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AN APPLICATION OF THE FIXED POINT THEOREM
TO THE INVERSE STURM-LIOUVILLE PROBLEM

ABSTRACT. We consider Sturm—Liouville operators —y"’ +v(z)y on [0, 1]
with Dirichlet boundary conditions y(0) = y(1) = 0. For any 1 < p < oo,
we give a short proof of the characterization theorem for the spectral data
corresponding to v € LP(0, 1).

Dedicated to Nina Nikolaevna Uraltseva

1. INTRODUCTION

In this paper, we consider the inverse spectral problem for self-adjoint
Sturm-Liouville operators

Ly = —y" +v(x)y, y(0)=y(1)=0, (1)

acting in the Hilbert space L?(0,1), with v € L?(0,1) for some (fixed)
1 <p< o (we denote by ||v||, < oo the standard LP norm of v). The
spectrum of £ is denoted by

AL(v) < Aa(v) < A3(v) < -+
It is purely discrete, simple and satisfies the asymptotics
Anlo) = 70 + 5O + i (0),
where

1
v .= /v(t)dt and p,(v) =0(1) as n — oco.
0
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data.
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Note that ©(® can be immediately reconstructed from the Dirichlet spec-
trum as the leading term in the asymptotics of A\, (v) — 72n2.

Starting with the famous uniqueness theorem of Borg [1], the inverse
spectral theory of scalar 1D differential operators was developed in detail,
and currently there are several classical monographs devoted to different
approaches to these problems (see, e.g. [7, 5, 8]). Traditionally, the princi-
pal attention is paid to explicit reconstruction procedures that allow one
to find the unknown potential starting from a given spectral data. The
careful analysis of these procedures (a) has the significant practical in-
terest; (b) allows one to find the necessary and sufficient conditions for
spectral data to correspond to some potential from a given class. The lat-
ter results are usually called characterization theorems. In order words,
they say that the mapping

M : {potentials v(z)} — {spectral data}

is a bijection between some fixed space of potentials £ and a class of
spectral data S which is described explicitly.

Our main result is a short proof of characterization theorems for spec-
tral data of Sturm-Liouville operators (1.1) corresponding to L? potentials
(see Theorem 1.1 and Theorems 3.3 and 3.1 below). At least for p = 1
and p = 2 these results are well known in the literature, but, unfortu-
nately, we do not know any reference that cover all p’s simultaneously. It
is worthwhile to emphasize that the main goal of our paper is to present
the method (more precisely, the simplification of Trubowitz’s scheme, see
below) rather than new results. We hope that this method is applicable
to other inverse spectral problems too.

For simplicity, we first focus on symmetric (or even) potentials
v(z) =v(l—z), xe€]0,1].

Then, it is well known that the spectrum itself determines a potential
uniquely (see, e.g. [8, pp. 55-57 and p. 62] for a very short proof). Let

M v (6O, {uaw) 1) (1.2)

and
1
Feos 1 U (ﬁ(o);{—ﬁ(m)}g‘;l) ,  where ¢(" = /v(t) cos(2mnt)dt,
0

denote (up to a sign) the cosine-Fourier transform.
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Theorem 1.1. Let 1 < p < oo. The mapping M given by (1.2) is a
bijection between the space of all symmetric LP-potentials € = LZ . (0,1)

and the subset S of the Fourier image FeosL?, .,(0,1) consisting of all

even

sequences p* = (ug, ui, s, ..) € FeosLP ey (0,1) such that

even
m™n® + py + e < 72 (n+1) + pg 4+ pnyy forall n> 1. (1.3)

In general, in order to prove the characterization theorem, one needs
(i) to solve the direct problem, i.e., to show that M maps £ into S;
(ii) to prove the uniqueness theorem, i.e., the fact that the mapping M
is 1-to-1;
(iii) to prove that M is a surjection.

Usually, the first part is rather straightforward and the second part
can be simply done in a nonconstructive way (without any references to
explicit reconstruction procedures). Thus, the hardest part of such the-
orems is the third one. It was suggested by Trubowitz and co-authors
(see [8]) to use the following abstract scheme in order to prove (iii). To
omit inessential technical details concerning the particular structure of
the infinite-dimensional manifold S (the restriction (1.3) in our case), in
the next paragraph we think of S as of a Banach space equipped with the
usual addition operation. Following Trubowitz’s scheme, it is sufficient

(a) to show that M(&) contains some open set O C S (say, some neigh-
borhood of 0);

(b) to show that for some dense subset £ C S the following is fulfilled:
forany se M(E) and le€ L, onehas s+1e M(E).

