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AN OVERVIEW OF EFFECTIVE NORMALIZATION
OF A NONSINGULAR IN CODIMENSION
ONE PROJECTIVE ALGEBRAIC VARIETY

ABSTRACT. Let V be a nonsingular in codimension one projective alge-
braic variety of degree D and of dimension n. Then the construction of

the normalization of V' can be reduced canonically within the time poly-
Lo . . o(1) . . .
nomial in the size of the input and D™ to solving a linear equation

aX + bY 4+ ¢Z = 0 over a polynomial ring. We describe a plan with all
lemmas to prove this result.

INTRODUCTION

Let k be a field with algebraic closure k. Let V' C PN (k) be a projective
algebraic variety defined over k and irreducible over k of dimension n and
degree D. Then the construction of the normalization of V' can be divided
into two parts:

(I) construction of a finite birational isomorphism V' — V such that
the variety V' is nonsingular in codimension one; this means by
definition that the dimension dim Sing (V') < n — 2, where Sing (V)
is the variety of singular points of V’,

(IT) construction of the normalization of V.

In the case of zero-characteristic char (k) = 0 one can solve (I) within
the polynomial time using the ideas from [1]. Everything is reduced here
to the case of the curves n = 1. We hope to describe this construction in
detail in another paper. To obtain a similar effective algorithm for (I) in
the case of nonzero characteristic is an open problem.

In this paper, we concentrate ourself on the problem (IT). So we shall
suppose in what follows that V' = V' is nonsingular in codimension one.
We shall show that the construction of the normalization of V' can be
reduced canonically within the time polynomial in the size of the input
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and D" to solving a linear equation a X +bY +cZ = 0 over a polynomial
ring. We describe a plan with statements of main lemmas to prove this
result. We hope that the detailed publication with all proofs will appear
later (we are going also to describe there how to solve (I) for a zero-
characteristic ground field).

In the case of surfaces n = 2 problem (II) can be solved within the
polynomial time without difficulties (it is not our aim now). Besides that,
the case n = 2 can be easily reduced to n = 3. So we shall suppose in
what follows without loss of generality that n > 3. We assume that V is
given by its generic point, see [2]. Notice also here that constructing an
appropriate linear projection one can always reduce the general case to
the particular one: N = n + 2 (but we don’t give the details now).

So we shall suppose in what follows that N = O(n).

For arbitrary polynomials gi,... ,gm € k[Xo, ..., Xn] we shall denote
by Z(g1,...,9m) the set of all common zeroes of these polynomials in
PN (k) (in what follows we shall use the similar notations for the sets of
common zeroes of others polynomials or polynomial ideals in projective
or affine spaces).

Definition 1. Let p : E — W be a morphism of algebraic varieties
defined over the field k. Suppose that p(E) is closed in the Zariski topology
in W, the total quotient rings of the rings of regular functions k(FE) =
k(p(E)) and p induces the finite morphism E — p(E). Then the variety
Si(p) of self-intersection of p is the closure in the Zariski topology of
the subset of p(E) consisting of all points z such that the number of
elements #p~'(z) > 1. Let W be an arbitrary algebraic variety, W be
normalization of W and p : W — W be the morphism of normalization.
Then the variety Si (W) of self-intersection of W is Si(p).

Let the integer ag be equal to 2 if char (k) # 2 and 3 if char (k) = 2.
Let u = {u;;},0<i<n+1,1<j< (NZ-an), be a family of elements
algebraically independent over k. Let us fix a one-to-one correspondence
between the set of integers {1,..., (¥ ;Loao)} and the set of monomials in
Xo, ..., Xy with coefficient 1 of degree ag. Denote by H;, 0 <i < n+1,
the generic homogeneous polynomial of degree ag. The coefficients of this
polynomial are from the family {u;;}, 1 < j < (N;Loao) according to the
fixed one-to-one correspondence. Denote by k,, = k(u) the extension of the
field k by all the elements of the family w. Hence H; € k,[Xo,... ,Xn],

0 <i < n+1. In what follows we shall denote the algebraic variety V (k)
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again by V (this will not lead to an ambiguity). Denote by

qH:VH]P”H'l(E), (Xo:...: XN)— (Ho:...: Hyt1)

pr : V — P(ky,), (Xo:...: Xn)— (Hop:...: Hy)
the rational morphisms of projective algebraic varieties over the field %,.
Further, let

po : PPPUE) = PY(k), (Xo:...:Xpp1)— (Xo:...:X,)

be the morphism of the linear projection (we shall use the same notation
for this morphism over the field k).

Theorem 1. Let V C PN (k) be a defined over k and irreducible over k
nonsingular in codimension one projective algebraic variety of dimension
n > 3 and degree D. Then the following properties hold.

(a)

The morphism pg is regular finite dominant separable and de-
fined over the field k,. The degree of pm is afD, ie., the de-
gree of the extension of fields of rational functions [k, (V)
ku(Hl/H07 v 7Hn/H0)] = a(T)LD

The morphism qg is defined over the field k,, and induces the finite
birational isomorphism V' — qp (V) where qg (V) C P"t(k,) is a
closed affine algebraic variety defined over the field k,. For every
smooth point z € V' the differential d.qy (of the morphism qy at
the point z) is a monomorphism. Further, qy(z) is a smooth point
of the algebraic variety qm (V') if and only if qu(2) & Si (¢m)-

The algebraic variety qp' (Si(qm)) is defined over the field k,, ir-
reducible over k, and is of dimension n — 1. Hence the algebraic
variety Si (qzr) is defined over the field k,, irreducible over k, and is
of dimension n — 1. In particular Si (qg) # 0.

The equality qu (V) = Z(®y) holds where @ € k,[Xo, ... , Xnt1]
is an irreducible over k, homogeneous polynomial such that
degx, @y = degx,, . x,,, ®n = agD forall1 < i < n+1,in
particular, leading coefficients lex, ®p € ky for all 1 < i < n+ 1.
Besides that, for every 0 < i@ < n+ 1 the polynomial ® is separable

with respect to X;, i.e., 0%y /0X; # 0.

