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ON THE STOKES PROBLEM
WITH NONZERO DIVERGENCE

ABSTRACT. We study the strong solvability of the nonstationary Stokes
problem with nonzero divergence in a bounded domain.

Dedicated to Nina Nikolaevna Uraltseva

1. INTRODUCTION AND MAIN RESULTS

Let 2 be a domain in R™, n > 2, with sufficiently smooth boundary 052,
and assume that 2 is homeomorphic to a ball. We study the solvability
of the linear initial boundary-value problem

Ov—Av+Vp=1f ) a
divo =g in Qr:=Qx(0,T), (1.1)
U|t=0 = 0, Ul@Qx(O,T) =0. (12)

We assume there are s, [ € (1,+00) such that the following conditions
hold:

f € Lsi(Qr), (1.3)

9 € W, (Qr), (1.4)

0eg € Log(Qr), (1.5)

/g(:v,t) dz =0, ae. te(0,T), g(-,0)=0. (1.6)

Q
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Here L, ;(Qr) is the anisotropic Lebesgue space equipped with the norm

T 1/s 1/l
Loi(Qr) = (/ </|f(ar,t)|s dw) dt) ,
0 Q

and we use the following notation for the functional spaces:
W (Qr) = Li(0,T;W(Q) = {u € Lu(Qr) : Vue Ly(Qr)},
WoHQr) = {ue WX (Qr): V’u, du € Loy(Qr) },

WLQ) = {ue WD) : ulon =0},

1]

W Q) = (I/cl)/i, (©2))* = dual space to I/?/i,(ﬂ),

s

and the following notation for the norms:

Loi(Qr) T ||Vu|

r—— Lor(@r)

w2 @e) = lullwro@e + 1V20llL, w@r) + 10ll, (@),

?

||U||W;1(Q) = Sup ‘/U ‘w dx
weWwls () '
IVwllz_,(@)<1

T 1/1
||U||Ll(o,T;W;1(Q)) = </||U('at)||lwsl(9) dt) '
0

Our main result is the following

Theorem 1.1. Assume s, [ € (1,00) and let f, g satisfy conditions (1.3)—

(1.5). Then there exists the unique pair of functions (v, Vp) such that
ve WA Qr), Vp € Ly(Qr),

and (v, Vp) satisfy Eq. (1.1), a.e. in Qr and (1.2) in the sense of traces.
Moreover, the following estimate holds:

ol (@r) + 198 L. @) (L.7)

1 1/s’
<G (”fl L/jl(QT)HatgHL/z?O,T;W{l(Q))) '
Here C, is a constant depending only on n, T, and Q.

Lo(@r) +ll9llwreg,) + 11029l

The following theorem shows that the assumption (1.5) in Theorem 1.1
can not be omitted or replaced by a weaker assumption

Brg € Li(0,T; W L(Q)). (1.8)
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Theorem 1.2. Assume n = 2 and ) is a unit disc in R?. There exist
functions f, g satisfying conditions (1.3), (1.4), (1.6), (1.8) withs =1=2
and g|pqx(-1,0) = 0, and there exists a weak solution (v, p) of the problem
(1.1) in Q = Q x (—1,0) satisfying the initial data v|;=—; = 0 and the
boundary data v|pqx(—1,0) = 0 in the sense of traces, and possessing the
properties

v e C([0,T]; Lo () N Wy *(Qr), (1.9)

p € Ly(Qr), (1.10)

O € Ly (0, T; Wy 1)), (1.11)

(v,p, f,g) satisfy (1.1) in the sense of distributions, (1.12)

but ‘
vEWyNQ), Vpd La(Q),
so the weak solution (v, p) fails to be a strong solution.

Theorem 1.2 exhibits nonexistence of a strong solution to the problem
(1.1), (1.2) under the assumptions (1.3), (1.4), (1.6), (1.8) only, as the
following uniqueness theorem shows.

Theorem 1.3. Assume n > 2 and f, g satisfy conditions (1.3), (1.4),
(1.6), (1.8) with s =1 = 2. Then the weak solution of the problem (1.1),
(1.2) possessing the properties (1.9)—(1.12) (if exists) is unique.

The counterexample provided by Theorem 1.2 looks surprising as if we
take an arbitrary divergent-free function v such that

v EW;HQT), v]po=0, v[,_,=0,
then we have
O divv € Ly (0,75 W5 1 (€)),
and one could conjecture that condition (1.8) with I = s = 2 is the
natural one for the solvability of the problem (1.1), (1.2) in the class
(v,p) € Wi (Qr) x Wy °(Qr). Theorem 1.2 demonstrates that this is
not the case.

