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QUANTIZATION IN DISCRETE
DYNAMICAL SYSTEMS

ABSTRACT. We consider a class of discrete dynamical models allowing
quantum description. Our approach to quantization consists in introduc-
tion of gauge connection with values in n-dimensional unitary representa-
tion of some group (of internal symmetries) T' — the elements of the con-
nection are interpreted as amplitudes of quantum transitions. The stan-
dard quantization is a special case of this construction — Feynman’s path
amplitude et Ldt can be interpreted as parallel transport with values
in (1-dimensional) fundamental representation of the group I' = U(1). If
we take a finite group as the quantizing group T, all our manipulations —
in contrast to the standard quantization — remain within the framework
of constructive discrete mathematics requiring no more than the ring of
algebraic integers. On the other hand, the standard quantization can be
approximated by taking 1-dimensional representations of large enough fi-
nite groups.

The models considered in this paper are defined on regular graphs
with transitive groups of automorphisms (space symmetries). The vertices
of the graphs take values in finite sets of local states. The evolution of
the models proceeds in the discrete time. We assume that one-time-step
quantum transitions are allowed only within the neighborhoods of the
graph vertices. Simple illustrations are given. Essential part of our study
was carried out with the help of a program in C' — implementing computer
algebra and computational group theory algorithms — we are developing
now.

1. DISCRETE DYNAMICS

We consider evolution in discrete time t € Z ={...,—1,0,1,...}.

Let the space X be a finite set of points: X = {z1,... ,zn, }. This -
primordially amorphous — set may possess some structure: some points
may be “closer” to each other than others. A mathematical abstraction of
such a structure is an abstract simplicial complex — a collection of subsets
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of X (simplices) such that any subset of a simplex is also simplex. One-
dimensional complexes, i.e., graphs (or lattices), are sufficient to introduce
gauge structures and quantization. The symmetry group of the space X is
the graph automorphism group G' = Aut (X). Table 1 shows some lattices
—we use them in our computer experiments — with their symmetry groups.

Let points z € X take values in a finite set of local states ¥ =
{o1,... ,0Ng} possessing symmetry group I' < Sym(X). Such groups are
analogs of the “groups of internal symmetries” responsible for interactions
in physical gauge theories. The state of a system as a whole is a function
o(r) € X,

Dynamics of the system is determined by some evolution rule con-
necting the current state of the system oy(z) with its prehistory
oi—1(xz), or—2(x),....

A typical form of evolution rule is evolution relation:

R(Ut(l');Ut,1($),O't,Q(l'),...)gEXXEXX"'. (].)

Most commonly used in applications and convenient for study are deter-
ministic (or causal) dynamical systems. The current state of deterministic
system is uniquely determined by its prehistory, i.e., relations like (1) are
functional and can be written in the form

ot (x) = F (041 (x) ,00—2 (x),...).

There are two important special types of nondeterministic dynamical sys-
tems:

e in lattice models of statistical mechanics — special instances of
Markov chains — transition from one state to any other is possible
with probability controlled by a Hamiltonian;

e in quantum systems probabilities of transitions between states are
squares of complex-valued amplitudes.

In this paper, we restrict our attention to the case of discrete quantum
systems.

2. UNIFICATION OF SPACE AND INTERNAL SYMMETRIES

Having the groups G and T" acting on X and ¥, respectively, we can
combine them into a single group W which acts on the states % of the
whole system. The group W can be indentified, as a set, with the Cartesian
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product TX @ G, where T'X is the set of I'-valued functions on X. That
is, every element u € W can be represented in the form v = (a(z), a),
where a(z) € 'Y and a € G.

In physics, it is usually assumed that the space and internal symmetries

are independent, i.e., W is the direct product T'* x G with action on ©%
and multiplication rule:

o(z) (a(z), a) =0 (z)a(z) action,
(a(z), a)x (B (x), b) = (a(z) B (x), ab) multiplication.

Another standard construction is the wreath product I' !x G having a
structure of the semidirect product I'Y xG with action! and multiplication

(2)

(B(w), ) (a(x) B (za), ab).

