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ALGEBRAICALLY SIMPLE INVOLUTIVE
DIFFERENTIAL SYSTEMS AND CAUCHY PROBLEM

ABSTRACT. Systems of polynomial-nonlinear partial differential equa-
tions (PDEs) possessing certain properties are considered. Such systems
studied by American mathematician Thomas in the 30th of the XX-th cen-
tury and called him (algebraically) simple. Thomas gave a constructive
procedure to split an arbitrary system of PDEs into a finite number of sim-
ple susbsystems. The class of simple involutive systems of PDEs includes
the normal or Kovalewskaya-type systems and Riquier’s orthonomic pas-
sive systems. This class admits well-posing of the Cauchy problem. We
discuss the basic features of the splitting algorithm, completion of simple
systems to involution and posing the Cauchy problem. Two illustrative
examples are given.

1. INTRODUCTION

The most general algorithmic approach to study algebraic and geomet-
ric properties of systems of PDEs is their transformation (completion)
to an involutive form. An involutive system is a formally integrable one
with the symbol satisfying the involutivity conditions [1]. By the classical
Cartan-Kuranishi-Rashevsky theorem [2, 3, 4], under certain regularity
conditions, after a finite number of prolongations a system of PDEs ei-
ther becomes involutive or reveals inconsistency. In practice however such
regularity condition as the fibred bundle structure of the system as a sub-
manifold in the jet space can be violated by prolongations. Thus, generally,
to preserve this structure in the course of completion to involution one
has to split the initial system into subsystems providing their completion
to involution.

In this paper we follow the splitting approach developed by American
mathematician Thomas [5] (see also [6]). This approach combined with
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the theory of involutive division and involutive bases [7, 8, 9] originated
in the Riquier-Janet theory [10, 11] yields an algorithmic tool to split a
given system of PDES into a finite number of involutive and algebraically
simple subsystems. The Thomas concept of simplicity is relevant to PDEs
when they are considered as algebraic equations in the dependent variables
and their derivatives over an appropriate coefficient field, e.g. the field of
rational functions in independent variables.

It is important to emphasize that the Thomas splitting provides a dis-
joint decomposition of the solution space for the initial system, and it
is very convenient to counting and and studying the solutions. Recently,
Plesken [12] invented a useful concept of counting polynomial relaying
on the simplicity properties. The counting polynomial, unlike the Hilbert
polynomial, does not encode multiplicities and is very fruitful for analyz-
ing the solution space of algebraic systems.

In the present paper, after presenting the necessary notations, defi-
nitions and the Thomas resultant theorem (Sect. 2) we give definitions
of algebraically simple PDEs and outline the basic ideas of the Thomas
splitting procedure (Sect. 3) whose modern treatment is given in [13, 14].
Then we characterize the involution properties of simple systems (Sect.
3) based on the theory of involutive bases. In Sect. 4 we consider the pos-
ing of Cauchy problem for algebraically simple involutive systems. Some
simple illustrating examples are given in Sect. 5.

2. PRELIMINARIES

In the given paper K[x]| := K[z1,...,x,] denotes the commutative
polynomial ring over a zero characteristic field K. Given a subset H C
K[x], H* denotes the free commutative monoid generated by H.

By U = {u!,... ,u™} we denote the set of differential indeterminates
and by R := IC{U} the differential polynomial ring over a zero character-
istic differential field IC with derivations A = {d1,... ,d,}.

Given a ranking <, the leader (leading derivative) of a differential poly-
nomial p € R is denoted by 1d(p), and the degree of p w.r.t. 1d(p) by
deg(p,1d(p). Thereby, p can be written as a univariate polynomial in its
leader

b =ao ld(p)d +a ld(p)d_l + - +ag, ao 7& 07
Ag,A1,... ,0q €R<1d(p) (2'1)

where R~ , denotes the commutative ring of polynomials in the variables
{u; |1 <i<m,08 €0, 0u; <v}. The leading coefficient ag in represen-
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tation (2.1) is the initial of p (denotation: init(p)). The derivative p| d(p) Of
p w.r.t. its leader is the separant of p (denotation: sep(p)). We shall also
write a polynomial p as p(ld(p),v) where v denotes the set derivatives
whose ranking is lower than that of 1d(p).