Estimates of Sobolev norms of a solution v to the problem (1.1) by
Lebesgue norms of the functions f, Vg and 0;¢9 are well-known, see, for
example, [4]. The specific feature of our estimate (1.7) is its multiplicative
form, i.e., the right-hand side of (1.7) includes a product of a stronger
norm |[0kgl|r, (@) by a weaker norm [|0¢gllp, o 7,w:1 (q))- Such form is
convenient for a simple proof of the local estimates of solutions of the
Stokes problem near the boundary:
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Proposition 1.1. Denote
QT :={zeR":|z| <1, z, >0} x (-1,0)

and
Q) = {z €R™: |z <1/2, 2, > 0} x (~1/4,0).

Assume u € Wf”ll(Qﬂ, q€ W;’lO(Q‘*), fe L (Q7) satisfy the following
Stokes system:

Ou—Au+Vqg=f . +
divu =0 in @ (1.13)
’U/|1;n:0 =0.

Then there is an absolute constant C' (depending only on n) such that

”uHWf.)ll(QT/Z) + ”vq' Ls,l(Q?—/Q)
(1.14)

<o(If]

Loa@) Fllullwrpen +, i g = b Lout@h)-

eL;(—

We note that estimate (1.14) plays an important role in the study of
the boundary regularity of suitable weak solutions to the Navier—Stokes
system, see [7, 8] and reference there. Estimate (1.14) was proved in [6].
In [10], the same result was established for the generalized Stokes system.
The local Stokes problem (1.13) can be transferred to the initial boundary-
value problem of type (1.1) by multiplication of « by appropriate cut-off
function ¢, where v = (u, p = (q. Then estimate (1.14) follows easily from
(1.7) by iterations. We reproduce the derivation of (1.14) from (1.7) in the
Appendix of the present paper.

Theorem 1.1 gives only sufficient conditions for the solvability of the
problem (1.1) in the class Wf”ll(QT). The conditions on g which are both
necessary and sufficient for the strong solvability of the problem (1.1)
seems to be unknown even in the case of s =1 = 2.

In [11], the following estimate was proved for solution (v,p) of the
problem (1.1), (1.2):

lollw (@r) + IVl @)
(1.15)

<. (117

L.y(Qr) T Vgl Loi(Qr) T ”atg”Ll(o,T;ﬁ/;l(Q))> )
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where || - HW{l(Q) stands for the dual norm to the space Wk () (with

non-zero traces on the boundary):

||v||/w7;1( Q = sup ‘/v w dx|.
wEW?s ’(Q)

”wllwl (Q)\

We note that estimate (1.15) is not so convenient for applications as a
weak solution u € W;’}O(Qﬂ, q € Ls;(QT) of the local Stokes problem
(1.13) satisfies the estimate

||atu||L,(—170;W;1(B+))

C(HfHLl(_Lo;W;l(Bﬂ) + ||U||W31)~10(Q+) + [lal Ls,,(QJr)) (1.16)

but, generally speaking, the similar estimate with [|Osully, o 7w (5+))
replaced by ||8tu||L;(O7T;/VI\/§1(B+)) is not true.

Our paper is organized as follows: in Sec. 2, we present several auxiliary
theorems concerning extensions of functions from the boundary onto a
whole domain; in Sec. 3, we prove a theorem on solutions to the problem
divu = g, u|spq = 0; the proof of Theorem 1.1 is presented in the Sec. 4; a
counterexample of Theorem 1.2 is constructed in Sec. 5; in the Appendix
the derivation of estimate (1.14) from (1.7) is given.

2. AUXILIARY RESULTS

In this section, we formulate several results concerning extension the-
orems from the boundary of a domain. We denote by R the half-space
RY = {z = (¢/,x,) € R" : 2, > 0}, and by V’ the gradient with respect
to «’. Let us start with the following

Proposition 2.1. For any p € W1(Q) the following estimate holds:
1/s

(2.1)

(09) S

Proof. For a function ¢ : R? — R vanishing at infinity, estimate (2.1)
follows from the integral representation

“+o0

0
o O == [ 5lel )l da,

0



ON THE STOKES PROBLEM 189

with the help of the Holder inequality. For a bounded smooth domain
2 C R", estimate (2.1) can be justified by a standard techniques of the
local maps and partition of unity. O

By W7 (0€Q) with noninteger » > 0 we denote the Sobolev-Slobodet-
skii space of functions defined on 0€2. The next proposition is essentially
proved in [12]. We just need to verify that the extension operator 77 can
be constructed in such a way that both estimates (2.2) and (2.3) hold
simultaneously.