These examples are generalized by the following Statement:

There are equivalence classes of split group extensions1 — I'X — W —
G — 1 determined by antihomomorphisms p : G — G. The equivalence
is described by arbitrary function k : G — G. The explicit formulas for
main group operations — action on ¥, multiplication and inversion
— are

o(z) (Oé (z), a) = o (zp(a)) o (ﬂm(a)), (4)
(a(z), a)* (B(z), b) = (o (zk(ab) " u(b)k(a)) B (zr(ab) " k(b)), ab),

(a(z), a) " = (a (mn (a—l)*lu(a)—ln(a))_l, a—l). (6)

This statement follows from the general description of the structure of
split extensions of a group G; by a group Gp: all such extensions are
determined by the homomorphisms from G; to Aut (Go) (see, e.g., [1,
p. 18]). Specializing this description to the case when Gy is the set of
[-valued function on X and G; acts on arguments of these functions
we obtain our statement. The equivalence of extensions with the same

L1We write group actions on the right. This, more intuitive, convention is adopted
in both GAP and MAGMA - the most widespread computer algebra systems with
advanced facilities for computational group theory.
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Table 1. Examples of discrete spaces. Ng is number of edges

X Nx | Ng G €]
Atom 1 0 1 1
[ ]
Dimer _
. o 2 |1 Sym(2) = Cs 2
Triangle
[ ]
3 3 Sym(3) = Dsg 6
( {
n — vertexpolygon n n Doy, 2n
Tetrahedzon
e o 4 6 Sym(4) 24
L]
Octqhedron
= 6 12 Ca x Sym(4) 48
[ 2 L 1
Hexahedron
[ § { ]
(3 8 12 Ca X Sym(4) 48
[ ] L ]
[ L ]
Toricsquarenxn,n#4 | n?> | 2n? (Cr x Cn) xDg 8n?
n—=4 e
e 16 32 ((((CQX D8)>4C2)><])>4C2) X Co | 384
Icost.zhedron
o« v, 12 | 30 Cy x Alt(5) 120
Dodecahedron
TN, 20 | 30 Ca x Alt(5) 120
FullereneCegg
S 60 | 90 Ca x Alt(5) 120
Toricgraphenen x m
\:\ : nm ?’nTm D, X Dam, 2nm
n=
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antihomomorfism p but with different functions x is expressed by the
commutative diagram

1 rX W G 1
|« H )
1 rX W’ G 1,

where the mapping K takes the form K : (a(z), a) — (a (zk(a)), a)).

Note that the standard direct (2) and wreath (3) products are ob-
tained from this general construction by choosing (u(a) = 1, k(a) = 1) and
(n(a) = a™t, k(a) = a™t), respectively.

In our C program the group W is specified by two groups G and I" and
two functions u(a) and x(a) implemented as arrays. It is convenient in
computations to use the following specialization: u(a) = a=™ and x(a) =
a*. For such a choice formulas (4)—(6) take the form

o(z) (a(z), a) =0 (za™™) a (za"), (8)

(a(z), a) = (B (x), b) o (a:(ab)fkfma’”m) B (w(ab)fkbk), ab) , o)

(a(z), a)~' = (a (a:a2k+m)71, ail) . (10)

The only admissible integers m = 0 and m = 1 correspond to the equiv-
alence classes of direct and wreath products, respectively; k is arbitrary
integer.

3. DISCRETE GAUGE PRINCIPLE

In fact, the gauge principle expresses the very general idea that any
observable data can be presented in different “frames” at different points
of space and time, and there should be some way to compare these data.
At the set-theoretic level, i.e., in the form suitable for both discrete and
continuous cases, the main concepts of the gauge principle can be reduced
to the following elements

e a set X, space or space-time;
e a set X, local states;

e the set ¥ of I-valued functions on X, the set of states of dynamical
system;
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a group W < Sym(Z¥) acting transitively on X%, symmetries of
the system;

e identification of data describing dynamical system with states from
¥X makes sense only modulo symmetries from W;

e having no a priori connection between data from XX at different
points x and y in time and space we impose this connection (or
parallel transport [2]) explicitly as W-valued functions on edges of
abstract graph:

P(z,y) e W, <(y) = o(z)P(z,y);

connection P(z,y) has obvious property P(y,z) = P(z,y)};

e connection P(z,y) is called trivial if it can be expressed in terms of a
function on wvertices of graph: P(z,y) = r(z) " 'r(y), r(z),r(y) € W;

e invariance with respect to gauge symmetries depending on time or
space u(x),u(y) € W leads to transformation rule for connection

