains possible would be to m = 2.

The above mentioned result about representations with only 3 un-
knowns was obtained for equations with iterated exponentiation. On the
other hand, if we allow additional variables, one exponentiation is suffi-
cient for obtaining a single-fold exponential Diophantine representation —
it was shown in [16] that every effectively enumerable set has a single-fold
representation of the special form

(ay,...,a,) €M<=
Fyxy ... xmPlar, ..., an, T1, T2, ..., xm) =4 +y  (2)

where P is a polynomial with integer coefficients.

3. APPLICATIONS OF SINGLE-FOLD EXISTENTIAL REPRESENTATIONS

In this section, we list several results proofs of which make essential
use of the single-foldness of representations. At present all of these results
are known only for the case of exponential Diophantine equations, but
they would automatically be improved to the case of genuine Diophantine
equations as soon as the existence of single-fold exponential Diophantine
representation is established.

Noneffectivizable estimates for equations with finitely many so-
lutions
Suppose that we have an equation

D(a,z1,...,2,) =0 (3)
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which for every value of the parameter a has at most finitely many so-

lutions in natural numbers x1, ..., Z,,. This fact can be expressed in two
ways:

equation (3) has at most v(a) solutions; (4)

in every solution of (3) z1 <o(a),...,zm < o(a) (5)

for suitable functions v and o defined for all values of a.

From a mathematical point of view these two statements, (4) and (5),
are equivalent. However, from a computational point of view, they are
rather different. Knowing o(a) we can find v(a), but in general not wvice
versa. Many classes of Diophantine equations are known with computable
v(a) for which we cannot at present compute o(a). In such a case one says
that “the estimate of the size of solutions is noneffective.” Transforming
noneffective results into effective ones is usually very desirable and ap-
preciated but often has required quite different techniques achieved only
after many decades.

Let us now take for 9, say, in (2), an effectively enumerable but not
decidable set of natural numbers. Clearly, the exponential Diophantine
equation in question

P(a7$17$27"'7mm):4y+y (6)

has the following two properties:
for every value of the parameter a, equation (6) has at most one solution
in YTy 5 T
for every effectively computable function o defined for all a there is
such its value that equation (6) has a solution y, x1,..., &y in which
y > o(a).
This gives an example of a noneffective result in the theory of exponential
Diophantine equations which in principle cannot be made effective.

Computational chaos
Suppose that a Diophantine equation

Pk,z1,...,2y) =0 (7)
is given. It defines an effectively enumerable set 9t:

keM—= Fz1...2,,{P(k,z1,...,2,) =0} (8)
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This set might be very “difficult”, for example, undecidable. However,
from another point of view, this is a very “simple” set. Namely, suppose
that we have somehow determined the initial fragment

M, = MO {k|k <n) 9)

of the set 9t and want to send this initial fragment by e-mail. Before doing
it we would like to compress the information in order to reduce the cost
of sending the message. How many bits do we need to send?

Trivially, it is sufficient to send the n bits, corresponding to the n values
of k and equal to 1 or 0 depending on whether or not Eq. (7) has solutions.

If the set 901 is decidable, it is sufficient to send the number n itself
(we suppose that the recipient already knows Eq. (7) and we do not care
how much time it would take for the recipient to compute 9,, from the
information received by e-mail). Thus in the case of a decidable 97 in
order to send complete information about the subset 91, it would suffice
to send only the [log(n)] binary digits of the number n.

It is not difficult to see that in the case of an arbitrary equation (7) it
would be sufficient to send a message of only 2[log(n)] bits. Namely, in ad-
dition to number n it would be sufficient to send the number p,, = |9, ||,
that is, the cardinality of 91,,. The recipient would start n simultaneous
processes (for k = 1,...,n) of testing, in some order, all possible m-tuples
of values of z1, ...,z to determine whether (7) is true. As soon as this
happens for u,, different values of k, the recipient will know all elements
of M.

