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FOLDED FANS AND STRING FUNCTIONS

The folded fans F'W describe the recursion properties for the weights of
integrable highest weight modules L#. Being considered simultaneously
for the set of string functions o belonging to the fundamental Weyl
chamber and corresponding to the same congruence class the system of
recursion relations gives rise to an equation that connect the string func-
tions and the power series depending on the multiplicities of the folded fan

FV weights. We apply these equations to study the properties of string

functions of associated to the integrable modules for affine Lie algebras.

New important relations for string functions are thus obtained. The set
of folded fans provides a compact and effective tool to study them.

1. INTRODUCTION

The representation theory of affine Lie algebras and quantum groups is
widely used in modern mathematical and theoretical physics. An impor-
tant characteristic of the highest weight module L* is the multiplicity mgu)
of the weight £. There are different ways to find these multiplicities [1-4].
In this paper, we are using the technique of folded fans developed in [5, 6]
based on the anomalous weight interpretation of the Weyl-Kac character
formula [2]. This technique gives rise to the system of recurrent relations
and equations for generating functions of multiplicities (the string func-
tions). A dual set of functions naturally appears when the string functions
are described by these equations. In Sec. 2, we remind the properties of the
folded fan of anomalous weights [7] that describe the injection of a Cartan
subalgebra. This tool is used in Sec. 3 to obtain the recurrent properties of
the string functions. Next two sections are devoted to a peculiar example
of the twisted affine Lie algebra Ag).

2. BASIC DEFINITIONS AND RELATIONS
Consider the affine Lie algebra g with the underlying finite-dimensional
Kaiouesvie caosa : affine Lie algebras, highest weight modules, string functions.
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subalgebra E
The following notation will be used:

L* — the integrable module of g with the highest weight u;
r — the rank of the algebra g;

A — the root system; At — the positive root system for g;
mult (@) — the multiplicity of the root « in A;

(o)

A — the finite root system of the subalgebra E;

N# — the weight diagram of LH;

W — the corresponding affine Weyl group;

C®) — the fundamental Weyl chamber;

C}go) — the intersection of the closure of the fundamental Weyl chamber
C®) with the plane with fixed level k = const;

p — the Weyl vector;

€ (w) := det (w), w € W;

a; — the ith simple root for g; i =0,... ,r;

0 — the imaginary root of g;

a; — the simple coroot for g, i = 0,...,7;
& — the finite (classical) part of the weight £ € P;

A= <)\; k; n) — the decomposition of an affine weight indicating the

finite part ;)\, level k and grade n;

P — the weight lattice;

() — the root lattice;

(2)

”
Z Zo; for untwisted algebras or A/,

M= =t
Za; for A" and A £ AP

2r
=1

& — the group algebra of the group P;

r

Oy :=e 3% 9 3 et=°) —the classical theta-function;
aEM

Ay =Y €(5)Og0n;

o
sewW
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2
) = M =P A, = 3 e(w)er°WtP)=r _ the singular
weW

weight element for the g-module L*;

mé“ ) _ the multiplicity of the weight ¢ € P in the module L*;
ch (L") — the formal character of L*;

wo(utp)-
ch (LF) = i (1= o) muit(®) E0)

aEAT

— the Weyl-Kac formula;

R:= ] (01— e’a)mult(a) = ¥ — the denominator;
max(u) — the set of maximal weights of L#;

of (q) = X mg’g)_na) q" — the string function through the maximal
n=0

weight £.

3. RECURRENT PROPERTIES FOR STRING FUNCTIONS

Let C’,g?g be the intersection of C’,EO) with the plane § = 0 , that is the
”classical” part of the closure of the affine Weyl chamber at level k. For

the integrable highest weight g-module L* of level k (with u = (;Ot, k; 0))

let us introduce the extensions oj’k (g) for the string functions of (q).