Proposition 2.2. Let Q C R™ be a bounded domain, 8Q € C?. There
exists a linear operator T}

21

Ty W2 (00) x WEF (00) — W2()
such that for any b € Wf_%(aﬂ), a € Wj‘%(ag) the function f :=
T, (b,a) possesses the following properties:

_, of _
f|6Q_b7 5‘89_0’7

I fllwi(e) < Ci (||b||wg(an) + |lal Ls(an))- (2.2)

Moreover, if additionally b € W2+ (99), a € W2 (89) then f € W3(Q)
and

< Ch . .
£ lwzc@y < O (Il et +llall ooz o) (2.3)
The constants Cy and Cs depend only on n and ).

Proof. First, we consider the case of a half-space, {1 = R’. Assume

1 9_1
a€ W, *(R" ') and b € W7 *(R"!). Let us consider a kernel K €
Cs°(R™1) with the following properties:

/ K(y') dy' =1,
Rn—1

/yaK(y/)dy/ZO, a:]-a"'an_]-a
Rn—1
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and a smooth cut-off function ¢ : [0, +00) — R such that

Then obviously f|,,=o0 = b, %|yn=0 = a. It is well known that for a €
2-1 3-1

Ws =(0Q), be Wy =(09Q), the inequality

3 & 3
I llwscey < C (0]

ot ey el et )

Wi (09)

holds (see [12]). So, we need to verify the estimate

1 £llwi @) < C(Ibllwaans) + lall sy ). (2.4)

Consider, for example, the function h. We have

h(y) =yn " / K (zl — yl) a(z') d',

Yn
Rn—1

ah(y) 1— / oK (z/ — y/) 1 ’

=y, " — a(z’) dz’,
0Ya Y . OYa Yn (=)
Ohly) _ 1 / "y

= n 2—-n)K
oy. " L @=m) ( Yn )
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Integral convolution operators in Lg-spaces are bounded by Lj-norm of
the kernel. Therefore,

s(R7=1),

lall, @1y, a=1,...,n—1,
Ll(R" 1

H aya L.(R}) Haya

<

s(Rr—1)

H On 1, (R7)

and ||§h||WS1(R1) < Cllal|p, grr-1), where the constant C' can be explicitly

expressed in terms of functions K and (. The inequality ||Cgl|w: (R7) <

C||b][w1(rn-1) follows by the similar argument. Thus, we justified (2.4).
Again, the case of a bounded smooth domain reduces to the case of a

half-space by the standard techniques of localisation. O

Now we formulate one result from [9]. This result is an analog of Bo-
govskii’s result [2] in the case of smooth compact manifold 02. Assume
) C R™ is a domain which is homeomorphic to a ball and denote by v(z)
the unit outer normal to 02 at the point = € 9. Let b : 9Q — R" be

a vector field such that b - v = 0. Below the symbol divgb stands for the

differential operator which is defined in a local coordinate system {y, }"Z]

by
Vs \/_ y g 0aly));

where g = det(903), 9as = Bg;z) 8gyg) and bq (y) are the components

of a vector field b in local coordinates {y4}, i.e., b(z(y)) = ga(y)BgT(z).

Proposition 2.3. Assume 2 C R" is a smooth domain which is homeo-
morphic to a ball. There exists a linear operator 15

T : { e WEE(99) : /% ds = 0} W2 (90;R),
o0
such that the function b = Ty possesses the following properties:

(bv) =0, divs b= on 09,

and

16l w1 (a0) < L(09)- (2.5)
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Moreover, if additionally s € W o (0R) then

Bl ooy, <Clll o (26)

i3 (00 w2 (09)"

Proposition 2.3 is proved in [9, Propositions 2.1, 2.2, and 2.3]. We
just emphasize that as the construction of the operator T in a local
coordinates {y,} uses nothing but the Bogovskii operator (see [2]), the
both estimates (2.5) and (2.6) are satisfied simultaneously.

