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V. A. Solonnikov

INSTABILITY OF ROTATING FLUID

ABSTRACT. The paper is concerned with the problem of stability of uni-
formly rotating viscous incompressible self-gravitating liquid bounded by
a rotationally symmetric free surface. It is proved that it is unstable, if
the second variation of the energy functional is not positive.

Dedicated to N.N.Uraltseva on the occasion of her jubilee
1. INTRODUCTION

The velocity and the pressure of an incompressible fluid uniformly ro-
tating about the x3-axis is given by

V(z) = w(es x x) = w(—x,21,0),

wro,.
P(z) = —[2']* + po, (1.1)
where ¢’ = (x1,22,0), po = const, e3 = (0,0,1) and w is the angular
velocity of rotation. If the fluid is self-gravitating but not capillary, has

the unit density, and occupies a bounded domain F with a free surface G,
then the shape of G is defined by

2
%|$I|2+K,Z/{(l')+p0:0, x€G=0F. (1.2)
where
d
U) = | ——

S el
F
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The domain F filled with rotating liquid is referred to as equilibrium
figure. For simplicity we assume that F is rotationally symmetric with
respect to the xs-axis. We also assume that F is an oblate spheroid, i.e.,

/((azl cosp + 9 sin)? — 23)dx >0, VY € (—m,n).
_’F

The problem of stability of the regime (1.1) of rigid rotation reduces
to the analysis of the free boundary problem for the perturbations of the
velocity and pressure written in a rotating coordinate system:

wi + (wW- V)W + 2w(es x w) — vViw + Vs = 0,
V-w=0, z€Q, t>0,
2
T(w,s)n = (w?|33’|2 +po + kU (z,t))n, (1.3)
Veo=w-n, zel}=0Q,
W(I,O) :VU(:L'): CUEQO,

where (); is a domain unknown for ¢ > 0 and given for ¢t = 0, py = const,
U is the Newtonian potential

U:/|x—z|_1dz,
Q

T(w,s) = —sI + vS(w) is the stress tensor, S(w) = Vw + (Vw)7 is
the rate-of-strain tensor and V), is the velocity of evolution of the free
boundary I'; in the direction of the exterior normal n. It is assumed that
w satisfies the orthogonality conditions

/w(w,t)dx =0,
Q¢

[ty mi@de + [ ) mio)ds
Q4

Q4

—o [ m@) m)ds, =123 (14)
f
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where 7;(z) = e; X x; moreover,

Q| = |F], /widx =0, i=1,23. (1.5)
&

From the fact that these conditions hold for ¢ = 0 it follows that they are
satisfied for every ¢t > 0.
If the surface I'; is close to G, then it can be prescribed by the equation

r=y+N(yply,t), yeg, (1.6)

where N is the exterior normal to G and p is a small function. Conditions
(1.5) are equivalent to

/@@mmszm /wwmmszm i=1,23,  (L7)
g g

where

2 3
oy,p) =p— %H(y) + %’C(y),

2 3 4
Uilw.0) = (. )i + Niy) (5 = SHw) + EKw)),

and H, K are the doubled mean curvature and the Gaussian curvature of
G, respectively. Finally, the kinematic condition V,, = w-n can be written
in terms of p as

w(z,t) - n(z)

pe(y,t) = N{y) -n(z) ’ r=y+N(y)ply,t). (1.8)

The corresponding linear problem has the form

vi+2w(es xv) —vVv+Vp=0, V-v=0, z¢cF,
T(v,p)N + NByp =0, (1.9)
pe =v-N, p(z,0)=po(z), ze€G=0F,

v(z,0) =vo(z), z€F,
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where p(z,t), ¢ € G, is an additional unknown function,

z,t)dS,
Bap = boyp(art) — i [ LD (1.10)
g
w? 0 oU(x
b(l')_ 78—N| /|2—K) a](\]_) b0>0

Equations (1.9) should be supplemented with the orthogonality conditions

[rwois=o. [ mas <o, (L11)
g g

/v(:n t)dz =0,

_’F

/v x)dz + w/p(x,t)ng(x) -mi(x)dS =0,i=1,2,3,

/ ] (1.12)

obtained by linearization of (1.4), (1.7). It can be easily verified that
these conditions hold for arbitrary ¢t > 0, if they are satisfied at the initial
moment t = 0 for (vo, po).