There is a nonempty open in the Zariski topology subset V of Si(qm)
satisfying the following properties.
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(e) For every z € V the inverse image qy'(z) = {z1,22} consists of
two distinct points such that z1; and zs are smooth points of V', the
differentials d,, qr and d.,qm are monomorphisms, and the intersec-
tion d, qu (T, ,v)Ndqu(Ts,,v) of the images of the tangent spaces
T.,v and T,, v (of V in the points z; and zz) is transversal, i.e.,
the dimension

dim dZ1QH(T217V) n szQH(TzQ7V) =n-—1.

(f) Forevery z € po(V) the inverse image py,' (2) consists of aj D distinct
smooth points of V' and for every y € p;II (2) the differential d,pg
of the morphism pg in the point

y is an isomorphism. Moreover, V = py 'po(V) N Si(grr) and po(V) is
an open in the Zariski topology subset of the closed irreducible over k
projective algebraic variety po(Si(qu))-

(g) The morphism of defined over k, and irreducible over k,, algebraic
varieties q7;' (Si(gzr)) — Si(gu) induced by g is finite dominant
and separable of degree 2. The morphism of defined over k,, projec-
tive algebraic varieties q1 : Si(qu) — po(Si(¢m)) induced by py is
a finite birational isomorphism. For every y € V the point ¢ (y) is
a smooth point of po(Si (qr)) and the differential d,q1 is an isomor-
phism.

Let very, : PN(k) — PNi(k), Ny = (Njoao) — 1 be the Veronese map-
ping of degree ag. We have degver,, (V) = ajy D and the projective al-
gebraic varieties V' and ver,, (V') are isomorphic. Hence it is sufficient to
construct the normalization of ver,, (V) = W.

Denote by B the homogeneous ring over the field k, of the projective
algebraic variety W. To obtain the normalization of W it is sufficient now
to construct the integral closure B of B in its field of fractions. By the
natural isomorphism V' — W one can identify B with the subring of the
homogeneous ring of V' over the field k,, generated by all the homogeneous
polynomials in X, ... , Xy of degree ag with coeflicients from k,. Hence
we have a homomorphism of k,-algebras k,[Xo,...,Xnt1] — B, X; —
H;, 0 <i < n+ 1, which induces the inclusion

kulXo, .., Xns1]/(®5) C B, (1)

see the proof of Theorem 1. Denote for brevity A = k,[Xo,...,X.],
® =%y € A, and w = X;,41 mod ® € B according to inclusion (1).
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The projective variety po(Si(qr)) = Z(Ao), see Theorem 1, where
Ag € A is an irreducible polynomial over the field k, dividing the dis-
criminant of the polynomial ® with respect to X,,11.

Set the ring A® = A/(Ap). Denote by K(© the field of fractions of
A Put AM to be the integral closure of the ring A(® in K(%). Denote
by Ay € ky[Xo,...,Xn-1] the discriminant of the polynomial Ay with
respect to X,,. Consider the element A; mod Ag € ky[Xo, ... , Xn]/(Ao).
Therefore we have A" c (1/A; mod Ag)A/(Ao).

We shall suppose without loss of generality that lcx, ., ® = 1. By Theo-
rem 1, the polynomial ® mod Ag = Fy(X,,11 —n)* where Fj) € A(l)[XnH]
is a separable polynomial over K(®) with leading coefficients lc XoFo =1
and the element n € A Set Fy = Xpt1—n. Put mg = dean“ FoF| =
ayD — 1. Now the homogeneous ring of the algebraic variety Si(gm) over
the field k, is A©[n].

Let b € B. Then one can prove that b = (X o<icms biw?) /Ao where all
b; € A. Denote by J the ideal of A generated by the elements b,,, for all
b € B. Since w™® € B the ideal (Ag) C J. Let us define the homomorph-
isms of A-modules

— j/(A()), €(b) = bmo mod A(),
— T, €(b) =bp,.

Set A = Y cicmy—1 Aw' C A[w]. Hence A’ is a free A-module with the

basis 1,w, ... ,wm0 1,

Theorem 2. The kernels Ker (e) = A[w] and Ker (¢) = A’. Hence we
have the natural exact sequences of A-modules

0 — AJw] — B - 3/(Ao) — 0,

0—A —B-5-573—0.
Further, the equalities

J={z2€A: zFFyc AV[X,.1]},
J={ze€A: 240 c A®}

hold (notice that if q; is not bijective then n & A(®) and J # A).
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For z € J one can find an element from e '(z) as follows. Let
g € A[X,+1] be an arbitrary polynomial such that zF) Fop = g mod Ag €
AO[X,1]. Then g(w)/Ao € e 1(2).

If 3 # A then every associated prime ideal p of J is an associated prime
ideal of the ideal (Ao, A1) and hence the height htp = 2.

Note that by the given generic point of V' one can construct Ag, Ay,
Fy, Fy within the time polynomial in D™ and the size of the input, cf.
[2]. Let us represent

where n; € A. The inclusion zA®[n] € A© 2 € A holds if and only if
there are z;,y; € A such that

Zn; = A1 + ¥ Ao (2)

for all 0 < i < my. Let Ty, T; be new variables. Now (2) is equivalent to

2 Y LT =AY T a4+ Ao Y TeT 'y

0<i<mo 0<i<mo 0<i<mo

Put a = A1, b=Ap,c= — 20<i<m0 Tngmo_im and consider the linear
equation aX + bY + ¢Z = 0 over the polynomial ring A[Tp, Ti] = A?).
Let (z;,yj,25), j € J, be a finite system of generators of the module of
solutions of the equation aX +bY +¢Z = 0 over A . Since the coefficients
a, b, c are homogeneous with respect to Ty, 77 we shall suppose without
loss of generality that all z;,y;, 2; are also homogeneous with respect to
To, Ty. Put J; = {j € J : degy, 1, 25 = 0}. Now obviously z;, j € Ji,
is a system of generators of the A-module J. Thus, the normalization of
V' is reduced to solving the linear equation aX + bY + ¢Z = 0 over the
polynomial ring A().