Combining Propositions 2.3 and 2.3, we finally obtain

Proposition 2.4. Let 0 C R" be a bounded domain which is homeo-
morphic to a ball, 9Q € C*. Then there exists a linear operator

Ts : {%GW:_i(GQ): /%ds:()} — WZ2(Q;R")
o

such that the function w = T3 possesses the properties

divw =0, wlog = —sv, |w] L.(2) S C| | L, (89) -

Moreover, if additionally » € Wf_%(aﬂ) then w € WZ2(Q;R") and

< .
[wllw2@) < C'||%||W37§(3m
Proof. Denote by v a smooth extension of the field v into the whole
domain Q, 7 : Q — R", U|pn = v. Let

b= Ty € W2 (B RY), (b,v) = 0.
Define the vector-field
1

a=(bV)v—bdivi € W. *(69),

and let f = Ty(b,a), where T} is the operator constructed in Proposi-
tion 2.2. We have 9
or) a, (2.7)

ovlea

I fllwz oy < Cllbllw:an) < Cll|

flaa = b,

L.(99) (2.8)

and ~
. < . 2.
[fllwz@) < Cllb] (09) Cllel - (09) 29

vl

W
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21
in the case » € Wi ° (09). Note that |v(z)|> = 1 on the boundary, so
(b, Vv L v and % =a L v on 09. Therefore,

(div f)|sq = divs b. (2.10)

Now we introduce the vector-function w € W2(Q2,R") defined by
) ~ ~
wy(x) = 5., fi(@)vj(@) = fi(@)vi(x)) .
i=1 "

Clearly, divw = 0. We have also ||w|

L.(@) < O, (a0) and

21
2 < 2-1 ) s ° Q )
wllw2 () Cll%IIWS o) xeW; *(09)

due to (2.8) and (2.9). Finally, by virtue of (2.7) and (2.10) we get

wlog = Wdiv f + (£, V)v =, V) [ = fdivy)|yq
of _

=vdivg b+a— == = —v.

ov

3. ON THE PROBLEM divu = ¢

Theorem 3.1. There exists a linear operator
T: {g € Ly(Q) : /gdaz = 0} — WHQ;R™)

such that the function uw = T'g is a solution of the equations

{ divu=g a.e.in
u|39 = 0
which satisfies the estimate

1 1/s’
L/ssiﬂ) Hg”wé;l(g)‘

]

L. < Cillg|



194 N. FILONOV, T. SHILKIN

Moreover, if g € W}(Q) then u € WZ(Q) and [lullw2q) < Callgllwi(q)-
Here C) and Cy depend only on n, s, and Q.

Proof. Let o € WL(Q)NWZ2(Q2) be a solution to the Dirichlet problem

Ap=g in Q, ¢lsg =0,

and define the function s : 92 — R by the formula » = g—f. We have

lellwi) < Cligllwrr ) llellwze) < Cllglle, @

and, by Proposition 2.1, || x|
then

Lo < Cllglly 5oy a1/ o) - T g € WHQ)

W Q)

”%”Wf’%(am < Cllellwse) < Cllgllw(a)-

Note that [ sds = [gdx = 0, so we can apply Proposition 2.4 to the
82 Q
function ». Let w = T3 and u = Vo + w. Then

1/s 1/s’
L/S(Q) ”gHVé;l(Q)

lullz, @) < llellwri) + Cll=llo, o) < Cilgl

and

lullwz) < lellwsq) + C||%||W27 < Callgllwr(a)-

1
*(69)
Finally, ulgq = g—fu —2v =0. O

PROOF OF THEOREM 1.1

Assume g satisfies conditions (1.4)-(1.6) and consider the function w =
Tg, where the operator T is defined in Theorem 3.1. Then

divw =g ae.in Qr, w|saxo,r) =0,
w(-,0) =0, Ow =T(0yg) ae.in Qr,
”w(:t)HW?(Q) < C”g(at)HW}(Q) for a.e. t € (OJT)J

”atw('at)l

L@ < Clog () (g 199 ()45 ) for e t € (0,T).
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Taking the power [, integrating these inequalities with respect to ¢t and
applying the Holder inequality, we obtain

Hw”Wf",l(QT)

1/s 1/s
L am gl ey ) (D)

Let (u, Vp) be the solution of the Stokes problem

8tu—Au—|—Vp:f—(8tw—Aw)} in Qr

< C(lgllwroiqr) + 10:gl};

divu =0

U|BQ><(O,T) =0, wu|i—o=0.