Let

Bp=B Wl "12dS
p=Bop+ —5— [ ply'|7dS.
|z IILZf)

It is proved in [1] that when the quadratic form

/podS / dS+f| ’|Zd /|y 12 ds)
// o dS ds. (1.13)

is positive definite for arbitrary p € L2(G) satisfying (1.11), then the
problem (1.3) is uniquely solvable for arbitrary small wo and py belonging
to some Sobolev spaces and satisfying natural compatibility conditions,
and the solution tends to zero as t — oco. This means stability of rotating
liquid. In the general case, only local existence theorem for the problem
(1.3) can be obtained (this is done as in [1, Theorem 3.1]).
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In the present paper we consider the case when the form (1.13) can take
negative values and show that this is the case of instability. We write the
problem (1.3) as a nonlinear problem in a given domain F. We extend N
and p into F and introduce new variables y € F according to the formula

z=y+N(y)p (y,1) =e(y), yeF, (1.14)
where N* and p* are extensions of N and p into F. We denote by £ =
L(y, p) the Jacobi matrix of the transformation (1.14) and set L = det L,
L = LL~!. Under this transformation, the equations (1.3) take the form

0 op*
- 6—’;(5—11\1* Vu+ (L7 V)u
+2w(eg xu) —vV-Vu+Vg=0, V- -Lu=0, (1.15)

= Mn

r=e,(y) ’

_ 2
T(u,q)n = n(w—|x’|2 + kU (x,t) +po)

pt(y,t)_%, yega

y
p(y,0) =po(y), ve€G, uly,0)=uly), yeTF,
)-
Y,

(
()-1), q(y, )—S(Gp() )V L£7TV, (LT is the

where u(y,t) = w(e,(y
transposed matrix £L7%), V =V, T is the transformed stress tensor:

T(u,q) = —¢l +vS(u), S(u) =Vu+ (Vu)’,

The surface Gy is given by the equation (1.6) with p = pg. The normals
n(e,) and N(y) are connected with each other by

L'N
n(ep) = ,\7(?!) (116)
ILTN(y)|
Under the transformation (1.14), conditions (1.4) are converted to

/ u(y, t)Ldy = 0,

f
[ 1utw0) - mitey iy
f

:—w/DM%@%m@mmw+w/mw%m@@JZLZ&
] ] (117)
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Theorem 1.1. Assume that the form (1.13) can take negative values for
some p satisfying (1.11). Then there exist a number ¢ > 0 and arbitrarily
small initial data uy € WITH(F), po € WLT2(G), | € (1,3/2), satisfying
the compatibility conditions

V- Ly, po)uo(y) =0, yeF,
S(ug)ny —np(no - S(up)ng)|g = 0, (1.18)
(ng is the normal to I'y) such that
106+ 8) oy + 11l Ollyges ) > € (1.19)
for a certain t > 0.

By (1.19), the zero solution of (1.15) in unstable.

By Wi(Q) we mean a standard Sobolev—Slobodetskii space denoted
often by H'(Q),

Wy*(Qr) = La((0,7), W3()) N W5/((0,7), L2(2)
is an anisotropic space of functions depending on =z € Q and t € (0,7),
Qr = 02x(0,T), Q is a domain in R™ or a manifold. We also use the spaces
Wy (Qr) = La((0,7), W) and Wy'/*(Qr) = W,/*((0,1), La(2)),
equipped with standard norms.

The result close to Theorem 1.1 has been announced (without complete
proofs) in the paper [2] for the Holder spaces of functions. In this connec-
tion we note that the stability of uniformly rotating self-gravitating liquid
is established in [1] in the weighted Sobolev spaces W;H'lH/Z(Qm) for

1 €(1,3/2), but the result is valid for [ € (1,5/2).
The case of a capillary liquid is studied in [3, 4].