Notice that we get a system of generators of the k,[Hy,... , H,]-mo-
dule B. But the algebraic varieties V and W are defined over the field k.
Denote by B’ the homogeneous ring of the algebraic variety W over the
field k. So we have B = k,, ® B’. If the field k is infinite (or finite but has
sufficiently many elements) then one can obtain the integral closure B’
in the similar way replacing the field k, by k and all generic polynomials
H; by homogeneous H/ with coefficients from k in general position (they
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can be constructed within the time polynomial in D" and the size
of the input using, e.g., the algorithms from [2] at least in the case of
zero-characteristic).

One can also construct B’ directly knowing B.

We don’t specify O(1) in pn since, see [3], the known upper bound
for the complexity of solving the considered linear equation a X +bY +cZ =

20(1)
0 is polynomial in D? and the size of a, b, c.

Finally, we would like to note that there is also an analog of the de-
scribed construction for affine algebraic varieties. It is less canonical but
actually we consider it to reduce the projective case to affine one.

1. LEMMAS OF GENERAL POSITION

Let N > 0 and r > 0 be integers. Let AN (k) be the affine space
with coordinate functions Xi,...,Xy. We shall identify the set of all
r-tuples (Li,...,L,) of linear forms L; € k[Xi,...,Xn], 1 < i < r
with the algebraic variety AN"(k). If » < N then by S") denote the
set of all -tuples (L1, ... ,L,) € AN"(k) such that Ly,... , L, are linearly
independent over k. Hence S(") is a nonempty open in the Zariski topology
subset, of AN (k).

In this and next section, L = (L1, ... ,Lp4+1) is a (n+ 1)-tuple of linear
forms. The following lemma is known.

Lemma 1. Let V C AN (k) be a closed affine algebraic variety irreducible
over k of dimension dim V' = n. Denote by V the closure in the Zariski
topology of V' in the projective space PN (k) where AN (k) = PN (k)\ Z(Xo)
and PN (k) has homogeneous coordinates Xo,... ,Xxn. By Vi C AN™(k)
denote the subset of all n-tuples (L1, ... ,L,) of linear forms such that

VN 2Z(Xo, Li,... ,Ly) =0 (3)

in IPN_(E). Then V; is a nonempty open in the Zariski topology subset of
AN (E). Further, there is a nonempty open in the Zariski topology subset
Vo € ANHO(E) such that L = (Ly,...,Lny1) € Vs if and only if the
following properties are satisfied.

(1) The corresponding n-tuple (Ly,...,L,) € V.

(2) The morphism

pPL : V—>An(E), (Xl,...,XN)H(Ll,...,Ln) (4)
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is finite dominant and separable.
(3) Consider the morphism

qr - V%An—i_l(E)a (le-..,XN)H(Lla'-'7Ln+1)‘ (5)

Then q,(V) = Z(®1) where ®;, € k[X1, ..., X,11] is an irreducible
polynomial with leading coefficient lcx,,, ®;, = 1 and ®;, is separa-
ble with respect to X,,+1, i.e., the partial derivative 0®,/0X,,+1 # 0.

(4) By g2 denote the morphism V. — Z(®y,) induced by qr,. Then ¢ is
a finite birational isomorphism, i.e., there is a nonempty open in the
Zariski topology subset U C V such that q» induces the isomorphism
of algebraic varieties U — ¢2(U).

Further, the degree degy . ®1 =D = deg V' coincides with the degree

of the projective algebraic variety V and hence does not depend on the
choice of L € V.

Remark 1. One can slightly generalize Lemma 1. One can consider an
algebraic variety V such that all the irreducible components of V' have
the same dimension n, cf. the next lemma. Then by definition ¢» is a
birational isomorphism if and only if it induces the isomorphism of total
quotient rings of the rings of regular functions of corresponding algebraic
varieties.

Lemma 2. Lety : W — A"(k) be a finite dominant morphism of defined
over k algebraic varieties of dimension n > 0. Suppose that the irreducible
components of the algebraic variety W have the same dimension. Let
k(W) be the total quotient ring of the ring of regular functions of the
algebraic variety W and by definition degy = [k(W) : k(X1,...,X,)] is
the dimension of k(W) over the field k(X1,...,X,). Let z € A (k).
(1) Suppose that for every point x € v~ 1(z) the differential d,v is an
isomorphism (and hence the point x is a smooth point of W). Then
the morphism vy is separable (which means by definition that k(W)
is a separable k(X1,...,X,) algebra) and the number of elements

#77' (2) = degy = [k(W) : k(X1,..., X)]. (6)

(2) Conversely, suppose that (6) holds and 7y is a separable morphism.
Then for every point z € v~ (2) the differential d,~ is an isomor-
phism. In particular, x is a smooth point of W
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Besides that, if y is separable then the set of points z € A"(k) such that

(2) holds is open in the Zariski topology in A™(k).

Let ¢1,...,%,, be a basis of the linear space of all the polynomials of
degree at most ag, see the Introduction, in Xj,... , X with coefficients
from k. Let _ _

b= (1, m) 2 AN (k) — AT (R) (7)

be the morphism of algebraic varieties. Let A™ (k) has coordinate functions
Xi,..., X Denote Vy = (V). Hence Vj is isomorphic to V.

Let AN (k) x AN (k) has coordinate functions X1,...,Xn, Y1,..., Y.
Let V' be an affine algebraic variety from the formulation of Lemma 1. By

D(VxV):{(z,z) : zEV} (8)

the diagonal subvariety of V x V' is denoted. Hence (V' x V) \ D(V x V)
is a quasiprojective algebraic variety. Consider the morphism

py = (Vx V)\D(V x V) — A™(E),

(Xiyeoo s X0y Yiyeon , Yy)

(@1 (X1 s XN) = 01 (Viy oo YNy (X1, X )
— (V1. YN)).