It is well-known (see, for example, [11] and references there) that (u, Vp)
satisfy the estimate

pos@n) C(Meau@n + ol gn).  (42)

Put v = w + w. Then (v, Vp) is a solution to the problem (1.1), (1.2).
Combining estimates (4.1) and (4.2) we obtain (1.7). O

”u”Wf"ll(QT) +1IVpl

PROOFs oF THEOREMS 1.2 AND 1.3

For the presentation convenience in this section we denote by {2 the
unit disc in R? and by @ C R? x R we denote the following space-time
cylinder

Q=02 x(-1,0).
Moreover, we assume the Stokes system (1.1) is considered in @) and the

initial value v|;=—1 = 0 is prescribed at t = —1.

Proof of Theorem 1.2.
1. For t < 0 we introduce the scalar function ¥ : Q — R given by serie

. r"sinnf
Y(r,0,t) == Z WA= 0t

n=1

in the polar coordinate system x; = rcosf, xo = rsinf. Then

n—l r" 1 cosnf

. r sinné
O (r,0) = Z n3(1 —n't)’ 891/) Z n3(1 —n't)’
1

n=
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and AvY = 0 in Q. Introduce the vector-function w :  — R? which is
given by formulas @ = w,.€,. + wyéy,

- 2\ ap(r) sinnd . o @y (1) cosnf
wi(r,0,0) =Y By V0= > 0 nTh)

n=1 n=1

Here a,, € W2 (0,1) are any functions satisfying the following conditions:

0, rel0,1- 3],
an(r) =< 0<ay(r) <1, re(l- #,1), (5.1)
an(r)=1, r=1.
a,(l)=n-—1, (5.2)
lal,(r)] < Cn?, |al(r)] <Cn® Vrel01]. (5.3)

For example, the following functions a,, satisfy all conditions (5.1)—(5.3):
an(r)=GBn® —n* +0®)r —14+n7)2 - 2n° —n" + 05 (r —14+n73)3

for r € (1 — 25,1] and ay(r) =0 for r € [0,1 — Z5].
Take a smooth cut-off function in t-variable y € C'([—1,0]) such that

0<x(®) <1, x()=0 Vte[-1,-2/3],
Xt) =1 Vte[-1/3,0],

and denote by v, p, f, g the following functions:

vi=x(w—VY), p:=x0, (5.4)
f=x00w — Aw) + ¥ (w — V), g:=xdivw. '
Then (v,p, f, g) satisfy pointwise the following system of equations:

ov—Av+Vp=f

dive = g } in Q@=Qx(-1,0)

V|t=—1 =0, wv]ag =0.
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Moreover, for any ¢t € (—1,0) we have

/g(:v,t) dx = x(t) /w(s,t) -v(s) ds = x(t) /wr(l,Q,t) df = 0.
Q o9 0

From (5.2) we obtain

1 1
divw ‘ = (O,w, + —w, + —Opwy
o0 r r

r=1

=0

r=1

B i (a, + &= —nay,) sinnf
B n3(1 —nTt)

So, g|89><(—170) =0.

2. Below we will show that the following relations hold:

xw € WiH(Q), (5.6)
Xy € WHQ), (5.7)
V(xy) ¢ L2(Q). (5.8)

These relations imply that the data (f,g) of the problem (5.5) given by
formulas (5.4) possess all the properties (1.9)—(1.12). But this weak solu-
tion is not a strong one as dv & L2(Q) and Vp &€ Lo(Q)-

We start from the verification of (5.6). We have

i n*ay, (r) sin nf

Qv = (1—nT0)?

n=1

and hence

0 2w 1
nwmm@=/ﬁ/W/@w&w%m

01

= n®|a, (r |2rdrdt

=3 [ [
210

n=1
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As [|ay(r)|]? rdr < n™?, we obtain
0

800 By < €Y / T DW=
n=1 "4 n=1

A similar estimate holds for [|0;wy || 1, (g)- Hence we conclude d;w € Lo (Q).
Now we turn to the estimate of ||V2wl|1,q)

0 1
V2wl <C i (|a%|2r +n?|al,|?r~t + n4|an|2r_3) drdt
Wi, (@) S nb(1—nTt)? :

10

n=1 "

Conditions (5.1) and (5.3) imply

1
/ PP+ n?ladPrt + o PrT?) dr < O,
0
s0
o0 o0
2 19 n3 dt 1
19wl Z/ TR <O Y <
n=1 " n=1

The weaker norms |[wl|z,(@) and ||Vw||, ) can be estimated in the sim-
ilar way. So, (5.6) is proved. The proof of (5.7) is analogous.