2. AUXILIARY PROPOSITIONS
The proof of Theorem 1 is based on the analysis of a linear problem

vi+2w(es x v) —vV2v + Vp = f(z, 1),
V-v=f(x,t) =V -F(x,t), ze€F, (2.1)

T(v,p)N + NBO( v(z,T) - a(:v,T)dT) =d(z,t),x € G =0F,

8 oo~

v(z,0) = vo(z), eF.
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Proposition 2.1. Letl €(0,5/2), Qr = Fx(0,T),Gr =Gx(0,T),T <
o0, £ € Wy'*(Qr), f € WyH0(Qr), F e W '2(Qr), vo € Wi (F),
de W2l+1/2’l/2+1/4(GT). Assume also that a(-,t) € Wé“”(g), vt < T,
and that the compatibility conditions

V- VO(x) = f($70)7 HES -7:7 HQS(VO)ng = Hgd|t=0 (22)

are satisfied, where Ilgd = d — N(N - d). Then the problem (2.1) has a
unique solution (v,p) such that v € W;H’HZ/Z(QT), Vp € W2l7l/2(QT),

Dlzeg € W2l+1/2’l/2+1/4(GT), and the solution satisfies the inequality

||V||W22+l>1+l/2(QT) + ||VP||W2’-Z/2(QT) + ||p||W21+1‘l/2+1/4(GT)
< o) (IElygr2 gy + 1 g

+ IF Mooz gy + dllyprrvzrisag, + ”Vo”Wz’“(f))' (2.3)

This problem differs from the second (Neumann) initial-boundary value
problem for the evolution Stokes system by the presence of two lower
t

order terms, 2w(es x v) and By([ v -adr). They can be estimated by the
0
interpolation inequalities

||2w(e3 X V)||W2’-Z/Z(Qt) < 6||V||W21+2-l/2+1(Qt) + 0(6)”VHL2(Q¢)

t
< 26||V||W2l+2’l/2+1(Q:) + C/((s) / ||v('7T)||W2l+2’l/2+l(Qu—)dT7
0
t
||B0(/v : adT)||W21+1/2>l/2+1/4(Gt)
0

t
< 61||V||W2l+2,l+l/2(9t) +C((51)/||V||W2z+2,z/2+1(QT)dT,
0

where t < T and ¢, §; are arbitrarily small positive constants. The first
inequality is obvious and the second follows from the boundedness of the
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integral operator By and from the estimate of the product of two functions.
We have

t t
||B0(/V . adT)||W2H1/2’0(Gt) < CH /V . adTHWle/Z‘O(Gt)
0 0

< C(T)||V||W21+1/2,0(Gt) Slilz ||a||W2’+1/2(g)7
T

t

t
||B0(/V . adT)||W§’l/2+1/4(Gt) < C|| /v . adT)”WZ?’l(Gt)
0 0
< oDVl 5 lally 2 gy

These inequalities allow us to solve the problem (2.1) by successive ap-
proximations, using the estimate (2.3) for the solution of the Neumann
problem (see [5, 6]).
We also need to consider a spectral problem
AV +2w(ez xv) —vVv+Vp=0, V-v=0, z¢€F,
T(v,p)N+NBop=0, Ip=v-N, xe€G=0F, (2.4)

p)as =0, [ plyas =, i=1,23 (2.5)
g

V(@) - mile)de +w / o, s () - mi(2)dS = 0,
g
i=1,2,3. (2.6)

Mo WS O
<
&
QU
5
[l
N

This problem may be written in an abstract form [4, 7]:
Ap = Ao, (2.7)
where ¢ = (v, p)T, A= (4ij)i =12,
Apv =vV3iv — V| —2wPy(es x v), Apap=—Vry,
Anv=v-N, Axpp=0,
V2r =0, Vir,=0, zeF,
r1 =2vN-S(v)N, ry=DByp, z€g,
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and Pj is a projection on the space of solenoidal vector fields in Ly (F).
As the domain of A4, D(A), we take the set (v, p) with v € WZ(F) and
p E Wj”(g), satisfying (2.5), (2.6), the equation V - v = 0 and the
boundary condition

S(v)N — N(N - §(v)N)|g = 0. (2.8)

If » = (v,p)! € D(A), then the element (f,g)? = Ay satisfies the condi-

tions
/gdS =0, [ gr;dS =0, i=1,2,3,

=1,2,3.