Since, for any s € S, the set s — L is dense in S, one has s = o + [ for
some 0 € O and [ € L. Thus, (b) implies s € M(E) because, due to (a),
o€ O C M(E).

Loosely speaking, to prove (b) one needs to apply the reconstruction
procedure only for “nice” perturbations! € L of spectral data (but starting
with an arbitrary s € O). Following [8], (a) can be deduced from the
implicit function theorem applied to the mapping M near v = 0. In order
to do this, it is necessary to prove that M is continuously differentiable (in
appropriate spaces) everywhere near v = 0. Actually, the proving of the
differentiability of M near 0 is not much simpler than the differentiability
of M everywhere in &, since the information about the norm ||v|| does
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not help to prove the existence of the Fréchet derivative d, M at v. The
main purpose of our paper is to point out that, in fact, one can notably
simplify this part of the proof, using some abstract fixed point theorem
and

(al) the differentiability of M (in the Fréchet sense) at only one point
v = 0;

(a2) the continuity of M in the weak-* topology (if 1 < p < 00).

The paper is organized as follows. We start with some preliminaries in
Sec. 2.2. The very simple but crucial application of the Leray—Schauder—
Tyhonoff fixed point theorem which allows us to (almost immediately)
derive (a) from (al) and (a2) is given in Sec. 2.3. The properties (al),
(a2), and (a) for the mapping (1.2) are proved in Sec. 2.4, if 1 < p < 0.
The necessary modifications for p = 1 are given in Sec. 2.5. The proof
of Theorem 1.1 is finished in Sec. 2.5. For the sake of completeness, in
Sec. 3, we also consider nonsymmetric potentials. For both usual choices
of additional spectral data (Marchenko’s normalizing constants as well
as Trubowitz’z norming constants), we prove the characterization Theo-
rems 3.1 and 3.3 similar to Theorem 1.1.

The scheme described above is quite general and can be used to prove
similar characterization theorems for other “reasonable” spaces of poten-
tials instead of LP(0,1). Another approach to these results (for WY po-
tentials with 6 > —1) based on the interpolation technique was suggested
in [10].

2. SYMMETRIC CASE, PROOF OF THEOREM 1.1

2.1. Preliminaries. Let ¢(x, A,v) denote the solution to the differential
equation

—y" +o(z)y =Ny (2.1)

satisfying the initial conditions ¢(0,\,v) = 0, ¢’(0,A,v) = 1. It can be
constructed by iterations as

oz, A\, v) = Zgok(:n,/\,v), where @o(z,\) = sin /\CU/\/X (2.2)
k=0
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and

T

(Pk(l',A,q) :/‘pO(x_taA)(pk—l(taAvv)U(t)dt (23)

= ] Tttt o) st

O0=to<t1 < <t <tpp1=2 m=0

Since |po(t, A)| < el ™ VAlE/\/X one immediately obtains the estimate

o]l etm VAl
R D2

|901€($7/\7'U)| < (2'4)
In particular, the series (2.2) converges uniformly in [ and v on bounded

subsets of C and L'(0, 1), respectively. Since \,(v) are the zeros of the
entire function

w(A,v) == (1, v) = ank(l,/\,v), AreC,
k=0

and the zeros of ¢g(1,\) are m2n?, (2.4) easily gives \,(v) = m2n? +

O(||v||1e!*Il). Taking into account the second term ¢; (1, A, v), one obtains

o . 2 vl
/\n(v) — ﬂ_ZnZ + ’U(O) — U(Cn) + O(Hv”le )7 (25)
n

with some absolute constant in the O-bound. We also need the following
simple lemma.

Lemma 2.1. Let 1 < p < oo and vs,v € LP(0,1) be such that vs — v
weakly in LP(0,1) as s — oo. Then A\, (vs) — Ap(v) for any n > 1.