In technical terms this implies that the so called descriptive or Kol-
mogorov complexity of 9, is of the least possible order O(log(n)).

It turned out that in order to achieve the maximal descriptive complex-
ity it is sufficient to consider questions which are only slightly more com-
plicated than those arising from Hilbert’s tenth problem. Namely, Gregory
Chaitin [2] constructed a special one-parameter exponential Diophantine
equation and considered the set

a €M = {a|I® ...xnEL(a,x1,T2,...,Tm)
= Egr(a,z1,%2,...,2m)]}, (10)

where 3°° means the existence of infinitely many solutions of the equation.
Chaitin proved that, whatever so called prefiz-free compression algorithm
is used, n bits (up to an additive constant) are required for representing
the corresponding initial fragment (9) of this particular set 9.
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In technical terms this means that 91, has the largest possible prefix-
free descriptive (Kolmogorov) complexity. Informally, one can say that
the set (10) is completely chaotic — it has absolutely no internal structure
that would allow reduction of the number of required bits more than by a
constant (this constant, naturally, depends on the compression algorithm
and can be arbitrary large).

More recently Toby Ord and Tien D. Kieu [21] constructed another
exponential Diophantine equation which for every value of a has only
finitely many solutions but the parity of the number of solutions again has
completely chaotic behavior in the sense of descriptive complexity.

The proofs by Chaitin and of Ord and Kieu looked like clever but ad
hoc tricks. In [19], I made the following generalization: instead of asking
whether the number of solutions is finite/infinite or even/odd one can ask
whether the number of solutions belongs to any fixed decidable infinite
set with infinite complement (with respect to the set {0,1,2,...,Rg}).

All these results were obtained for exponential Diophantine equations
because they are based on the existence of single-fold exponential Dio-
phantine representations; the existence of similar chaos among genuine
Diophantine equations is a major open question.

Kislaya Prasad [22] translated Chaitin’s result from the question about
the infinitude of the number of solutions of an exponential Diophantine
equation to the question of the infinitude of the number of Nash equilibria
in multi-person noncooperative games.

3.3. A generalization of Hilbert’s tenth problem

David Hilbert asked to determine whether a Diophantine equation has
solutions or not. One can ask other questions, for example, whether a
Diophantine equation has exactly one solution or not. Martin Davis [8]
made the following generalization. Let #P denote the number of solutions
of a Diophantine equation P(z1,..., ;) = 0. This number is an element
of the set 91 = {0,1,2,...,8}). Let 9 be a subset of 9 and let M*
denote the set

{P[#(P) € M} (11)

In this notation, Hilbert’s tenth problem is the question whether the set
(11) is decidable for 2t = {0}.

Evidently, the set (11) is decidable in two extreme degenerate cases
— when either 9 is empty or 9 = 91. Martin Davis proved that these
are the only decidable cases: if 9 is a proper subset of N, there is no
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algorithm to determine, for arbitrary Diophantine equation, whether the
cardinality of its set of solutions belongs to 9.

One can ask now a more subtle question: for which 9 the set (11) is
effectively enumerable? Thanks to the existence of single-fold exponential
Diophantine representations, Craig Smoryriski [26] gave the full answer to
the analogous question for exponential Diophantine equations: the set of
all exponential Diophantine equations with cardinality of their solutions
belonging to a subset MM of the set N is effectively enumerable if and only
if M is either empty or M = {a|a = B} for some finite (.