Extended string functions belong to C,EO) and differ from the ordinary
functions Ué‘ (¢) by their initial coefficients and the lower index j: they
start at the zero grade, have zero values till the point of the first nontrivial
coefficient and are enumerated by j € Z, corresponding to the ordering
induced by the Weyl vector. The string coefficients of U;-‘ o+ are governed
by the recurrent property found in [7]. We want to remind it here. For
the module L* and the extended string functions U;.“k (q) the following

auxiliary sets are introduced: the set of maximal vectors of L* belonging
to C}go)

Z) = {C € max(pu) ﬂ@} ,
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and the sets ¥} and =,

Ep={¢=mo(|Ce Z}, (1)

S = {a;.‘”“ 1j=1,... ,pgggx} 2)
where 7 is the projection to the subset of P with level k and grade n = 0
and pg’fgx := #(E). In these terms, the weights of the jth extended string
can be written as §; = (fj;k;nj) € B + njd. Let F¥ (fj) be the full
folded fan [6, 7] for the classical weight £;, w, — a representative of the

class W/W, (where W., C W is the ~-stability subgroup) and ¢ (v, w) :=
v — (wp — p). Introduce the multiplicity ;s (n) of the folded fan vector

connecting the weight (5]-; k;n; | with the weight ({s; k;n; +n ). This

multiplicity can be determined as follows: 7,5 (n) = = ;. €(w;s). The
summation is over the elements w; , of W satisfying the equation

Wo(g;.m) © (& — (W5 0p = p)) = <€s; kinj + n) :

(k)

For the weight multiplicities mg, .,

holds [7]:

the following recurrent relation

P, o

SN naym) =0 (3)

s=1 n=-n;

[e]
Suppose here ¢; = p and n; # 0, then £ cannot coincide with p and

we have zero on the r.h.s. Evidently the equations for the other strings

a‘»"k,i # j also have zeros on the r.h.s. Let us multiply them by by ¢=™

(2
and by ¢~ correspondingly and perform the summation

SN Y mema il =1,
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One can verify that due to the properties of the multiplicities mg“ 73], in
it is possible to attribute to the new variable

ri=mn; +n
the same limits as for n;:

—oo P

0
2 2. 2 A (mamil =1,
r;=0 s=1 n=-n;

(1)

—00 Pmax

0
o> D s (g m) =0.

r;=0 s=1 n=-n;
thus, we get

P, o

Z Z q"njs (n)of = -1,
s=1 n=-—n;

P o

Z Z q"ni,s (n) o =0.

s=1 n=-n;

Now the summation limits for n can be extended (now relying on the prop-

erties of n;,, (n)) and the final system of relations for the string functions
is thus obtained

(1)

Pmax o

Dot g "nis(n) = 05
s=1 n=0

ihj=1,2,...,p,.

(4)

These relations show that the string functions of the fixed level are sub-
ject to the relations that connect them with the special sets of functions
Yoo a5 (n) defined by the folded fan weight multiplicities n; s (n).
Notice that as far as in the set = we collect the projections of the max-
imal weights the only role that plays the index p in these relations is to
indicate the congruence class of the module L#. Relations (4) are relevant
to any module of the class if the initial one is its member. Only the weights
of the same congruence class can be connected by the fan, in other words
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the multiplicities n; s (n) are always zero when j and s are from different
classes. Thus in the general case, the set (4) naturally decomposes into
such classes.

In the following sections we demonstrate how these relations work and

what sets of functions are “orthogonal” to string functions in the sense
of (4).

4. EXAMPLE

Consider the rank 2 twisted affine Lie algebra of the series A: g = AgQ).
It has two fundamental representations with the highest weights wg and
w1 . The fan of the injection h — g consists of the sets of weights

3, 1
_ _= Zpi41
( 3p, 0, 2p + 2p,-l- >

3, 1 ’
(—3p 1,0, ——p — —p,—l)
2 PEZ

(Notice that here the first weight coordinate is classical and the basic
vector is along the positive classical root e; = ay; for convenience we have
introduced an additional (the fourth) coordinate equal to the anomalous
multiplicity of the weight.)

(5)

The properties of the algebra Ag) are governed by the injection B; —
A where the vector representation of By plays the fundamental role. As a
result the modules of the level £ = 3m, m € Z have the special properties
that are considered in this section (the general case is studied in Sec. 5).