Proof. Cf. [8, p. 18]. Since A,(s) are the zeros of the entire functions

w(-,vs), it is sufficient to prove that w(\,vs) — w(\,v) uniformly in ! on
bounded subsets of C. Let ¢ = p/(p — 1). For any k > 1, the functions

In(te,ta, .o ty) o=
k
X{0=to<t1 < <tr <trgpr=1} ° H ©o(tme1 —tm,A), [N <M,

m=0
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k k
form a compact set in L7([0,1]¥). Thus, since [] vs(tm) — ] vs(tm)
m=1 m=1
weakly in LP([0,1]*), one has ¢y (1,\,v5) — ¢(1,A,v) uniformly in [ :
|A] < M. As the norms ||vs||, are uniformly bounded and the series (2.2)
converges uniformly in I and v on bounded subsets, it implies w(\, vs) —
w(A\,v) uniformly in [ on bounded subsets. O

2.2. Local surjection near v = 0. Core argument.

Lemma 2.2. Let E be a reflexive Banach space and a mapping ® :
Bg(0,7) — E be defined in some neighborhood Bg(0,r) = {v € E :
lvllg < r} of 0. If @ is

(al) differentiable in the Fréchet sense at 0 and dg® = I, i.e.,

[@(v) —vllE =o(lvle) as vz —0;

(a2) continuous in the weak topology, i.e.,
vs — v weakly = ®(vs) — ®(v) weakly,

then ® is a local surjection at 0, i.e., ®(Bg(0,r)) D Bg(0,0) for some § >
0.

Proof. Let ®(v) := ®(v) — v. Then, if 4 is sufficiently small, one has
$ : Bg(0,20) — Bg(0,6),

where Bg denotes the closed ball in E. Let f € Bg(0,6). Then, the
mapping
:I;f c v f—®(v)

maps the ball Bg(0,26) into itself. Also, ®; is continuous in the weak
topology (which is also the weak-* topology, since E is reflexive). Due to
the Banach—Alaouglu theorem (see, e.g. [8, p. 115]), Bg(0, 20) is a compact
set in this topology. Moreover, Bg/(0,28) is convex and E equipped with
the weak topology is a locally convex space (see, e.g. [9, Chap. V]). There-
fore, by the Leray—Schauder—Tyhonof! fixed point theorem (see, e.g. [9,
p. 151]), there exists v € Bg(0,26) such that <T>f(v) =wv,le, &) = f. O
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2.3. Local surjection. L? potentials, p>1. Recall that
Feos 1 U ({J\(O); {_,ﬁ(cn) ?:1)
is (up to a sign) the cosine-Fourier transform. Let M = Feos + M, where

Mo (0 (@) by) o= (05 {an(v) + 82, )

Let
Feor (a0,a1,...) > ag — 2y _ ap cos(2mnz)
n=1

denote the (formal) inverse mapping to Feos-

Proposition 2.3. Let 1 < p < co. Then,

(i) the (nonlinear) mapping F,,' M maps the space L (0,1) into it-
self;

(ii) the image (Fegt M)(LP,.,(0,1)) contains some neighborhood of 0.
Proof. (i) It follows from (2.5) and ||v||1 < ||v||, that

M (L, (0,1)) € M (L, (0,1)) € 220} g = p/(p—1),

since i, (v) = O(n~v||? - ellVl1). Thus, the Hausdorff-Young inequality
gives
(Foos M) (LEyer (0,1)) € LEi 71 (0,1) € LEe, (0,1).

Moreover, for some constant C(p), one has
[(Feas M)(@)]lp < Cp) - 0|7 - I (2.6)

(ii) We are going to apply Lemma 2.2 to the mapping F.. M. Note
that, for 1 <p<oo, LP ..(0,1) is a reflexive Banach space. Due to (2.6),

even

Footk M is differentiable (in the Fréchet sense) at 0 and do(Fogi M) = I.
This gives the assumption (al) of Lemma 2.2. Thus, it is sufficient to
check the assumption (a2), i.e., the continuity of F_,! M (or, equivalently,

f(;,éj/lv) in the weak topology.
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Let vy — v weakly in L2 (0,1). Let v € LZ,,(0,1) and h =
(ho,hi,...) := Feosu. Then, in order to prove that (FiM)(vs) —

(FoobM)(v) weakly in LP .. (0,1), one needs to show that

even

(FatM)(w,) = (FabM)©)) (Bu(t) b

S— .

= 22(/771(115) — fin(v)) Ay — 0.

Note that h € £m@{2:P} by the Hausdorff-Young inequality, and the norms
of the sequences {fin(vs) — fin(v)}52, in £™*2:9} are uniformly bounded
due to (2.5). Thus, Lemma 2.1 and the dominated convergence theorem
imply the result. ([

2.4. Local surjection. L! potentials. The core argument given in
Lemma 2.2 does not work for the space L' since this space is not re-
flexive (and is not equipped with any weak-* topology). Nevertheless, the
main result still holds true and the most part of the proof still works well.
We start with some modification of Lemma 2.2.