P(z,y) — u(@) " P(z,y)u(y);

e the curvature of connection P(z,y) is defined as the conjugacy class
of the holonomy along a cycle of a graph:

P(:L'l,ajg,... ,Cﬂk) = P(Cﬂl,mg)P($2,$3) -"P(Cﬂk,ﬂfl)

(the conjugacy means P'(zy,...,7;) ~ u tP(xy,... 21 )u for any
u € W); the curvature of trivial connection is obviously trivial:
P(l‘l,... ,.Z‘k) = ].,

e the gauge principle does not tell us anything about the evolution of
the connection itself, so gauge invariant relation describing dynamics
of connection (gauge field) should be added.

Standard continuous gauge theories can be easily deduced from the
above description by expansion of the parallel transport P(z,y) for two
closely situated points z and x + Az in continuous space with taking
into account that P(z,z) = 1. This leads to introduction of a Lie algebra
valued 1-form A:

P(z,z + Az) = 1+ AAz.

The curvature 2-form F' = dA+ [A A A] is interpreted as physical strength
field. To finish one should write dynamical equations for the gauge fields.
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The most important example of gauge dynamics is Yang—Mills theory with
equations of motion

dF+[AANF]=0, (11)
dxF+[AAN*F]=0. (12)

Note that Eq. (11) is a priori (i.e., empty) statement called Bianci iden-
tity. Note also that Yang-Mills equations for the abelian gauge group U(1)
are the same as Maxwell’s equations.

4. GAUGE CONNECTION AND QUANTIZATION

The Aharonov-Bohm effect (Fig. 1) is one of the most striking illus-
trations of interplay between quantum behavior and gauge connection.
Charged particles moving through the region containing perfectly shielded
thin solenoid produce different interference patterns on a screen depend-
ing on whether the solenoid is turned on or off. There is no electromag-
netic force acting on the particles, but working solenoid produces U(1)-
connection adding or subtracting phases of the particles and thus changing
the interference pattern.

Interference
pattern

w

Elcctrons O Solenoid

Double-slit barricer Screen

Fig. 1. Aharonov--Bohm effect. Magnetic flux is confined within the
perfectly shielded solenoid; interference pattern is shifted in spite
of absence of electromagnetic forces acting on the particles.

In the discrete time Feynman’s path amplitude decomposes into the
product of elements of the fundamental representation of the group U(1):

AU(l) = exp (7,5)

= exp (i/Ldt) —etlor eilt-1t  oilr-1T (13)
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By the notation L;_;:; we emphasize that the Lagrangian is in fact a
function defined on pairs of points (graph edges) — this is compatible with
physics where the typical Lagrangians are determined by the first order
derivatives. Thus, the expression P(t —1,t) = eilt-1t e = U(1) can be
interpreted as U(1)-parallel transport. A natural generalization of this is
to suppose that:

e group I may differ from U(1),

e unitary representation p(I') may have dimensionality different
from 1.

We can introduce quantum mechanical description of a discrete system
interpreting states o € ¥ as basis elements of a Hilbert space ¥. This
allows to describe statistics of observations of ¢’s in terms of the inner
product in .

Now let us replace expression (13) for Feynman’s path amplitude by
the following parallel transport along the path

Ayry =p(a)...p(as-1,).-.plar_1,T).

Here a1+ are elements of a finite group I' — we shall call I' quantizing
group — and p is an unitary representation of I on the space .