We are left to prove (5.8). From (5.7) we see that x'V¢ € Ly(Q) and
hence we need to show that x0; Vi € L2(Q). As x =1 on [—%, 0] and the
functions {sinnf}52, are orthogonal in L, (0,27) it is sufficient to show

that
o) 0 1 2
n4,rn—1
n=1 0

Indeed,
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thus we arrive at (5.9). O

Proof of Theorem 1.3. Assume there are two week solutions (vy,p)
and (vq,p2) satisfying the system (1.1), (1.2) with the same functions
(f,9)- Consider the differences w = vy — va, ¢ = p1 — p2. Then (w,q) is
a weak solution to the homogeneous Stokes problem with zero data. This
solution satisfies all conditions (1.9)—(1.12). Multiplying the equation by

w we obtain 1
6t||w||L2 —[IVw|%, <0,

and therefore w = 0. O

6. APPENDIX

In this section, we present the derivation of estimate (1.14) from esti-
mate (1.7). We remind that Q* := Bt x (-=1,0), BT :={z € R": |z| <
1,2, > 0} and take arbitrary p, r such that

1 9

- < <=
5 SP<TS g

Counsider a cut-off function ¢ € C§°(Q) such that

0<¢<1 in QF, (=1 in QF, (=0 in Q"\Q/,

C C
vk <—, k=1,2, 0 < —,
IV*Cll Lo (@) =) 10:Cl Lo (@) —

where
QL := B} x (-R*0), Bf:={z€R":|z| < R,z, >0}

Let (u,q) be a solution to system (1.13) and consider functions v := (u,
p := (q. Then (v,p) is a solution to the problem (1.1) with  being a

smooth domain such that By, , € @ C Bf and

f=Cf+u@ — AQ — 2(Vu)V¢ + gV, g=u- V(.

Applying estimate (1.7) and taking into account that T%p > 1 we obtain

lully2 o) < ClIfl
(@F

C s
L.1(Q+) W(”“le 0@+ T lldl Ls-l(Q+)>+
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c(Ivu-voll;

Taking into account estimates

Loa@h) 10w VO CLowr (B+)))'

SV,(Q+)+||6t(u'VO|

IV VOl am < g lulivagian;
Jor(u- VOl ) < gz (10l o, + . o).
O S et (e,
+ Il o))
we get N
ooy < I )

”u”Wf,’zl(QrT)

c
W(HuHWm(Qﬂ-F”ﬂ b Tl e (B+))) 6.1)
C

Yoo

Estimating the last term in the right-hand side of (6.1) via the Young
ga® + C.b% we obtain the estimate

+

8tu”Ls (||8tu||s : —1,0;W; 1 (B+)) + HuHi_lz(Qﬂ)

inequality ab <

c
55 10w

(r —p) sz(QJr)(”a”“dL,( 1L,o;We (B+))+|| ”L 1(Q+)>

C.
‘SHatu”L @h T (7-_7;)258’(||6tu||2,(—1,0;W;1(B+)) + ||U||SLS,1(Q+))’

where the constant € > 0 can be chosen arbitrary small. Therefore,

lellies gy < CUFIE, e + ElOuul g

C. 5
(r—p)2s o) 19wl 170;W;1(B+>>)’

and, by virtue of (1.16),

+ (laliy o)

||u||;V21(Q:') EHatU’HL @

C.
+W(Hf|

o) (6.2)

L@t T lullyro gy +lallz
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Now let us introduce the monotone function ¥(p) := ||u||f/[/2'1(Q+)7 and
s,l P
the constant
A= Ce (115, i) + lelyroggr + s, an ) -
Inequality (6.2) implies that
A
\Il(p)ésllf(r)+m, Vo, r: R <p<r< Ry, (6.3)
for some a > 0 depending only on s, and for R = 1, Ry = . Now

we shall take an advantage of the following lemma (which can be easily
proved by iterations if one take ry := Ry — 27 %(Ry — Ry)):

Lemma 6.1. Assume ¥ is a nondecreasing bounded function which sat-
isfies the inequality (6.3) for some o > 0, A > 0, and € € (0,27%). Then
there exists a constant B depending only on ¢ and a such that

BA

UV(R) L —=——F—.

(£1) AL

Fixing ¢ = 2735 in (6.2) and applying Lemma 6.1 to our function ¥,
we obtain the estimate

lellwe s < Co (15, gy + lullinoge, + s, o))
which completes the proof. O
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