Lemma 3. Let V be a closed affine algebraic variety defined over k and
irreducible over k in AN(k) and the dimension dimV = n. Then the
following assertions hold.

(a) Letxy, 2,23 € AN (k) be arbitrary three distinct points Then (),

Y(x2), Y¥(x3) do not belong to the same line in A™ (k).

(b) There are pairwise distinct integers 1 < i1,... ,i2, < m such that
the family

YilX1, oo XN) = iV, YY), € {i,- .. yizn)

is a separable basis of transcendency of the field k(V x V') over k or,
which is the same, the extension of fields

E(‘/O X VO) D E(XH - Yvi17 tee 7Xi2n - }fizn) (9)

is finite and separable.
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(c) If characteristic char (k) # 2 then for every point z € A™(k) the
number of elements of the inverse image #p,zl(z) < 1. If charac-

teristic char (k) = 2 then for every point z € A™ (k) the number of
elements #pdjl(z) < 2 and if this inverse image is nonempty then

plzl(z) = {(xz,y), (y,x)} for some distinct x,y € V.

For an arbitrary set E by #FE = Card (E) we denote the cardinality
of E.

Lemma 4. Let V. C AN(k) be a closed affine algebraic variety ir-
reducible over k of dimension n. Let n + 1 < N. Suppose that any
three distinct points from V do not belong to the same line in A" (k).
Let L = (Ly,... ,Lnt1) € StY. Let qr, be the morphism defined in
Lemma 1. By F| denote the closure in the Zariski topology of the set

{ZGA”H(E) C#qr(2) > 2}.

There is a nonempty open in the Zariski topology subset V C S 1) such
that L = (L1,. .., Lpt1) € V4 if and only if the dimension dim F} < n—2.

Lemma 5. Let V C AN (k) be a closed affine algebraic variety irreducible
over k of dimension n. Let n + 1 < N. Let L = (Ly,... , L) € S,
By F/' denote the closure in the Zariski topology of the set of all smooth
point z of V' such that the differential d.qr, in the point z of the mor-
phism qp, is not a monomorphism. Then there is a open in the Zariski
topology subset Vi of S("+1) such that L € V4 if and only if the dimen-
sion dim F}y < n — 2.

Remark 2. We shall denote V; = Vi (V), Vo = Wao(V), V5 = V4(V) and
Vi =V{ (V) when it will be necessary to indicate explicitly the algebraic
variety V' from the formulations of Lemma 1, Lemma 4, and Lemma 5.

Lemma 6. Under conditions of Lemma 5 suppose that z ¢ F| is a
smooth point of V' such that the number of elements of the inverse image
#qgqu(z) = 1. Suppose that L € Vs, see Lemma 1 (and hence qr,(V) is
closed in the Zariski topology in A"t (k) since the morphism qy, is finite).
Then qr,(2) is a smooth point of qr, (V') and hence by Lemma 5 the tangent
space in the point qr,(2) of qr. (V)

T‘IL(Z), (V) = d.qL (Tz7V)-
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Lemma 7. Under conditions of Lemma 6 suppose that L € Vs N VY.
Then F)' C q;*(Si(q1)). Hence for every smooth point z € V the point
qr.(z) is a smooth point of Z(®y,) if and only if z & Si (qr,).

2. IRREDUCIBILITY OF SELF-INTERSECTION

Let V be an algebraic variety satisfying conditions of Lemma 3. Let
us replace NV by m and the algebraic variety V' by the isomorphic variety
Vo = ¢(V). So we replace also the notation: denote m by N and V; by
V. Hence now V and N satisfy all the assertions of Lemma 3 in place
of Vo and m. Therefore V' and N satisfy the conditions of Lemma 4 and
Lemma 5.

Let Ly,...,La, € k[X1,...,Xn] be linear forms. Denote for brevity

M;=L;(Xy,...,Xn)—Li(Y1,...,YN), (10)

for every 1 < i < 2n.
Recall that D(V x V) is the the diagonal subvariety of V' x V defined
by (8). By

pa 2 (Vx W\ DV x V) — A?"(k), 1
(Xl,...,XN,Yl,...,YN)H(Ml,...,MQn) ( )

and
px_y : (Vx W)\ DV x V) — AN(E),

(12)
(X1, XN, Vi, YN) e (X = Vi, Xy — Yy

denote the morphisms of quasiprojective algebraic varieties. Set V; =
(V x V)\ D(V x V). By V/ denote the subvariety of AN (k) which is
closure in the Zariski topology of px —y (V1). Hence the open in the Zariski
topology set of linear forms V;(V}) is defined, see Remark 2.

Recall that Vs, Vi, and VY are open in the Zariski topology sub-
set of (n + 1)-tuples of linear forms from Lemma 1, Lemma 4, and
Lemma 5, respectively. By W5 denote the subset of 2n-tuples of lin-
ear forms (Li,...,Ls,) such that for every permutation o of the set
{1,...,2n} the (n + 1)-tuple (Ly(1),--. , Lo(nt1)) € Vo N V3N V3. Hence
Ws is a nonempty open in the Zariski topology subset of A2V (k).

Let Li,...,La, € E[X1,...,Xn] be linear forms. Then linear forms
M;, 1 < i < 2n are defined by (10). Denote by L = (Ly,... ,Lpt1) €
AN the (n + 1)-tuple of linear forms. Recall that the morphisms pr,
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qr, pv and px_y are defined, see (4), (5), (11), and (12). Recall that
the degree D = degV where V' is closure in the Zariski topology of V' in
PN (k), see Lemma 1.

Set p'y _y = par for the special case when M; = X; —Y; for all 1 <i <
2n.