Proposition 2.1. The spectrum of A consists of a countable number
of eigenvalues located in the sector X, 4 = {ReX + |k|ImA < d, d > 1}
with the accumulation points A = oo and A = 0. If the form (1.13) takes
negative values for some p satisfying (2.5), then the spectrum of A has a
finite number of eigenvalues with positive real parts.

The sketch of the proof of this proposition is given in [7]; see also [8].
The homogeneous problem (1.9), (1.11), (1.12) is equivalent to

¢ = Ap,  Plio = do = (vo,po)’.

We consider the resolving operator Z = e of this problem calculated at
a certain fixed sufficiently large value of time 7'. This operator is defined in
the space X of the elements ¢ = (v, p)T € WiTH(F) x Wt (G) satisfying

(1.11), (1.12), (2.8) and the equation V - v = 0. Since p(z,t) = po(z) +
¢
Jv(z,7) - N(z,7)dr, this problem can be also written in the form (2.1)
0

with a = N. By (2.3),

1Z¢ollx < c(T)¢ollx,
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where

||¢0||X = ||V0||W2’+1(]:) + HPOHWZl“(g)-

If A has a finite number of eigenvalues A with a positive real part, then
Z has a finite number of eigenvalues p with |u| > 1, and the remaining
eigenvalues satisfy the inequality || < 1. We denote these parts of the
spectrum of Z by o; and o5, respectively. By the Riesz formula, Z =

Z1 + Zs, where

1
Zy = 5= /u(uf— Z)"Ydp, k=1,2,
271

Ve

and y are non-intersecting contours enclosing oj. To this decomposition
of Z corresponds the decomposition of X: X = X; + X5; the operators

1
P, =— I—2)"
k=g (1 ) du
Tk

are projections on Xy, and

PP, =P,P, =0, P?=P,,
Zp =ZpyP =PoZ, Z,Z,=0.

If T is large enough, then

1219 x > 0llYllx, Y€ Xy,
[Zat]|x < ballYllx, VY € X, (2.9)

with b; > bg, b1 > 1.

3. PROOF OF THEOREM 1

Now we turn to the nonlinear problem (1.15) that will be written in a
slightly different equivalent form. In view of (1.2),

M

UJ2
(51’2 + kU a,8) + o)

z=ep(y)

%(Ieﬁ)(y)IZ —y'1") + 6(U(ep, 1) —U(y)).- (3.1)
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Taking the first variation of the right hand side with respect to p we obtain
M = —Bo(p) + Bi(p),

where By is a linear integral operator defined in (1.10) and B; is a non-
linear part of M:

Bi(p) = |N e / s, (3.2)
0

y7 / )
|esp eso (9]

Ls(y) = L(y, sp) is the Jacobian of the transformation x = e,,(y). It is
shown in [1] that

0%U,
g2 = Vis(P) +Ves(p) = Wis - Nly)p = Was(y) -N(y)p,  (3:3)
and V;s, W, are single layer and volume potentials:
OA(y, sp) ds,
Vs :/ ,t ’
15(p) p(y,t) Js lesp(2) — esp(y)]
g
0 1
Vo) = [ oA oL 4s, (34
2 (p) g/p(y ) (Z—/ p)as |€sp(z) _esp(y)| y ( )
OA(y,sp*) esp(z) —esp(y)
W s = d )
! / Os lesp(2) — esp(y)[? Y

. 0 €splZ) — €sp
W, — /A(y,sp )alesp((z))— es,,((l/y))|3dy'

When we take account of (3.1) and write the dynamic boundary condition
T'n = Mn for the tangential and normal components separately, we obtain

u; + 2w(es x u) —vViu+ Vg =1 (u,q) — (L7 a- V)u,

V-u=l(u,p),

IgS(u(y,t))N = l5(u), (3.5)
—q+vN-S)N+ Bo(p) = —Bi(p) + la(u),

pr=a-u,

u(y,O) = llo(y), p(y7 0) = PO(y);



INSTABILITY OF ROTATING FLUID 171

where
L'N(y) _ L'N(y) _ 2
SN N- Ap) Alp) =1—pH(y) + p~K(y),
L (u,q) = aait(ﬁ_lN* V)u+v(V-V=VHu+ (V-V)g,
Lu)=(I—-L")YW-u=V-(I-L)u, (3.6)

Is(u) = Ig(MgS(u)N — 1S (u)n),
ly(u) = v(N - S(u)N —n - S(u)n).