Algebraic (non-differential) pseudo-division of f by g (f,9 € R<,[v]) is
based on the equality af = bg + r where a,b,r € R<,[v], a € init(g,v)>
and either r = 0 or deg(r,v) < deg(g,v). It implies pseudo-reduction f
modulo g: f — 7. Here r is pseudo-reminder. More generally, given a set

9
F={f1,...,fr} CR<ylv] and f € R ,[v], the equality
cf=bifi+-befr+r, ce{init(fi),...,nit(fr)}™,
r=0V Vi|ld(r) <1d(f;)
implies pseudo-reduction f modulo F: f 77 (denotation: r =

prem(f, F')).
Consider two differential polynomials f,g € R of form (2.1) with the
same leader which in this section we denote by x

m k
fzzaixm7i7 g:ijxkija makENa aObO#Oa
i=0 j=0

Vi, j : ai,bj €ER<e-

We follow Thomas [5] and use the Sylvester matriz in the form

ao ai e Am
o a1t Gm k rows
L ao a1 e A
M(f,g) = bo by - by
bo b bk m rows
bo by - by

Definition 2.1. The resultant Ro(f,g) of f and g is the determinant of
M(f,g). The p-th principal resultant R,(f,g) (p > 0) is the determinant
of the matrix M,(f, g) that is obtained from M(f, g) by deleting the first
and last p columns and the first and last p rows. If matrix M, is empty
we set R, = 1.

The following theorem [5] is a cornerstone of the Thomas splitting
method.
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Theorem 2.2. Let R be a unique factorization domain with identity and
f,9 € R[z]. Then

(i) f and g have a common factor (greatest common divisor) h € R][z]
of degree d iff

RO(fag):Rl(fvg)::Rd—l(fag)zoa Rd(fag)#o (22)

(ii) Unless k = m = d there exist unique f1, g1 € R|z] such that
Rif = fih, Rig=gh. (2.3)

In the special case when (2.2) is valid for k = m = d (in this case Rg = 1)
any of polynomials f,g can be considered as their common factor h.

Remark 2.3. Computation of h, f; and ¢g; in accordance to formulae
(2.2)—(2.3) is achieved by the ring operations only. The relations in (ii)
can also be used for computation of the squarefree part of a polynomial
f € Rz]. This part is just f; in (2.3) if one takes g = f7.

3. ALGEBRAICALLY SIMPLE SYSTEMS

Definition 3.1. Let P and @ be finite sets of differential polynomials
such that P # & and contains equations (VYp € P | p = 0) whereas @
contains inequations (Vq € @ | ¢ # 0). Then the pair (P, Q) of sets P and
Q is a differential system.

Denote by DZ(P/Q) and Z(P/Q) respectively the set of differential and
algebraic (if we consider elements in P and @ as algebraic polynomials in
u®, ... ,uy over an algebraically closed coefficient field) “roots” of P not

annihilating elements ¢ € Q.

Definition 3.2. A differential system (P, Q) is algebraically simple if

1.Vre (P,Q),Vx € Z(P<,/Q<y) | init(r)(x) # 0;

2.Vr € (P,Q),Vx € Z(P<,/Q<y) | r(1d(r),x) is a squarefree (no
multiple roots) polynomial in 1d(r);

3. elements in (P,Q) have pairwise different leaders (triangularity)
where F, :={f € F'|1d(f) <1d(r)}.

Remark 3.3. From Definition 3.2 it follows that if (P, Q) is a consistent
simple system, then P is a squarefree regular chain (see [15]) and the ideal
generated by P is characterizable radical ideal, i.e. a polynomial p is in
the ideal iff prem(p, P) = 0 where prem(p, P) is a pseudo-remainder of p
w.r.t. P.
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Theorem 3.4 [5]. Any differential system (P, Q) can be decomposed into
a set of algebraically simple subsystems (P, () such that

DZ(P/Q) =UDZ(P/Q), DZ(P/Qi) [ DZ(F;/Q) = o.