Define also the morphism

po @ AMTHE) — A™E), (Xi,..., Xpp1) = (X, , X)), (13)

Note that if one performs an appropriate linear transformation v of
X1,...,Xn and replaces V by (V) then the algebraic variety V' satisfies
all the conditions of the next lemma.

Lemma 8. Let V be an irreducible over k affine algebraic variety which is
a closed subvariety AN (k). Let the dimension dimV =n > 3 and N > 2n.
Suppose that any three distinct points of V' do not belong to the same line
in AN (k). Consider the affine algebraic variety V x V C AN (k) x AN (k)
where AN (k) x AN (k) has coordinates functions X1,...,Xn, Y1,...,Yn.
Suppose that linear forms X; — Yy, ..., Xo, — Y3, are algebraically inde-
pendent in the field of rational functions k(V x V') and the extension of
fields

EV xV)DE(X) —Yi,...,Xo, — Yap) (14)

is separable and finite. Suppose that for every z € AN (k) the number
of elements of the inverse image #p;(iy(z) < ap — 1. Suppose that the
2n-tuple (X1,...,Xapn) € V1(VY), see Remark 2 and (12), and hence the
morphism

Vi — A*™(E), (X1,...,XN)— (X1,...,X20) (15)

is finite separable (consequently for every point z € A?"(k) the num-
ber of elements of the inverse image #pj,[l(z) < +o0, ie., the mor-
phism py is quasifinite dominant separable). Suppose that the 2n-tuple
(Ll,... ,Lgn) € Ws. Set Ly = X;, M; = X; —Y; foralln +2 < ¢ < 2n.
Finally, assume that there is (L1, ... ,Lp11) € Va(V) such that all linear
forms L; € k[X1,...,Xs,] for all 1 <i < 2n.

Then there is a nonempty open in the Zariski topology subset Wy C
V; (V) such that Wy C W5 and for every (L, ... , Lay,) € Wy the following
properties hold.



AN OVERVIEW OF EFFECTIVE NORMALIZATION 307

(a)

(b)

The morphism py, is finite dominant separable. The degree of pr,
is D, i.e., the degree of the extension of fields of rational functions

[k(V):k(Ly,...,L,)] =D.

The morphism ¢, induces the finite birational isomorphism V —
qr.(V) where qr (V) c A" (k) is a closed affine algebraic variety.
The closure in the Zariski topology F of the subset of smooth points
z € V such that the differential d.q, (of the morphism qj, in the
point z) is not a monomorphism has dimension dim F} < n — 2.
For every smooth point z € V the point qr,(z) is a smooth point of
qr,(V') if and only if z & Si(qr,).

The algebraic variety q; ' (Si(gz)) is irreducible over k of dimension
n — 1. Hence the algebraic variety Si(qr) is irreducible over k of
dimension n — 1. In particular Si(qr) # 0.

There is a nonempty open in the Zariski topology subset Vs of Si (qy,)
such that for every z € Vs the inverse image q;'(2) = {z1,22}
consists of two distinct points such that z, and zs are smooth points
of V, the differentials d., qr, and d,qr, are monomorphisms, and the
intersection d, qr, (T, ,v) Nd.,qr.(T:,,v) of the images of the tangent
spaces T, v and T, v (of V in the points z1 and z») is transversal,
i.e., the dimension

dim dzqu(Tzl,V) n dZQqL(TZQ,V) =n—1. (16)

We shall denote also Vs = V(L) when the dependence on L will be
essential.

Further for every z € po(Vs) the inverse image p;*(z) consists of D
distinct smooth points of V' and for every y € pil(z) the differential
dypr, of the morphism py, in the point y is an isomorphism. Besides
that, Vs = py 'po(Vs) N Si(gz) and po(Vs) is an open in the Zariski
topology subset of the closed irreducible over k affine algebraic va-
riety po(Si(qr))-

The morphism of irreducible over k algebraic varieties q; *(Si(qr))
— Si(qr,) induced by q, is finite dominant and separable of degree
2. The morphism of irreducible over k affine algebraic varieties g, -
Si(qr) — po(Si(qr)) induced by po is finite separable. For every
y € Vs the point q4(y) is a smooth point of po(Si(qr)) and the
differential d,q4 is an isomorphism.



308 A. L. CHISTOV

(g) Let D(V x V) be the diagonal subvariety of V' x V, see above, and
the linear form M;, 1 < i < n+ 1 be defined by (10). Then for every
1 < j <n+1 the algebraic variety

((VxW\DV xV))NZ(Mi,...,M) (17)

is irreducible over k and there is a nonempty open in the Zariski
topology subset U; of the algebraic variety (17) such that for every
z € U; the point z is a smooth point of U;, the point z is a smooth
point of V. x V'\ D(V x V) and the intersection of tangent spaces

T. vxv\pvxv)NZ(Mi,..., M;) (18)
in the point z of the algebraic varieties (V x V) \ D(V x V) and
Z(M,...,M;) is transversal, i.e.,

dimTZ,va\D(va) ﬂZ(Ml, PN ,M]) =2n —]

(h) The equality qr,(V) = Z(®1) holds where &1, € k[X1,... ,X,41] is
an irreducible over k polynomial such that

degx, @1 = degxl,m’xwr1 &, =D

for all 1 < i < n + 1, in particular, leading coefficients lcx, &y, € k
for all 1 < i < n + 1. Besides that, for every 1 < i < n + 1 the
polynomial ®y, is separable with respect to X;, i.e., 0®1,/0X; # 0.
(i) The morphism p); is quasifinite separable dominant. Let Z(Ly, ...
L;) € P*(k) be the linear subspace of the projective space. Then
the morphism pys induces for every 1 < j < n + 1 the morphism

VinZ(M,... ,M;)) — 2(L,...,L;)
such that the extension of fields
k(VinZ(My,...,M;)) D k(Z(Ly,...,L;)), 1<j<n+1. (19)
is finite separable.