We observe that l2(u) is representable in the divergence form: ls(u) =
By II and IIg we mean the projections on the tangent planes to I'y and

G, respectively:

IIf =f—n(n-f), Ogf =f—-N(N-f).
The relations (1.4), (1.7) may be written in a similar manner:

/ ply.£)dS = 1(2), / oy, 09:dS = L(2),

g g

/ u(y, )dy = m(t), (3.7)

J
/ aly, ) - mily)dy + / oy, ma(y) - ma(y)dS = Mi(d),
F g

) 2,3

Z:]-; (]
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where
uwz/www—wmmma
g
mnz/wmwm—wmmma
g
nmwz/umwu—m@,
F

We assume that u, g, p are defined in an infinite time interval ¢ > 0
and that the inequality

laC Ollwsss ) + 10C Oz e ¥E>0  (38)

holds with a certain small € > 0. Our aim is to show that this assump-
tion leads to a contradiction. Before passing to the estimates, we make
some assumptions about N*(z) and p*(z,t). We assume that N*(z) is
sufficiently regular in F (this can be achieved, for instance, by setting
N*(z) = N(y)((z) where y € G, z =y + N(y)A\, 0 < =X < 4§, 6 > 0,
and ( is a smooth cut-off function equal to one near G and vanishing for
|A| > 6/2). Concerning p* we assume that p* = Ep where E is a linear
extension operator with the following properties:

||p*('7t)||W2"+1/2(_7:) < c”pHW;(Q): re (07l+2] (39)
It follows that the time derivatives of p* satisfy similar inequalities:

||p;(',t)||W;+1/2(}-) < c”ptHWz"(Q)J re (Oal_'_ 1/2]7

1650 Oz s, < cllowllwgi@y, T € (0,1-1/2)
(3.10)
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At first, we consider u, g, p in the time interval (0,T"), where T is the
number chosen in Sec. 2 (hence we assume that inequalities (2.9) are
satisfied). Following the scheme used in [3.4], we represent u,q, p in the
form

u:u/_'_u//’ q:q/+q", p:p/_'_p//' (3'11)
We define u”’(z, 0), p”’ (x,0) by 1(0),1(0), m(0), M(0), I5(ug) with the help
of the following proposition.
Proposition 3.1. Given the number [, the vectors 1, m, M and the
functions b € W§_1/2(g), b-N =0, b € Wi(F), there exist p € Wit (F)
and r € W T (G) such that

/r(y)dS’ =1, /T(y)y,-dS =1, 1=1,2,3,

and

||7°||W2’+1(g) + ||‘P||w2l+1(}')

< el + 1+ ]+ [M] + [Bllwgr) + Bl )- o1
3.12

The proof coincides word by word with the proof of Proposition 4.4
in [4], where ¢ and r are found in the space of functions with Holder
continuous derivatives.

We set I =1(0),1=1(0), m =m(0), M = M(0), b = l3(up), b =13(up)
and we define u{, pj by uj = ¢, py = r. The expressions 1(0), 1(0), m(0),
M(0), b = 13(up) are at least quadratic in pg, ug. We have

1(0)] + [1(0)] < ellpollZ, )

o u0)lwg )+ M3 (a0) 172y < c||uo||wzz+1m||po||w2g+1(g)E

13)
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(see inequality (4.13) below), finally, from the formula

ng(ep)-m(ep)L(y)dy—/ng(y) -ni(y)dy
_7.'