4. APPROACHES TO THE DIOPHANTINE CASE

After the DPR-~theorem was proved in 1961, in order to establish the
existence of Diophantine representations for every effectively enumerable
set it was sufficient to find Diophantine representation for one particular

set of triples
{{a,b,c)|a = b} (12)

Today we are in a similar position with respect to single-fold (and finite-
fold) Diophantine representations: now that we can construct single-fold
exponential Diophantine representations for all effectively enumerable
sets, in order to transform them into single-fold (or finite-fold) genuinely
Diophantine representations, it would be sufficient to find a single-fold
(or, respectively, finite-fold) Diophantine representation for the same set
of triples (12), or even for the simpler set of pairs

{{a, c}|a = 2°}. (13)

The question whether exponentiation is a Diophantine function (that
is, whether the set (12) has a Diophantine representation) was studied by
Julia Robinson in [24], and she found the following sufficient condition.
Namely, it is possible to construct a Diophantine representation for (12),
given a Diophantine equation

Ju, 0,21, ..., Tm) =0 (14)
with the following two properties:

for every k there is a solution of (14) with v > u¥; (15)

in every solution of (14) v < u". (16)
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Equation (14) defines a relation between v and v which holds if and
and only if the equation has a solution in the unknowns zy, ..., z,,. Julia
Robinson called relations satisfying the inequalities from (15) and (16)
relations of exponential growth, Martin Davis and Hilary Putnam named
them Julia Robinson predicates.

Julia Robinson was also able to replace condition (16) by the weaker
condition

u

in every solution of (14) v <u® (17)

with any fixed height of the exponential tower, and called correspond-
ing relations, relations of roughly exponential growth. In this case, her
proof wasn’t constructive: the existence of a Diophantine equation with
properties (15) and (16) implied the mere existence of Diophantine rep-
resentation for (12).

Because no Diophantine equation satisfying both conditions (15) and
(16) arose in a “natural way” in the literature, it was necessary to invent
such an equation. Martin Davis [7] proved that such an equation exists,
if the equation

(K% +TA)? —T(u* + )2 =2 (18)

has only the trivial solution Kk = 4 = 1, A = v = 0. This conjecture was
refuted by Oskar Herrmann [9] and additional solutions were discovered
by Daniel Shanks and Samuel S. Wagstaff, Jr. [25]. Nevertheless, Davis’s
approach can be salvaged: if Eq. (18) has only finitely many solutions,
than one can construct a Diophantine equation (14) with properties (15)
and (16), moreover, satisfying additional condition of finiteness of the
number of solutions for fixed u and v.
The question whether equation (18) has only finitely many solution or
not remains open; experts expect there to be infinitely many.
In 1971, Gregory Chudnovsky [3] wrote the following:
M. Davis question about solvability of Eq. (18) in integers is close to Theorem
2.7. It is easy to note that this question can be reduced to the study of arithmeti-

cal properties of the sequence (A, By ) of solutions of equation 922 — 7y? = 2
and even of equation x? — 63y? = 1.

While it is unknown whether (18) has nontrivial solutions, with elementary
number-theoretical technique from Secs. 1-3 (cf. also [1]) it is possible, by study-
ing above described sequences (An, By ), to obtain an explicit Diophantine rep-
resentation of the function y = 2% for x > C where C is some constant. The
result obtained gives the answer to the question posed by M. Davis [7].

In 1984, in [4], he wrote:
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In conclusion, we note that by studying the special equation (18) it is possible,
in view of result of M. Davis, to obtain another proof of Theorem 4.2.

In view of the discovered non-trivial solutions it is unclear what, if
anything, Gregory Chudnovsky actually proved concerning the number of
solutions of Eq. (18).

The first example of a Diophantine relation of exponential growth from
[15] and all later examples are based on the periodic behavior of recur-
rent sequences modulo some fixed number, which results in infinite-fold
Diophantine representations. However, these example satisfied conditions
stronger than (15) and (16), namely,

for some numbers a > 1, v, and § >0

(15)

for every w there is a solution of (14) with u < yw & v > da*;

for some number ¢ in every solution of (14) v < da. (16")

It isn’t difficult to see that we can construct a finite-fold representation
for (13) provided that we have an equation (14) having for every values
of u only finitely many solutions in the remaining variables and satisfying
the following property:

for some numbers a >1, B, v, and d >0 for every w .
15
there is a solution of (14) with u < yw” &v > sa® (15%)