In the level £ = 3 we have one congruence class comprising two highest
weight integrable modules: with 4 = fe; and p = 2e1. Consider the fan
“gliding” (the parameter is n) along the strings {o!' | i = 1,2} contained

in the chamber C,go) .Fori=1 (u = %el) we get

3 .3 1
<3p+ ,3,2p +2pfn +1>

1.3, 1
<3p+ 523, 50" — 5P —n; 1>
2'7 2" T2 e

pEZ, n€Z
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To get the folded fans for these two positions we are to apply the W (AgQ))

group transformations (parameterized by ¢ € Z ) to the corresponding
shifted unfolded fans. The folded sets are presented below (in the square
brackets the first row is transformed by the pure translations, the second
— by translations combined with the classical reflections.) The first folded

fan is the set

{ (B3p+2—3¢,3,2p> +ip—n+ 3q— 3¢ + 3pg; +1) }
P, — (=3p—35-3¢,3,5p +3p—n— 3¢~ 5¢° — 3pg; +1)
{ (Bp+3%—-3¢,3,3p> —ip—n+iqg—2¢° + 3pg; —1) }
(-3p— 3 —3¢,3,5p> —sp—n— 30— 3¢° — 3pg; 1)

and the second folded fan —

(Bp+3—3¢,3,50" + 35p —n+ 50— 3¢ + 3pg; +1)
—3p— 35 —3¢,3,50° + 3p —n— 5q — 5¢° +3pg; +1)

F, — {(
(Bp+3-3¢,3,3p" —5p—n+3q—5¢° +3pg; - 1) }

{(—3p—%—3q,3,%p2—%p—n—% — 3¢° — 3pg; —1)

We are interested only in the vectors in the intersection C,go) N P. Impose
the conditions that guarantee that the weight vector of the fan points one

of the strings in C:EO) NP,

This results in the following values for g:
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for F¥,

3
f =5 => 4=

| = 3 _ 1> the same vectors,
- B 1=-P= 5= to be ignored

o

1
f =5 => 4=

(no solutions)

for FU,
. (no solutions)
fi =5 => qg=-p-1,
) = e ()
f%/} =5 => q¢=-p-1L

Notice that both sets can be obtained by applying only the transfor-
mations from one of the classes of elements in the group W (Ag)): the

pure translations in the first fan and the translations with reflections in
the second. The words ”the same vectors, to be ignored” mean that the
solution leads finally to the set of folded vectors equivalent to the sec-
ond sets in the same square brackets. This effect is due to the nontrivial
stability subgroup W =~ Z corresponding to the fixed solution of the
imposed conditions and the set of vectors that are included in the fan can
be considered as obtained by applying the representatives of the factor
space W/We.

Substituting the values of ¢ into the corresponding folded vectors sets
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we obtain the following folded fans:

B,3,3p2n;1]
FU, = 3

5,3,3})2 +2pn;+1]

1 2

5,3,3p +3p—n+1;+1}
Fv, = 3

{5,3,31)2 +pn;1}

These sets lead to the recurrent relation for the string coefficients:

Z (02)n—3p2—2p — Z (Ul)n_3p2 = 671,,0;

p p

- Z (02)p—gp2p + Z (@1)n—3p2—3p-1 = 05
p p

According to the general algorithm we are to multiply both sets by ¢"”
and sum over n. The result is

Zq Z 02)p_sp22p — Zq Z Jn-sp2 = 1

72(1202”3?—?4-2‘12 n3p2—3p 1 =05

Now in each expression (separately) change the summation variable n
for k:

n=k+3p>+ 2p; n =k + 3p%;
n==k+3p>+p; n=*k+3p°+3p+1.

In the recurrent relations the variation of p is finite and we can interchange
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the summations,

(o] (o]
SN g (00), — DD d (on) = 1;
P k=0 D k=0

o o
2 . 2
_ E q3p +p§ :qk (02)k + E :q3p +3p+1 E :qk (Ul)k =0.
P k=0 P k=0

Now remember that our second string starts with the zero value. To obtain
the relation for the canonical string functions ag (¢) we must shift the

3
numbers of the o7 -coefficients by one. The final result is formulated by
the following relations:

2322 1 232 .
qp+p+g27 qulzl’
P P

2 2
_ § q3p +p+10.2 + § q3p +3p+10.1 0.
P P

The string functions o; and oy contribute to the Ag)—modules Lwotwr
and Lwot3w1,

5. AN ARBITRARY MODULE OF Ag2)

Here we consider the case where the level k is not necessarily the mul-
tiple of 3. Again we start with the fan (5) but now the cases of even and
odd k’s are to be considered separately.