Proof. Denote by m; : V x V — V the projection to the first direct
factor. Notice that g ' (Si(gr)) is equal to the closure with respect to the
Zariski topology of

m (Vi N Z(My, ..., Mpy1)). Let us represent Vi = (J,.; U, where U, is
a nonempty open in the Zariski topology affine subset of V; for every 1 € T
and the number of elements #1 < +o00. Now actually everything follows
straightforwardly from Theorem 3, see the Appendix, applied j (recall
that 1 < j < n + 1) times to the restrictions p’y_ |y, of the morphism
P’y _y to U, cf. also the Introduction from [4], and further from Lemmas
1,2, 3, 4,5, and 6. The lemma is proved.
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3. THE CASE OF A PROJECTIVE NONSINGULAR
IN CODIMENSION ONE ALGEBRAIC VARIETY

Now we can give a sketch of the proof of Theorem 1. We have
degver,, (V) = af D and the projective algebraic varieties V and ver,, (V)
are isomorphic. Let us replace V' by very, (V). Then Hy,... ,H,11 are re-
placed by generic linear forms in Xj,... ,Xn, (we denote them again by
Hy,...,H,1; the morphism gy and py are defined as previously). By
Lemma 3 any three distinct points of ver,, (V) do not belong to any line
in PV (k,). Now all the required assertions are direct consequences of
Lemma 8. They are obtained by considering the restrictions of the mor-
phisms py and gy to the affine algebraic varieties V' \ Z(H;), 0 < i < n,
with the coordinate functions X;/H;, 1 < j < N. After that one can glue
everything without difficulties. The theorem is proved.

4. A MODIFICATION OF THE SERRE CRITERION
FOR NORMAL ALGEBRAIC VARIETIES

Let V C AN(k) be a closed affine irreducible over k normal algebraic
variety of dimension n. Denote for brevity the ring of regular functions
k[V] = B. Let B be a prime ideal of B. By By = (B \ )" 'B denote
the localization of B with respect to the prime ideal 3. The following
characterization, the Serre criterion, of normal affine algebraic varieties is
known. The affine algebraic variety V is normal if and only if the following
two conditions are satisfied

e for every prime ideal B of the ring B with height ht () = 1 the
localization Bg is integrally closed,

e for every prime ideal P of the ring B with height ht () > 2 there
are two distinct elements u,v € (B \ )P such that u, v is regular
sequence (of length two) of the local ring By.

The last condition means that v is not a zero-divisor in By /uBg. The
first one means that V is nonsingular in codimension one.

Denote A = k[X1,...,X,]. Suppose that the extension of rings B D A
is integral. Let p be a prime ideal of A. By B, = (4 \ p)~'B denote the
localization of B with respect to the multiplicatively closed set A\ p. We
shall need also the following characterization of normal algebraic varieties.

Lemma 9. The affine irreducible algebraic variety V is normal if and
only if the following two conditions hold
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(i) for every prime ideal p of the ring A with height ht (p) = 1 the
localization By, is integrally closed,

(ii) for every prime ideal p of the ring A with height ht (p) > 2 there are
two distinct elements u,v € (A \ p)~'p such that u,v is a regular
sequence of length two of the semilocal ring B,.

Proof. Suppose that V' is a normal algebraic variety. Then B is integrally
closed. Hence (i) holds. Let p be a prime ideal of the ring A with height
ht (p) > 2. Therefore there is 0 # u € p. Let Ass(B/uB) be the set of
all associated prime ideals of the ring B of the ideal uB. Then for every
p1 € Ass(B/uB) the height ht (p1) = 1 since B is integrally closed, see
[?7]. Hence ht (p1 N A) = 1 where p; N A is a prime ideal of A. Therefore
there is

vep\ U (mnA).

p1E€Ass (B/uB)

Consequently u,v is the required regular sequence of the ring B, which
proves (ii).

Conversely, let (i) and (ii) hold. Let 8 be a prime ideal of the ring B
with ht () = 1. Set p = P N A. Then ht (p) = 1 in A. Hence by (i) the
ring B,, is integrally closed. Therefore By = (B\P) ' B, is also integrally
closed.

Let B be a prime ideal of the ring B with ht (8) > 2. Set p =P N A.
Then ht(p) > 2 in A. By (ii), there are two distinct elements u,v €
(A\ p)~tp such that u,v is regular sequence of length two of the semilocal
ring B,,. But By = (B \ ) ' B,. The multiplication to v : B,/uB, —
By /uB, is a monomorphism. Hence the multiplication to v : By /uBgy —
By /uBg is also a monomorphism. Consequently u, v is regular sequence
in Bg. Thus, by the Serre criterion, the algebraic variety V' is normal.
The lemma is proved.

5. A NEW REPRESENTATION OF A NORMAL ALGEBRAIC VARIETY

Now we shall formulate two lemmas for the proof of Theorem 2. We
use the notation from the Introduction.

Let h € A be a homogeneous irreducible polynomial. Set the ideal
p = (h) C A. Denote by S, = A\ p the multiplicatively closed set. For
an arbitrary A-module M denote by M, = S;lM the localization of M
with respect to the multiplicatively closed set S,.
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Lemma 10. For every prime ideal of height one p = (h) C A such that
p # (Ao) the inclusion (1) induces the identification ring

B, = AP[XnH]/(‘I’)-

Proof. Recall that A € k,[Xp, ..., X,] is the discriminant of the poly-
nomial ® with respect to X, 1. Suppose that the irreducible polynomial
h does not divide A. Then

B, > %AP [w] = Aplw].

Hence the ring B, = A,[w] is integrally closed.