(this property is weaker than (15’), we need no longer upper bounds like
(16) or (16”)). Indeed, in any known Diophantine representations of (13)
we can bound all variables under the existential quantifiers by a finite
exponential tower

ra

which, in its turn, can be bounded by a tower

@t

a®

of some finite height H. Using then H copies of the equation (14) we can
bound all the variables under the existential quantifiers in the Diophantine
representations of (13) in a Diophantine way and thus obtain required
finite-fold Diophantine representation for this set.
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5. COROLLARIES FROM THE IMPOSSIBILITY OF
FINITE-FOLD DIOPHANTINE REPRESENTATIONS

Proving that every effectively enumerable set has a finite-fold Diophan-
tine representation seems to be a difficult task, perhaps it may even be
impossible. In the latter case, we would need to prove this impossibility,
and in turn this is likely to be difficult as well.

Indeed, suppose that there exist an effectively enumerable set having no
finite-fold Diophantine representation. As was explained in the previous
section, this would imply the truth of the following strong statement: if a
one-parameter Diophantine equation

Jw,x1,...,Tm) =0 (19)
for each value of the parameter u has only finitely many solutions in
X1, ..., Tm, then there exists a number n such that in every solution of (19)

Ty <u', ..z <ul. (20)

As another corollary of the impossibility of a finite-fold Diophantine
representation for some effectively enumerable set we would get a new
proof of transcendentality of the Euler number e = 2.71828... (and of
many other numbers as well).

Indeed, suppose that

M(e) =0 (21)

for some polynomial M with integer coefficients. Let « and § be rational
numbers such that @ < e < f and the number e is a unique root of
polynomial M on the closed interval [a, 8]. The number e is known to
have an expansion into a continued fraction of the following form:

82[2,d1,d2,d3,...] (22)
=[2,1,2,1,1,4,1,1,6,1,1,8,1,...,1,2k,1,1,2k + 2,1,...] (23)
Let S—Z be the mth convergent to e, that is
Pr,

Qm [27d17d27---:dm] (24)

1

d
1+d2+

Sy
3
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The following facts are known from the classical theory of continued frac-

tions: .
dorrs — MJ , 26
- {PW (26)
Psnt1Q6n+2 — Pont2Q6nt+1 = 1, (27)
P6n+2 P6n+1
<e< . 28
Q6n+2 Q6n+1 ( )

For sufficiently large n we have

a <

P6n+2 P6n+1
< < 29
Qént2  Qont1 g (29)

and without loss of generality we can assume that

M (ﬂ) <0, M (ﬂ> > 0. (30)
6n+1 6n+2

In the other direction, suppose that numbers p’, ¢/, p”’, ¢” satisfy the
following conditions which are counterparts of conditions (26), (27), (28),
and (30)

pI/
P —p'd =1, (32)
p// p/

a < 7 < 7 < B, (33)

/ //
M (%) <0, M (p—,,> > 0. (34)

q q
In this case, the ratios p—: and p—:: must be consecutive convergents to

e; more precisely, condition (31) implies that p’ = Psyt1, ¢ = Qput1,
P = Poyyrz, and ¢” = Qgyyo. Conditions (31) and (34) can be rewritten
as Diophantine equations with additional unknowns the values of which
are uniquely determined by the values of u, p’, p”’, ¢/, ¢”, and hence to-
gether with (32)—(34) in a unique way by the value of u alone. Combining
these equations with equation v = p’ we would obtain the required equa-
tion (14) satisfying condition (15) and hence we would be able to construct
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fin
po

ite-fold representation for every effectively enumerable set. Thus the im-
ssibility of such a representation for even a single effectively enumerable

set implies that e is transcendental.

It is easy to see that for the role of e we can take any number with a con-

tinued fraction expansion containing an increasing sequence of quotients.

Su

10.

11.

12.

13.

14.

ch numbers can be found, for example, in [13, 23, 27].
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