Notice that for Ag2) the even level modules belong to the ”vector”
congruence class,

¢={0,1,...,k/2},
and the odd level ones are of the ”spinor” class,

a 13
(L)

Enumerate the elements in these classes: ”vector”,

for k even with & = j;

2
% for k odd with &=j+

i=0,1,2,...,

DN | =
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Consider the fan gliding (with the parameter n) along the ”vector” string
0j,
== 3p+j+ 1,k 3p*+ 1p—n;+1)
F‘I’ — ( . ) ’ 2 2 ’
(4) { (3p+j,k, 2p* — 5p—n; 1)

and along the ”spinor” string o;,

.33 1
__ <3p+]+—,k,—p2+—p—n;+l>

= 272 2
P () = 1.3, 1
3p+i+ gk op”—gp—ni—l

(similarly to the style adopted in the previous example we write down
”positive” and ”negative” vectors separately). Applying the Weyl trans-
formations (parameterized with an integer ¢, the translations are per-
formed along the vector q§0 and the same transformation including the
classical reflection in the second rows) we get

(3p+i+1—kq,k,2p*+Lp—n—Lke*+3pg+ai+ta+1)
= (—3p—j—1—kak, 3p°+Sp—n—Lke®>—3pg—aj—a;+1)

Y (5) = - 3,2 1, o 1.2 -
(3p+i—kq,k,3p*—Lp—n—Lke*+3pg+qi;—1)
(—3p—j—1—kg+1,k,3p°— Lp—n—Lke>—3pg—qj;—1)
and
(3p+i+1—ka+ 3.k, 3p°+Lp—n—Lka®+3pg+aj+3a+1)
== (—3p—j—1—kq—% .k, 3p*+3p—n—Lke®—3pg—qi—Sqi+1)

1

(3p+i—ka+1.k, 3p”— Lp—n— S ke®+3pa+ai+Sa;—1)
(—3p—j—ka—3%.k.2p° — Sp—n—Lke>—3pg—qi—S0;—1)

Now let j and j’f\lze the indices of the strings obtained via the folded fan

shift: let fiy € FU (§) and & € o then £ + fi € oj.. The latter means
that the following conditions are to be fulfilled (the conditions are written
in the same order as in the previous sets of vectors) four for the vector:

[ q=1Bp+ji—j+1), }
for FU(5)

g=1(3p—j—j -1,
{ a=1+0Bp+i—7), }
qg=1(-3p—3j—4),

(6)
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and four for the spinor fans:

[ q=1%(3p+j—j’+1), ]

—_— _ - =/

for FU(j) — q_E(j?’p*”f”,f% . (7)
[ a=%@p+i-J), ]
g=3(Bp—j—74-1),

To describe the solutions explicitly we introduce additional parameters

a,b,v; and w; that are defined by the values of &, j, and 5’

k=3a+b;

.
—J—J =3v1 +wi;
., for k even,
J—J = 3v+wy

j+3i" = 3vs +ws;
Y, for k odd,
J—J =3vs+ wy

a,v; € Z,

; =1,2,3,4
bw € {0,413 D3
and additional variables:

3

2 2
1 k 1
Bo72 = (k+3) (—j+j’—§+kbw4) —§+3(j+§),

k
Bei:=(k+3)(j —j+ kbwy) + 5~ 37,

k 1
By, = <k+3>(jj'1+kb(w3+1>>—+3(j+—),

k
Beo = (k+3)(l—j + kbws) — 3 + 37,

1 . -/ 2 .]+% . .y
0= N — 7 1 -z
C n 2k(]+]+ )"+ . G+i +1)
1 1 1\
= (| Zk- i =
6k (k + 3) <2 3<J+2)) ’
C'e::fnfi J

2
o2 1 L .
2k(]+]) +k(J+J) 76k(k+3)< k 3J> -
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Using these notations we can parameterize the solutions of the equations
in (6) and (7) by an integer t € Z and write down explicitly the grades of
the shifted weights,