Suppose that h divides A and h # ¢Aq for every ¢ € k,. It is sufficient to
show that the ring A,[w] is integrally closed. Let B3, v € T, be the family
of all prime ideals % of the ring A[w] such that PNA = p. Let Sy, = A[w]\
B be the multiplicatively closed set. For a A[w]-module M denote by
Mg, the localization of Sg; M Then the ring Alw]q, is integrally closed
since the algebraic variety Z (®m) \ Z(Ay) is nonsingular in codimension
one. Now it is sufficient to show that Afw], D (N, cp Alw]yp,. Let 2 €
M, er Alw]g, - Then one can represent z = z,/s., where z € A[w], sy € Sy
for every v € T'. Let K be the field of fractions B. Hence one can represent,
z =2'[s, where 2’ € Aw],

s € AW\ [ B+ (20)

vyer
and s is primitive element of the extension K; D ky (X, . .-, Xn) Let N be
the mapping of the norm from the field of fractions K to ky(Xo, ..., X,)-

Then

(1)

where o runs over all the pairwise distinct embeddings of K; to the alge-
braic closure of ky(Xo, ..., X,) over ky(Xo,... ,X,).

Suppose that AN'(s) € p. Let v : ky(Xo,...,X,) — QU {+00} be
the discrete valuation of the field k, (X, ..., X,) with the center p on
A. Since N(s) € p there is an extension w of v to the least normal over
ku(Xo,...,X,) extension K of K; such that w(N(s)) > 0. Obviously



312 A. L. CHISTOV

w(s?) = 0 for every o. Hence there is o such that w(s”) > 0. Hence s?
belongs to a prime ideal P of A[w]” such that BN A = p. But then P = L7
for some v € T'. On the other hand, by (20) we have s & |, .p B7. We
get a contradiction. Therefore, N(s) € S,.

Let us show that s € Alw]. Indeed, let Z” + 35 ;) _; b:iZ", be the
minimal polynomial of s over the field k,(Xo,...,X,). Then all b; € A
and by = (—1)”N(s) since s is a primitive element of the extension K; D
ky(Xo,...,X,). Thus, s = (—1)"*1(s¥ 71 + Doi<i<r—1 bist1) € Alw].

Now z = 2's’"/N(s) € Ap[w]. The lemma is proved.

Lemma 11. Let p = (Ay). The polynomial

FyF € (k‘u[Xo, . ,Xn]/Ao)p[Xn+1].
Let G € Ay[Xn41] be an arbitrary polynomial such that G mod Ay =
FyFy, the degree deanH G = myg and the leading coefficient lcx, G =
1. (one can choose G € (1/A;)A[Xp+1] but we don’t fix it now). Set
0 = G(Xo,...,X,,w)/Ay. Then 0 € By, and B, is a free Ay,-module
with the basis
Lw,...,w"™ 4. (21)

Corollary 1. Denote by B the integral closure of B in its field of frac-
tions. The ring
— 1
B Cc —Alw].
c 3 AW

Proof. By Lemmas 10 and 11,

o) 1 i i
BC(A_O Z A(Ao)w)ﬂ ﬂ ( Z pr)
0<i<agy D1 p#(Ap), \0<i<ag D—1
ht p=1

1 ) 1 .
= > (KAmo) n () Aw>w’ = 2 (A_A>“’l;
0<i<az D—1 0 p£(Ao), 0<i<an D—1 0
ht p=1
here with all the terms of the considered intersections are subsets of
the field of fractions of A[w]. The corollary is proved.

Corollary 2. Let z € A and 0 be an arbitrary element from the statement
of Lemma 11. Then 26 € (1/Aq)A[w] if and only if 20 € B.

Using these lemmas and corollaries one can prove without difficulties
all the assertions of Theorem 2.
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APPENDIX: AN IRREDUCIBILITY THEOREM

We use in this paper an irreducibility theorem from the Appendix of
[4]. So in this section we formulate it for completeness of presentation.
Actually it is a version of the first Bertini theorem, see for details [4].

Let B be an arbitrary commutative Noetherian integral ring. We shall
denote by B’ the integral closure of B in the field of fractions of B. For a
finitely generated B-module M denote by Ass (M) the set of all associated
prime ideals of M (they are prime ideals of B). Recall that an ideal of
B is called radical if it coincides with its nil-radical. In what follows the
morphisms of algebraic varieties are regular morphisms if it is not stated
otherwise.

Let n > 2 be an integer. Let A™(k) be affine space over the field k with
the coordinate functions Xi,...,X,. Let = € A"(k) be the point with
the coordinates X;(z) =0, 1 <i < n.

Let V be an affine algebraic variety defined over k and irreducible over
k. Let p : V — A"(k) be a dominant separable morphism. We shall
identify the ring k[X1, ..., X,] C k[V]. For an element g € k[X1, ..., X,]
we shall denote by Z(g) the subset of all zeroes of the polynomial g in

A"(k). By VN Z(g) we shall denote for convenience of notation the subset

pH(Z(g) CV.
We shall suppose additionally that

dimp~t(z) <n —2. (22)

By B = k[V] denote the ring of regular functions of the algebraic
variety V. Let z € V be a point. By 91, denote the maximal ideal of B
corresponding to the point z.

Let y € B be a primitive element of the separable algebraic extension
E(V) D k(Xy,...,X,), ie.,

E(V)=k(X1,..., X))y (23)

Let f € k[X1,...,Xp,Y] be minimal polynomial of y over k(X1,...,X,)
(here Y is a new variable) and f be irreducible in the ring k[X1, ..., X,,, Y].
So the degree D = degy f > 1. Let degyx,  x, y f =mi and f(m) be
the homogeneousin X1,... , X,,Y form of degree m; of the polynomial f.

The element y is integral over k[X1,. .., X,,] if the morphism p is finite.
Denote by lcy f the leading coefficient of the polynomial f with respect
to Y. We choose f such that lcy f = 1 if p is finite.
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Besides that we shall suppose that if n = 2 then p is finite.
Denote by

A = Resy (f,0f/0Y) € K[X1, ..., X,] (24)

the discriminant of the polynomial f with respect to Y. So A # 0 since f
is separable.