Remark 3.5. The decomposition can be done fully algorithmically [13,
14] but it is not unique.

To provide the first two simplicity conditions for every f € (P, Q) one
does split.

1. Split by the initial:
ao = 0 """ 2 (P U {ao}, Q)

=ald(f)?+-- —
f ()" + { a0 #K — (P,Q U{ao}).

2. Split by the p-th discriminant D, (f) := R, (f, fiy(s)) when Do(f) =
-+ =D,_1(f) =0 and D,(f) # 0:

{ D,(f) =0 """ (P U (D, ()}, Q),
Dy(f) 2K — (P,QU{D,())}) |pes -

After splitting the consistency check of the subsystems and their triangu-
larization are to be done. If there are exist two elements f, g in a system
(P, Q) with the same leader we compute their common factor h and the
co-factors f1, g1 given in Theorem 2.2. Then we do the following:

h € K — inconsistency,

f,gepé{h¢KHp;:P\{f,g}U{h}-

heK— Q:=Q\{g},

f1 € K — inconsistency,
he¢K—q figK—P:=P\{f}U{fi},
Q:=Q\{gtU{g}

f,9€@Q — Q:=Q\{f, g} U{figih}. The splitting, triangularization
and the consistency check are done in a finitely many steps.

fePge—
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4. INVOLUTIVE SIMPLE SYSTEMS

Definition 4.1 [5, 14]. Given an involutive division L, an algebraically
simple differential system (P, Q) is called L-standard if its set of leaders
is L-complete. An L-standard and formally integrable system is called
L-involutive.

The following theorem provides a criterion of involutivity.

Theorem 4.2 [14]. Given a continuous [7] involutive division L, a simple
system (P, Q) is involutive iff

Vp e P,¥6 € NM,(p, P) | dprem,(d o p, P) = 0. (4.1)

Here dprem,(p, P) is a differential L-pseudo-reminder of p w.r.t. P, a
notion that naturally extends [15] the notion of algebraic pseudo-reminder
(Sect. 2).

Remark 4.3 Involutive simple system is a regular differential chain and
generates a characterizable differential ideal [15] when a polynomial p is in
the ideal iff dprem,(p, P) = 0. If involutive division £ is Noetherian and
constructive, then the involutivity criterion forms a basis for algorithmic
completion of simple systems to involution.

Remark 4.4. Prolongation preserves the first two simplicity properties.
This is very convenient for algorithmic completion of an algebraically sim-
ple system to involution.

One can algorithmically complete simple components of a given nonlin-
ear differential system to involution by doing, in accordance to the crite-
rion (4.1), nonmultiplicative prolongations and multiplicative differential
reductions. At all that, the further decomposition into simple subsystems
has to be done when the simplicity conditions are violated in the course
of reductions.

As a result, any differential system can be fully algorithmically decom-
posed into a finite set of algebraically simple and involutive subsystems.
Remark 4.5 The splitting of nonlinear PDEs into algebraically sim-
ple and involutive subsystems is now under implementation in Maple
by Béchler and Lange-Hegermann, PhD students of Plesken in RWTH-
Aachen, Germany.

5. CAUCHY PROBLEM

Now we assume that a differential system (P, Q) is algebraically simple,
involutive for an orderly Riquer ranking [10] and involutively autoreduced,
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ie. every f € (P,Q) does not contain multiplicative derivative of the
leaders of equation in P.

Definition 5.1 [10, 16]. The derivative uj; of the dependent variable u®
(as well as u® itself) will be referred to as being of class a. Derivative
uy, occurring in P as a leader (3p € P | uy = 1d(p)) is called principal
and derivative u? that does not occur among the leaders and is not a

prolongation of a leader of class (3 is called parametric.

Denote by Mj(p, P) and NMj(p, P) Janet multiplicative and nonmulti-
plicative derivations [16] for p € P. For a parametric derivative ¢ := u?
the partition of variables is [11]

Mjy(q) := Mj(q,qU P), NM;(q):= M;j(q,qU P).

