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ROOT-SQUARING WITH DPR1 MATRICES

ABSTRACT. Recent progress in polynomial root-finding relies on employ-
ing the associated companion and generalized companion DPR1 matrices.
(“DPR1” stands for “diagonal plus rank-one.”) We propose an algorithm
that uses nearly linear arithmetic time to square a DPR1 matrix. Con-
sequently the algorithm squares the roots of the associated characteris-
tic polynomial. This incorporates the classical techniques of polynomial
root-finding by means of root-squaring into new effective framework. Our
approach is distinct from the earlier fast methods for squaring companion
matrices.

1. INTRODUCTION

The classical root-squaring algorithm proposed about 1830 indepen-
dently by Dandelin and Lobachevsky and also known as Gréffe’s [6] is still
an important technique for root-finding for a polynomial p(z) = po(z) =
H?:1(95 — Aj) (cf., e.g., [11]). The algorithm is fundamental but easily
defined. One just recursively computes the polynomials

pi+1($) = (_l)npl(\/g)pl(ﬁ)a i = 07 15 .. 'ak - 17

and observes that
n

pr(@) = ] — 22,

j=1

With FFT one can use O(nlogn) arithmetic operations per squaring.
(Hereafter we refer to such operations as 6ps.)

Recent progress in polynomial root-finding largely relied on the transi-
tion to eigen-solving for the associated companion and generalized com-
panion matrices, in particular for diagonal plus rank-one matrices (here-
after referred to as DPR1 matrices) [8, 9, 5, 1, 3, 2, 13]. The algorithms
benefit from performing them entirely in terms of matrices, without back
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and forth transition to the coefficients of the polynomial. Indeed such
transitions could easily lead to numerical stability problems.

Squaring matrices squares their eigenvalues, in our case the roots of the
associated polynomial. Effective root-finders based on squaring companion
matrices in O(nlogn) ops have been proposed in [4] and [12]. In this note,
we propose a distinct recipe for squaring DPR1 matrices, also in nearly
linear time.

Hereafter M” and M* denote the transpose and the Hermitian (that
is complex conjugate) transpose of a matrix M, respectively, (M = M7T
if M is a real matrix). det(}/) denotes its determinant. (A, B) denotes the
1 x 2 block matrix with the blocks A and B. I, denotes the r x r identity
matrix.

2. DPR1 GENERALIZED COMPANION MATRICES: DEFINITION

With a polynomial p(z) = Y. piz’ = p, H;;l (= Aj), pn # 0, we
associate its DPR1 generalized companion matrix as follows,

C=Csuv=Ds— uv? (2.1)

for s = (Si)?:lv u= (ui)?:lv V= (’Ui)zn:la

Dg = diag (s;)i—4, (2.2)
_ _ p(s;) _ .
di = U;v; = ) ql(x) _H(x_Sl)a 1= 17"'7”7 (23)
qi(si) iy

qz(sl) = q/(si)a i = ]-7 R LD q(l‘) = H(l‘ - Si)' (24)

1

<

Theorem 2.1. The DPRI1 matrix C in Eq. (2.1) has the eigenvalues
Alyevy Ane

Proof. See, e.g., [5] or [1, Theorem 4.4]. O

Unlike the companion matrices, DPR1 matrices are defined by the val-
ues of the associated polynomial on a fixed set of points, rather than by
the coefficients.

We refer to [3] on the association of this matrix with an important
secular equation.
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3. THE SHERMAN—MORRISON—WOODBURY
FORMULA FOR DETERMINANTS

We need the following Sherman—Morrison-Woodbury formula for de-
terminants,

det(C — UVH) = (det C) det(I, — VECIU), (3.1)

which holds provided that C is an n X n nonsingular matrix and U and
V are n x r matrices (cf., e.g., [7]).

4. SQUARING DPR1 MATRICES

Next we employ the DPR1 matrix structure to obtain fast squaring
algorithm, although, unlike the algorithms for companion matrices in [4]
and [12], in this case squaring is indirect and does not preserve the eigen-
vectors.

Theorem 4.1. (a) Given three vectors s = (s;)1,, u, and v defining the
DPR1 matrix C in Eq. (2.1) and n scalars ., . . ., jt, such that s? = uy, for
none pair {i, h}, we can compute the values det(C? —upI) forh =1,...,n
by using O(nlog® n) ops.

(b) Furthermore O(nlogn) ops are sufficient if s; = aw!~! and u, =

bw,’;*l for h,i =1,...,n and two nonzero scalars a and b, where w, denotes
a primitive g-th root of unity and k = O(n).

Proof. Represent C? as D 4+ UV where U = (uik)?;ll’kzo and V =
('Uij)?;ll,jzo are nx 2 matrices and D = diag (s?)"_, . Equation (3.1) implies
that det(C? — u;I) = (det(D?* — pyI)) det(Io — VH(D? — py I)~1U). The
values det(D? — upI) = []}_,(s] — pup) are the values of the polynomial
H?:1(5? — ) at the n points * = pup, h = 1,...,n and thus can be
computed within the claimed cost bounds [10, Section 3.1]. It remains to

compute the 2 x 2 matrices VH (D? — p, I)~'U = (i ;’?f‘;: )277;:0 for

h=1,...,n,and then (in 3n ops) the n values of their determinants. In 4n,
ops we compute the 4n products v;ju;i, for all 4, j, and k. The computation
of the (7, k)th entry of all the n matrices amounts to multiplication of the

Cauchy matrix (52._1—,%)24:1 by the vector (vijuji)j—;. This can be done
J

within the required bounds of O(nlog®n) or, in case (b), O(nlogn) ops
(see, e.g., [10, Section 3.6]). O
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The theorem bounds the cost of computing the values of the character-
istic polynomial det(C? — pupI) of the matrix C2 at n points jy, ..., fin-
Within the same cost bound we can compute the coefficients of the poly-
nomial ¢(z) = [[,_,(z — pn) and the values ¢'(pp) for all b (cf. [10,
Section 3.1]), thus defining a DPR1 matrix whose eigenvalues \?,...,\2
are shared with the matrix C?.

In many applications we can define DPR1 matrices by choosing the
values s; and py to our advantage, and the theorem shows some benefits
in choosing s; = awi=t, p, = bw,’jfl, i,h = 1,2,...,n, which allows
squaring in O(nlogn) ops.

Finally we note that the ith squaring step of a DPR1 matrix Cy =
C — puI = D +uv! can be performed in at most 22*!n multiplications
and 4°(2n — 1) additions for i < log, n. Furthermore in this case squaring
preserves the eigenvectors. Indeed write Uy = u, Vp = v,

Cir = D*" + DUV + UV D* + UVTUVT, i=0,1,...,

and represent the output matrix as C;11 = p*"! +U;41 szl where U; 11 =
(DU, Us), V&, = (VT VD + VIU V).
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