Remark 3. Recall that by definition the discriminant A is the deter-
minant of the (2D — 1) x (2D — 1) Sylvester matrix of the resultant.
Although in the case of nonzero characteristic of the ground field the de-
gree degy- 0f /0Y may be less than D — 1 the partial derivative 9f/9Y is
considered formally as a polynomial of degree D — 1 in this matrix. Some
higher coefficients of 9f/0Y may be equals to zero in this representation.

Let us identify the set of all linear forms from k[Xj,...,X,] with
A" (k). Let P be a prime ideal of k[Xy,...,X,] (respectively, B, B’).
Suppose that

Z(P) ¢ 2(Xq,...,Xn),

where Z(X4,...,X,) and Z(B) are considered as subvarieties of A™(k)
(respectively, V', the normalization of V'). Then the set Sg of linear forms
L € k[Xi,...,X,)] such that L ¢ B is open in the Zariski topology in

A"(k) since
Sp= U {L e A"(F) : L(z) # o}.
2€Z(P)
Consider B'/B as a B-module. Set

By = Ass(B'/B), By={PeBi:Z(P) Cp '(x)},
Bs={PeB : dimZ(P)=n—1}.

Consider the set U (respectively, Us) of linear forms L in X3, ..., X, such
that L & B for every P € By \ Bs (respectively, Bs). Then U, (respectively,
Us) is a nonempty open in the Zariski topology subset of A”(k) and i) C
Us. Note that Uy = Us = A™(k) if By = By, in particular if B = B’ (i.e.,
if V' is normal) since in the latter case Ass(B’/B) = ). Note also that if
the set of singular points of V' has dimension at most n — 2 then B3 = ()
and UQ = A" (E)

Let L € k[X,...,X,] be a nonzero linear form. Consider B/LB as a
B-module. Set

BLL:BQHASS(B/LB), BQ7L:(61\B3)QASS(B/LB).
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Let us show that there is a nonzero element A; € k[Xi,..., X,] such
that the extensions of rings

BIATY D E[X1, ..., Xy, ATY[Y] D R[X0, ..., X0][ATY] (25)

are integral. Indeed, by (23), one can choose A; to be the product
of ley f and all the leading coefficients of minimal polynomials over
k[X1,...,X,] of the elements a finite system of generators of the ring
B over k[X1,...,X,]. In the case, where p is finite we choose A; = 1. Fix
such an element A;.

Set By = Ass (B’/A;B’) where B'/A; B’ is considered as a B’-module.
Hence the elements of B4 are prime ideals of B’. By Us denote the set of
all linear forms L € k[Xi,...,X,] such that L & B for every L € B.
Since B’ is integrally closed the dimension dim Z() = n — 1 for every
B € By. Therefore Us is a nonempty open in the Zariski topology subset
of A"(k). Note that if p is finite then U3 = A" (k). Note also that if L € Us

then L does not divide A; in the ring k[X1, ..., X,)].

Theorem 3. Let n > 2. Let V, B, p : V. — A™k), y, f, A, Ay, my,
Fm) Uy Us, Us, By, By, Bs and By be as above.

(i) Then there is a nonzero linear form L € k[Xy,... ,X,]in X1,... , X,
such that the ideal (f,L) C k[X1,...,X,,Y] is radical and ifn > 3
it is prime. The element A mod L € k[X1,...,X,]/(L) is nonzero
(i.e., L does not divide A) and

) mod L e (E[X1, ..., X,]/(L)[Y]

is also nonzero.

(ii) The set of linear forms L satisfying the properties from (i) contains
a nonempty open in the Zariski topology subset Uy of A™(k).

(iii) Let L € Uy NUs NUy (respectively, L € Us NUs NUy). Then the ideal
LB=pnaq,

where the ideal p is the radical of the ideal LB and if n > 3 it is
prime. The ideal q is an intersection of B-primary ideals for all prime
ideals B € By 1 (respectively, 3 € Bs, 1), herewith we suppose that
the intersection over the empty set (when By = ) or Ba, = 0)
is B. Hence if p is finite then q is an intersection of 9,-primary
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ideals for some z € p~'(x) or ¢ = B. Besides that, for every p €
Bi.,1, (respectively, P € By 1) the dimension dim Z(P) < n — 2 and
therefore, the P-primary component of the ideal LB is embedded.

(iv) Let L € Us NUs NUy. Then the algebraic variety V N Z(L) has
dimension dimV — 1 and if n > 3 then V N Z(L) is irreducible over
k. Further, the projection induced by p

VNZ(L) — Z(L) (26)

is a dominant and separable morphism of affine algebraic varieties
(here Z(L) c A™(k)). Besides that if p is a finite morphism then
morphism (26) is also finite.
Denote by k(V N Z(L)) the total quotient ring of the ring of regular
functions of the algebraic variety V N Z(L), hence it is the field of rational
functions of this algebraic variety if n > 3. Then

[(k(VNZ(L) :k(Z(L)] = [k(V) : k(X1,..., X,)], (27)

herewith the left part of this equality is the dimension of the total quotient
ring over the field k(Z(L)) and the right part is the degree of extension
of fields of rational functions k(V) D k(A"(k)). Denote by y mod L the
image of the element y in k[V N Z(L)].

Then minimal polynomial of the element y mod L over k(Z(L)) is
fmod L and y mod L is a primitive element of the separable algebra
k(V N Z(L)) over k(Z(L)).

(v) Let n > 3. Let £ be a linear subspace of the space of all linear forms
from k[X1,...,X,] with dim £ > 3. Suppose that for every g € B,
such that dim Z(3) = n — 1 the dimension

dimp(Z(P)) = n -2, (28)

where the bar means closure with respect to the Zariski topology.
Then EQUQ HU3 75 (Z)

(vi) Let n > 3. Let L be a linear subspace of the space of all linear forms
from k[X1,...,X,] with dim £ > 3. Then LN Uy # 0.

The proof of this theorem see in the Appendix of [4].
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