Lemma 5.2 [11]. The set V,, of parametric derivatives of class a (1 <
a < m) can be decomposed as the finite disjoined union

V., = U UDUOU

veVy D,

where D, is the set of all Janet multiplicative prolongations of v.

Definition 5.3 [16]. The elements v in the decomposition are generators
of set V,,. They can be found algorithmically for every « [11].

Definition 5.4. The Cauchy problem is well-posed if it provides the
existence and uniqueness of a solution with smooth dependence on the
Cauchy data.

To formulate the below theorem on the Cauchy problem we use the
correspondence between derivations and independent variables §; < z;.

Theorem 5.5. (Extended Cauchy-Kovalevskaya Theorem) [6]. An invo-
Iutive and algebraically simple system for a Riquier ranking has the unique
holomorphic solution in the given initial point x; = ¢ (i =1,... ,n) if

(a) generators with nonempty sets of multiplicative derivations are ar-
bitrary holomorphic functions in the coordinates x; corresponding to the
nonmultiplicative derivations at the fixed values of those coordinates from
the initial point which correspond to the nonmultiplicative derivations;

(b) the generators without multiplicative derivations take arbitrary
constant values;
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(c) the values of arbitrary functions at the initial point together with
the constants satisfy the system.

Remark 5.6. The Cauchy data in the statement of Theorem 5.5 char-
acterize the arbitrariness in general locally analytic solution of a PDE
system satisfying the conditions in the theorem. In the next section we
illustrate this by an example.

6. EXAMPLES

As the first example illustrating application of Theorem 5.5 we consider
the (quasilinear) Navier-Stokes equations in R?

U+ UUy VU = f%pz + V(Ugg + Uyy),
Ve + U + 00y = = opy + (Vs + vyy), (6.1)
ugy + vy = 0.

Here (u,v) is the velocity field, p is the pressure, p > 0 is the constant
density (incompressible fluid) and v > 0 is the constant kinematic viscos-
ity. For the Riquier ranking with ¢t > = > y, and v > v > p the Janet
involutive form is given by
VUpg +VUyy —Vp — UVp — VUy — %pyzo,
V@fl/uyy+ut7uvyfvuy+%pz =0,

%M"'%pyy"'szuy"'Uff:O’

Uy + vy = 0.

where we underline the leaders. The third equation is an integrability
condition [1] and is the well-known Poisson equation for the pressure.
This equation plays an important role in numerical analysis of the Navier-
Stokes equations.

From the above Janet basis it is not difficult to find the generators in
representation (5.2) by using definition of Janet division [7] and, hence, to
pose the Cauchy problem for a given initial z; = z{ providing existence
and uniqueness of an analytic solution in accordance to Theorem 5.5.

This yields the Cauchy data of the form (shown in the table)
with 4 arbitrary functions of two variables and 1 function of one variable.
This gives the quantitative characterization of the arbitrariness in general
analytic solution of equations (6.1).
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Function | Generators | Multiplicative variables Initial data
u U y,t u‘z:zo:m(y,t)
v v y,t Ve=z, = $2(y,1)
Ve t OxV]o=r,,y=y, = ¢3(t)
P P Y.t Plo=z, = $a(y,1)
Pz y,t Ozpla=z, = ¢5(y,1)

As the second example taken from [14], consider nonlinear system with
the empty initial set of inequations.

(uy + v)ug + 4vu, — 20? o
(uy + 20)uy + 5vuy — 2027

By the method of Sect. 3 it is split into the simple subsystems

(uy + v)uy + dvu, — 20> Ug Uy
< Uy — 3uy + 207 v U v U v ?)

Completion of these subsystems to the Janet involutive form reads

(Uy + V)uy + dvuy, — 202

uy — 3uy + 207 , v U<1:}z,uy>U<l:}y,®>

Uz + Uy

Now we can easily pose the Cauchy problem for these subsystems

{m;ifié’i%@& o} {ul@o,y) = v(y), v, # 0} {ul@,p.) = (@)}
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