Lemma 2.4. Let E be a Banach space and ® : Bg(0,7) — E. Let F C E
be a reflexive Banach space and ||v||g < ¢ ||v||F for any v € F and some
constant ¢ > 0. If

(al) @ is such that ®(v)—v € F for any v € E and, moreover,

[@(v) —vllF =o(lvllz) as vz —0;

(a2) @ is continuous in the weak F-topology, i.e., for any v € E and
vs—v € F,

vs—v — 0 weakly in F = ®(vs)—®(v) — 0 weakly in F,

then ® is a local surjection, i.e., ®(Bg(0,r)) D Bg(0,) for some § > 0.

Proof. Let ®(v) := ®(v) —v. It follows from (al) that, if § is sufficiently
small,

L FE(O, (C+1)5) — EF(O, (5)
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Let f € E, ||f|lg < 6, the mapping <T>f ;v — f—®) be defined as in
Lemma 2.2, and

Br(f,0) == {ve E:v—f € Br(0,0)}.
(note that f and v, in general, do not belong to F). Since Br(0,5) C

BEg(0,cd), one has BF(f, 8) C Bg(0, (c+1)d), and so
@; : Br(f,0) = Br(f.9).

Moreover, due to (a2), the mapping ® ¢ is continuous in this “ball”
equipped with the weak F-topology (which is a locally convex topology on
this convex compact set). Exactly as in Lemma 2.2, the Leray—Schauder—
Tyhonoff theorem implies that ®;(v) = v for some v € Bp(f,9),
ie, ®(v) = f. O
Now we need some modification of Lemma 2.1, which, together with
(2.5), implies the assumption (al) of Lemma 2.4.
Lemma 2.5. Let vs,v € L'(0,1) be such that vs —v € LP(0,1) for some
1< p< oo andvs —v — 0 weakly in LP(0,1). Then A, (vs) — A, (v) for
anyn = 1.
Proof. Let us; :=v; —v. Plugging the trivial decomposition vy = v + us
into formula (2.3) for ¢ (1, A\, vs), one arrives at

or(z, A, q) = | // / Dy (tiy,. - ti,)

{i1,- ,tr}C{l ok} o<ty <<t <
X us(til) - Us(tir)dtil - dtir,
where

Dy (tiy,.--ti,)

// / H‘PO (tm+1—tm, A) - v(ty) - vty )dtg, ... dtj,

0<ty, <<ty

the sum is taken over all subsets {i1,...,i,} C {1,...,k} of indices and
{j1,--+,jk—r} denotes the complementary subset. Again, for any fixed
{i1,...i,} and v € L'(0,1), the functions

f)\( i1y - 7‘) = X{Ogt,—lé---gtirgz}"I)A(tiu---atir): |)‘| §M

form the compact set in L?([0, 1]"), which gives the result exactly as in
Lemma 2.1. 0
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Proposition 2.6. (i) The mapping F.,! M maps the space L}, (0,1)
into itself.
(ii) The image (F gl M)(LL,e,(0,1)) contains some neighborhood of 0.

Proof. (i) Recall that (see the proof of Proposition 2.3(i)) one has

FookM = I + F,IM, and the nonlinear part of our mapping actually
maps L! potentials into L? functions (say, for p = 2, see (2.6)). In partic-
ular, F.,} M maps the space L. . (0,1) into itself.

cos even
1(ii)( M())reover, one has (FiM])(v) —v € L2,
L 0,1) and

even

(0,1) for any v €

[(FeosM)(v) = vll2 = o([[v]l1) as o]}y — 0.
Thus, the assumption (al) of Lemma 2.4 holds with E = LL . (0,1) and
F =12..(0,1). Further, exactly as in Proposition 2.3(ii), Lemma 2.5, and
the dominated convergence theorem give the continuity of the mapping
Fiot M in the weak L2-topology, i.e., the assumption (a2). So, the result
follows from Lemma 2.4. O

2.5. Global surjection. To complete the proof of Theorem 1.1, we fol-
low Trubowitz’s approach (cf. [8, pp. 115-116]) word for word if p > 1,
and slightly modify the main argument if p = 1 (cf. the paper [2] devoted
to an inverse problem for the perturbed 1D harmonic oscillator, where the
same modification was used). The proof of the global surjection is based
on (a) local surjection near v = 0 and (b) explicit solution of the inverse
problem for the perturbation of finitely many eigenvalues. The latter is
given by

Lemma 2.7 (Darboux transform, symmetric case). Let v € L% (0,1)
be a symmetric potential, n > 1 and t be such that A,_1(v) < A\ (v)+t <
An+1(v). Then there exists a symmetric potential vn ¢ € L ., (0,1) such

even
that
Am(Unt) = Am(v) for all m #n and Ay (vpt) = Ap(v) + 1.