Let us recall main properties of linear representations of finite
groups [4].

e Any linear representation of finite group is equivalent to unitary.

e Any unitary representation p is determined uniquely (up to isomor-
phism) by its character defined as x,(a) = Trp(a), a € T.

o All values of x, and eigenvalues of p are elements of the ring A
of algebraic integers, moreover the eigenvalues are roots of unity.
Recall that the ring A consists of the roots of monic polynomials
with integer coefficients [1].

o If all different irreducible representations of ' are py, -+, pi, -+ , pn
and d; = dim p;, M = |T'| then

h
Zd? =M and any d; divides M : d; | M.
i1

e Any function p(a) depending only on conjugacy classes of T, i.e.,
%) (ﬂ’laﬂ) = ¢ (a), is linear combination of characters x,,,- - , Xpn-
Such functions are called central or class functions.
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If the group I' consists of M elements 7g,...,vam—1 and ny is the
number of paths with the “phase” ® = p (v;) at the point of observation
M—1

(z,t), then the amplitude at this point is A = Y ngp ()1, where
k

=0
1 € . The square of the amplitude (i.e., probability after appropriate
normalization) can be written as

(lan = 3 2wl Y ming (0o (7 ) + 07 (37 ) [w) (14
k=0 "REL

or, after collecting like terms, as

M-1
(Ap[Ag) = Y Ny (no, -+ 1) (@ lp () + p" ()| w),  (15)
k=0
where Ny (ng,--- ,nym—1) are quadratic polynomials with integer coeffi-

cients and arguments. Thus, algebraic integers are sufficient for all our
computations except for normalization of probabilities requiring the quo-
tient field of the ring A.

5. SIMPLE MODEL INSPIRED BY FREE PARTICLE

In quantum mechanics — as is clear from the never vanishing expression
exp (£5) for the path amplitude — transitions from one to any other state
are possible in principle. However we shall consider computationally more
tractable models with restricted sets of possible transitions.

Let us consider quantization of a free particle moving in one dimension.

-2
Such a particle is described by the Lagrangian L = ™5—. Keeping only
transitions to the closest points in the discretized space we come to the
following rule for the one-time-step transition amplitudes

1 im{e+)-az}*
w 7T * ei_li 2 = 612_7)711

)

1

i m(z—z)>
eh 2 =1

w . 2
i m{(z—1)—w} .
REES! eh D) — e'2n,

I3

=
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That is, we have evolution rule as an U(1)-valued function R defined on
pairs of points (graph edges). Symbolically:

R(zx —x)=1 € U(1),
;m (16)
Rz —z—-1)=R(x—z+1)=w=c¢"2n € U(1).

Now let us assume that w in (16) is an element of some representation of a
finite group: w = p(a), « € ' = {y =1,... ,ym—-1}. Rearranging multi-
nomial coefficients — trinomial in this concrete case — it is not difficult
to write the sum amplitude over all paths of the form (0,0) — (z,t)

: 7! t! .

=) (z2 ) Tt —7)!

Note that = must lie in the limits determined by ¢: x € [—t,¢].

One of the most expressive peculiarities of quantum-mechanical behav-
ior is the destructive interference — cancellation of non-zero amplitudes
attached to different paths converging to the same point. By construc-
tion, the sum of amplitudes in our model is a function A(w) depending
on distribution of sources of the particles, their initial phases, gauge fields
acting along the paths, restrictions — like, e.g., “slits” — imposed on possi-
ble paths, etc. In the case of one-dimensional representation the function
A(w) is a polynomial with algebraic integer coefficients and w is a root of
unity. Thus the condition for destructive interference can be expressed by
the system of polynomial equations: A(w) = 0 and w™ = 1. For concrete-
ness let us consider the cyclic group I' = Cpr = {v0, -+, Y&, » YM—1}-
Any of its M irreducible representations takes the form p (v;) = w*, where
w is one of the Mth roots of unity. For simplicity let w be the primitive
root: w = e2™/M _Figure 2 shows all possible transitions from the point
z in three time steps with their amplitudes.

T=0

A sTE3
/X Ay yrxl / / p
oy )X
\ X Tl ) .
N/ Ia"
Number of paths 7 6 3 1
Amplitude A =1460® AL =3u+3® A,=3> A=’

Fig. 2. Amplitudes for all possible paths in three time steps.
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We see that the polynomial A%, = 3w + 3w? = 3w (w? + 1) contains
the cyclotomic polynomial ®4(w) = w? +1 as a factor. The smallest group
associated to ®4(w) — and hence providing the destructive interference
—is C4. Thus, C4 is the natural quantizing group for the model under
consideration.