2
Pl (tn) = A (t+55 ) +C.,
) B\ for even £k,
P (tn) = A(t+(-1)" B +5) .,
) B2 r=1,2
P () = A (145 ) +C,
o - B (em\? for odd k,
- (8,m) ._A<t+(71) Dor 1 (0 b) +C,,

These expressions form the folded fans ”looking” from the string j at the
string j:

(7' = 1,k, Pfy (t,n) +n,+1]

FANi- ) [i' — 1L, k,BJ, (t,n) +n,+1]
PR Lk, P,y (t,n) +n,—1] ’
7 l,k,PI:2(t,n)+n,—1] ez

where the parity p = e, o for even and odd k, respectively.
Using these folded fans we can write down the recurrent relations for
the strings coefficients:

ZZ [(U;f')_Pgl(t,n)+(0;')_P;r‘z(t,n)_(gf'>_Pp‘1(t7n)_(0§i>_Pp,Z(m)}

tez j
o f =
_ 5”’]. or p=e,
6;; . for p=o.

-1,
According to the general algorithm one must multiply these sets by ¢"
and perform the summation over n:

ZZ Z [qn (U?')_P;il(mn) i (U?/)—PL(M)

n tez j'
—q" ("
(t,n) q (Uj)fppfﬂ(t,n)}

—q" (o*
q (Uﬂ)fp

p,1

:{ 6;17], for p=e,
6;1 . for p=o.

1
—3.]
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Put Cp e = —n + 60,3- Instead of the summation over n let us use the
summation over P (t,n), different in each summand but having the same
limits:

Be1\2, = -
S g A ) T (o)
J +
—Fga(tn)
Pr . (tn) e

+ Be,Z 2
P TR R CO N
=P g

Sy
— B, 2
teZ j’ — Z q_Pp,l(t7n)+A(t— 2A1+%) +C. (oﬂ/)
_ I *P;:,1(t7n)
P (tn)
— B, 2
_ Z q*Pp,2(t7n)+A(t* 2/32+§) +Ce (o,u/)
) —P ,(tn)

P, (tn)

:{ 637], for p=ce,
5&—%,]‘ for p=o.

For each value of r = 1,2 perform the transformation:

2 2
A(t4+Eer C. A(t—Ber gyt C.
E qn+ (+ . ) ! (G;’) E qn+ ( . +3> ! (57/)
n n n

0'”,) (qn+A(t+ 322")2-4-0_& _ qn+A(t— B2ii"+§)2+c—e)
n

Be,r

_37 (oh) g5 g
n
n

(HCD (Do) _ (438

Thus we have extracted the string functions.

Be,r

Z (Z (aé.‘,) qn> Zi:qA(H = )2+c_e+§(2t+g)(,4§_3€_r)

3’ n teZ r=1

y (q—%(2t+§)(A§—Be,r) _ q%(2t+%)(A%—Bem)>
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:{ 5;27], for p=ce,
5;; . for p=o.

3
These relations describe the orthonormalization property of the modified
string functions:

Be,r

2 —
A(t+—5 ) +Ce+3(2t+5)(AS-B..»
E U;%/ (q)q ( 2A> 2( 3)( 3 )
j/

and some series of ¢q. (Remember that here a;-‘/ are the modified strings,

they all start at the zero grade weights and have zero coefficients for the
weights greater than the corresponding maximal weights of the module.)
In particular, putting ¢ = e® we obtain:

> > 20% (h) e"(“(”i’if)2+C_e+%(2t+§)(,4§73w))

tez §' r=1

do for =e

. h b b B iR p )

X (smh (—5 (2t+ 5) (Ag — Beﬂ"))) - {60 . for p=o.
r=3,]
§+ 1 for k even

% for k£ odd.

3t =1,2,...,

6. CONCLUSIONS

We have seen that the recursive properties of weight diagrams can be
retranslated into the sets of conditions that the string functions are to
obey. These conditions can be considered as the defining relations for the
string functions. Notice that the power series that appear in these relations
as the set “dual” to the string functions are generated by the folded fan
weight multiplicities. The above study demonstrates that the fact that the
highest weight p and the injection fan for the Cartan subalgebra encode
the structure of the module L* can be realized in terms of string functions
and the sets of power series generated by the folded fan.

The proposed approach can be applied to study the corresponding sets
of functions for an arbitrary affine Lie algebra.
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