Moreover, if v € L2, (0,1) for some 1 < p < oo, then vy, € LE,..(0,1)

even even
too.

Proof. See [8, pp. 107-113], where the modified potential v, is con-
structed explicitly using the Darboux transform. Namely,

2

Un,t =V — 2% log {&n (s An(v) +1,0); 0(-, An(v), )}, (2.7)
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where {f;g9} = fg' — f'g and &,(-) = &.(-,A\,v) denotes the solu-
tion of (2.1) satisfying the boundary conditions &,(0) = 1, &,(1) =
(¢'(1, A\n(v),v))™t (in particular, the Wronskian is strictly positive on
[0,1]). If v is symmetric, then &,(1) = (=1)" and {&(-,\n(v) +
t,v); (-, An(v),v)} is symmetric too. Since {&,; ¢} = t&p, the Wron-
skian is twice continuously differentiable. In particular, v,; — v, €
Lr(0,1). O

Proof of Theorem 1.1. The mapping M maps L2, into FeesLE, ., (see
Propositions 2.3(i), 2.6(i)) and is injective due to the well known unique-
ness theorems. Thus, the main problem is to prove that it is surjective.
Let

//'* = (HS:HLHS: .- ) € fcongven(Oa ]-)
be such that 72 + pu} < 47® + p} < .... Since trigonometric polynomials

are dense in L2 . (0,1), for any 6 > 0 there exist some (large) N and a
sequence

1= (1l B N1 B )

such that 72 4+ pu§ < 47 +p < ... and | F Lul|, < 6.
Indeed, if p > 1, then the Fourier series of a function F_lu* €

Lr .. (0,1) converge to this function in LP-topology (see, e.g. [4, Sec. 12.10]) ]
ie.,
||'7:(;);ll’* - ‘T-'C_Oi(l‘l‘(j;:/l’fa R 7""7\770707 .- )HP
= Feos (0,0, ... 20, N1 M2 - lp = 0
as N — oo, and one can simply take pd = --- = u& = 0.

If p = 1, one can still find a finite sequence (,u(()N),ugN), o ,u%v))
(or, equivalently, a trigonometric polynomial 2 Zg:o uglN)cos(27mx)) such
that (N) (N) (N)

”f(;é:u*_:'tc_oé(uo 1 Y {5\, 70707"')”1<67

and take pd = u;—,uglN) forj=0,...,N.

Note that |ud| < [[Foiullls < [|[Foiulll, < 6 for all n > 1, so
the restriction (1.3) holds true. Due to Proposition 2.3(ii) (or Proposi-
tion 2.6(ii) if p = 1), there exists a potential v° € LE, (0,1) such that
A (v?) = 7202 4+ pd + pd for all n > 1, and so

Aa(00) = w2n% 4 pd 4+ pr forall n> N +1.
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Adding to v° the constant pg — p§ and changing the first N eigenvalues
using the procedure given in Lemma 2.7, one obtains the potential v* €
L2 ..(0,1) such that

A (v*) = 7®n? + pg +pk forall n>1

(to avoid the possible crossing of eigenvalues, i.e., violation of (1.3), during
this procedure, one can always move Ap,... , Ay to the far left beginning
with A\; and then move them to the desired positions beginning with Ay).
O

3. NONSYMMETRIC CASE

3.1. Preliminaries. Normalizing and norming constants. If v is
not symmetric, then one needs some additional spectral data to determine
the potential uniquely. The possible choices are (cf. [3, Appendix B and
references therein]):

e the normalizing constants (first appeared in Marchenko’s paper [6])

an(v) = o(, An(v), V)13 /‘:OZ(ta)\n(v)av)dt = (¢¢") (1, An(v),0),
0

where ¢ denotes the derivative with respect to [;

e the norming constants introduced by Trubowitz and co-authors

(see [8])
Vn(v) = log[(=1)"¢' (1, An(v),v)].
Note that
an(v) = w(A,(v),v)] cevn (V) (3.1)
where -
w(A,v) = H %, AeC,

due to the Hadamard factorization theorem, and so the first factor
1 Am (V) — A (v)
202 H 21m2
m#n