0.2 T T T T T T T T T T T
Ap=10
01 ¢ )
U L 1 L 1 A Il A I L 1 L
-3 -0 -10 0 10 20 3
02 T T T T T T T T T T T
01 ¢ 1
0 L 1 s 1 L
-3 -0 -10 0 10 20 3

Fig. 3. Group Cs. Interference from two sources. Number of time steps
T = 20. Source positions are -4 and 4. Phase differences A¢ =
¢4 — p_4 between sources are 0 and 7.

Figure 3 shows interference patterns — normalized squared amplitudes
(“probabilities”) — from two sources placed in the positions z = —4 and
x = 4 for 20 time steps. The upper and lower graph show interference
pattern when sources are in the same (A¢ = 0) and in the opposite
(A¢ = m) phases, respectively.

6. GENERALIZATION: LOCAL QUANTUM MODEL ON REGULAR GRAPH

The above model — with quantum transitions allowed only within the
neighborhood of a vertex of a 1-dimensional lattice — can easily be gener-
alized to arbitrary regular graph. Our definition of local quantum model
on k-valent graph includes the following:

1. Space X = {x1,--- ,zn} is a k—valent graph.

2. Set of local transitions E; = {epi, €1, - ,ek,iy is the set of k
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adjacent to the vertex x; edges en,,; = (x; — Zm,;) completed by the
edge €0,i = (CUZ — CUZ)

3. We assume that the space symmetry group G = Aut (X) acts tran-
sitively on the set {E;, -, Enx}.

G; = Stabg (z;) < G is the stabilizer of z; (g € G; means x;9 = x;).
Q; ={wo,i,w1,i, -+ ,wh,} is the set of orbits of G; on E;.

Quantizing group T is a finite group: T' = {0, -+ , Yamr—1}-

N o o e

Evolution rule R is a function on F; with values in some representa-
tion p (T'). The rule R prescribes p (T')-weights to the one-time-step
transitions from z; to elements of the neighborhood of z;. From the
symmetry considerations R must be a function on orbits from €,
ie., R(em,ig) = R(em,;) for g € G;.

To illustrate these constructions, let us consider the local quantum
model on the graph of buckyball. The incarnations of this 3-valent graph
include in particular:

— the Caley graph of the icosahedral group Alt(5) (in mathematics);

— the molecule Cgo (in carbon chemistry).

Here the space X = {z,---, %0} has the shape “““<*" and its symme-
try group is G = Aut(X) = Cy x Alt(5). The set of local transitions
takes the form Ei = {6071', €1,i, €2,i, 637i}, where €0,i = (ﬂfl — iIZi), €1, =
(T3 — 21,4), e2,i = (i — T2,4),

es; = (z; — x3,) in accordance with @

(=)

The stabilizer of z; is G; = Stabg (z;) = Ca. The set of orbits of G; on
E; contains 3 orbits: Q; = {wo,; = {eo,:} ,w1,; = {e1,i,€2.i},w2; = {e3,i}},
i.e., the stabilizer does not move the edges (z; — ;) and (z; — =3 ;) and
swaps (z; — 1,;) and (z; — 22,;). This asymmetry results from different
roles the edges play in the structure of the buckyball: (z; — z1;) and
(x; — x2,;) are edges of a pentagon adjacent to z;, whereas (z; — z3,;)
separates two hexagons; in the carbon molecule Cgo the edge (z; — x3;)
corresponds to the double bond, whereas others are the single bonds.
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The evolution rule takes the form:

R(z; — x;) = p(ao),
R(z; — m1;) = R(z; — x2;) = p(a1),
R(x; — x3,) = p(az),

where ag,a1,as € I'. If we take a one-dimensional representation and
move ap — using gauge invariance — to the identity element of T', we
see that the rule R depends on v = p(a1) and w = p(az2). Thus the
amplitudes in the quantum model on the buckyball take the form A(v,w)
depending on two roots of unity. To search nontrivial quantizing groups
one should check — by, e.g., Grébner basis computation — compatibility of
the system of polynomial equations A(v,w) = ®;(v) = ®;(w) = 0, where
®;(v) and ®;(w) are cyclotomic polynomials.

7. CONCLUDING REMARK

We hope that discrete and finite background allowing comprehensive
study — especially with the help of computer algebra and computational
group theory methods — may lead to deeper understanding of the quantum
behavior and its connection with symmetries of systems. To study more
complicated models we are developing the C program.
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