1 A (V) — A (v)
- 2m2p?2 ’r};[n w2(m? — n?)

| (An(0),v)] =
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is uniquely determined by the spectrum. Let
1

Fain s v — {00m}o - §ln) = /v(t) sin(27nt)dt,
0

be the sine-Fourier transform, and

fs;nl D (b1,boy .. ) — 2 Z by, sin(27na)

n=1

denote its (formal) inverse. We also use the notation L?,,(0,1) for the
space of all anti-symmetric (or odd) potentials v(z) = —v(1—z), z € [0, 1],
from LP(0,1).

3.2. Characterization theorem for norming constants

Theorem 3.1. Let 1 < p < co. The mapping
v (M) N(©), N(©) = {2m-va(v)}32,, (3.3)

is a bijection between the space of potentials LP(0,1) and the set of
spectral data M(LE,,(0,1)) x FsnL? ,(0,1). In other words, the norm-
ing constants v, (v) multiplied by n can form an arbitrary sequence in
FeinL?4(0,1), while the characterization of the possible spectra is the
same as in Theorem 1.1.

Proof. The uniqueness (i.e., the fact that (3.3) is a 1-to-1 map) theorem
is well known (see, e.g. [8, p. 62]). Further, it directly follows from (2.2),

(2.4) that
L, Jolizel
= _— . pn) e
vp(v) 5V + O< 3 .

In particular, (3.3) maps LP(0,1) into M(LE,(0,1)) x FunL?,,(0,1).
Moreover, each v, (v) is a continuous function of the potential in the same
sense as in Lemma 2.1. Repeating the proof of Proposition 2.3 (or Proposi-
tion 2.6 if p = 1) word for word, one obtains that (3.3) is a local surjection
near v = 0. Finally (exactly as in Theorem 1.1), the proof of the global
surjection can be finished changing a finite number of spectral data, which

is given by the application of the next (explicit) lemma step by step. O
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Lemma 3.2 (Darboux transform, general case). (i) Let v € L'(0,1),
n > 1 and Ap—1(v) < Ap(v) + ¢ < Apg1(v). Then there exists a potential
vnt € L'(0,1) such that

Am(Unt) = A (V) +t0pm  and vy (vpe) = vp(v) for all m > 1.

(ii) Let v € L*(0,1), n > 1 and t € R. Then there exists vt € L*(0,1)
such that

A (0E) = Ap(v)  and vy, (vh) = v, (v) + 0, for all m > 1.

n
Moreover, if v € LP(0,1) for some 1 < p < oo, then vy, ¢, vl, € LP(0,1) too.

Proof. See [8, pp. 91-94, 107-113]. The explicit formula for v, ; is given
by (2.7) and

vl (z) = v(z) — 2;—:2 log (1 - (et—l)/lz/)fb(t,v)dt),

where ¢,,(-,v) is the nth normalized eigenfunction. O
3.3. Characterization theorem for normalizing constants

Theorem 3.3. Let 1 < p < co. The mapping
v (M(v)5 A®v),  Av) = {mn - log[2m*n®an (v)] 172,

is a bijection between the space of potentials L?(0, 1) and M(LE,,(0,1)) x
FeinL? 14(0,1).

Proof. Due to (3.1), (3.2) and Theorem 3.1, it is sufficient to check that

{0 [T 2220 et 000

m#n n=

Since py, (v) are bounded,

log Am (V) = An(v) _ log(l + P (V) — Nn(v)>

w2(m?—n?) w2(m2—n?)

=y + O )
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Summing up over m # n (and taking into account that p,(v) = O(1)),
one obtains

Am (V)= A, (v
mn - log H 2 ET,Zz _ n(2))
m#n

- L <n§1<m1_n - miﬂ)um(v) - %un(v)) + 0(%).

The error terms belong to Fgin L% ,(0,1) by the Hausdorff~Young inequal-
ity. Denote

f = Foos 0 {pm(0)}pe—1) = =2 Y ptn(v) cos(2mma).
m=1
Then, simple straightforward calculations give
1 1 1 1 > 1
(% (g(m_n - i) = g @)} =Fa[(3-2)1].

Since (0, {ptm(v)}3_1) € FeosLPyen(0,1), one has Fyu[(3 — 2)f] €
FeinL? 14(0,1). ]
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