S

1
- / ds / A, 5p)s(esy) - i (es,)dS,
0 g

(obtained, in particular, in [9, Sec.2]) it follows that

MO)] < el 165wy ) + loolcc) )

Collecting the estimates, we obtain

2
104wz gy + 0w ) < e lpolses gy + ol ) - (3.14)

The differences uy = ug — ug, py = po — pj satisty the conditions (1.11),
(1.12). We define (u’, p’,¢’) as a solution of the linear problem (1.9) with
the initial data (u, p{) (as mentioned above, this problem can be written
in the form (2.1)). By (2.3),

||U/||W22+l,1+l/2(QT) + ||Vq’||w2z,z/z(QT) + ||ql||w2l+1’l/2+l/4(GT)
 supi<r |8 Ly gy < o) (Il ) + 106w g )

< o(T) (ol oz + ool g) ) (3.15)

The functions

1

u'=u-u, p-p—yp, ¢"=qg-¢
satisfy the relations
u} +2w(ez x u”’) —vVZu” 4+ Vq”
— L 4w+ ) — (LM V)@ +u),
V-u =hu +1u),
HgS(u")N = 13(u” +u), (3.16)
—¢"+vN-S")N + By(p") = ls(u' +u") + Bi(p" + p"),
p=au+(@-N)
u’(y,0) = ug(y), p"(,0) = py(y)-
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Since

t

t
P =)+ [t [@oN) @
0 0

(3.16) is equivalent to
u) +2w(es x u”) —vV?u" + V¢’ =1 (u,q) — (L 'u - V)u,

AV ll” = lg(ll) =V- Lz(ll),
Mg S(u”)N = 1y(u), (3.18)
—¢" +vN - S(u")N + BO(/ u” -adr) = —By(r) + Bi(p) + ls(u),
0

"

u’(y,0) = ug(y),

where

rt) = pll(y) + / o - (a— N)dr

For further analysis of the problem (3.18) we need estimates of the
expressions (3.6).

Proposition 3.2.. If the inequality (3.8) holds for all t € (0,T) and € is
sufficiently small, then

||11(11,q)||W21,z/2(QT) S C(T)E(||11||W22+1,1+1/2(QT)+||Vq||W21,l/2(QT)), (319)

”(‘C_lu : V)UHWé,z/z(QT) + ||12(u)||w2’+1>0(QT)
-|-||L2(11)||W20,1+l/2(QT)+||13(11)||W2l+1/2.l/2+1/4(GT)-|-||l4(11)||W2l+1/2.l/2+1/4(GT)
< e(T)elul yzaagg, ) (3.20)

In addition,

1Bor) 20175 gy < oD [[ollygsey + nllsrgy ) (3:21)
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11 (0)y1s200113gy < eD)e((30p o Do g + lotllgraoigy)
< ee(swpllol Ol g + Mllypen,y)- (3:22)
We estimate u” and ¢” making use of (2.3) and of Proposition 3.2:

||u”||W21+2,z/2+1(QT) + ||Vq”||W21,z/z(QT) + HqHHW2l+1/2'1/2+1/4(GT)

S C(T)G(”ll”W22+1,1+1/2(QT) + ||Vq||W21,z/z(QT))
(@) (10 lwges rHBo () ygrnaronass g HBLUO) ygrnaroniss gy )
< oD (100 g ) + 100l g

Hu ez o, + IV iz g + sup ||p”||W2“r1(g))'

The function p” (3.17) satisfies a similar inequality:

10" Dl gy < e@e(0llyies ) + Ip0 i g )
"
+ C(T)Hll ||W22+z,1+l/2(QT). (323)

If € is small enough, then the last two estimates imply

||u”||W2l+2’l/2+l(QT) + qu””WZl’lm(QT) + Hq””W2l+1/2‘1/2+1/4(GT)

< e(0)e(Jluollyser ory + loollzr gy ) (
3.24)

Let W and W’ be operators making correspond the solutions of (1.15)
and (3.18), respectively, to ¢o = (ug, po)?, and let ¢ = (u}, py)? = Reo.
It is clear that

Woo = ZReo + W'eo.

We assume that ¢y satisfies the condition

| PLR¢o|lx > 2|[P2Reol x, (3.25)
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and we show that in the case of a small e W ¢y also satisfies (3.25) (cf [10],
Sec. 4). We have

[¢o — Reollx < cellpol x, (3.26)
[pollx < [[PLRpollx + |P2Rolx + [|do — Rebollx

3
< §||P1R¢O||X + ci€||dol x s

and if
cre<1/2,
then
[gollx < 3[[P1Reollx- (3.27)
Since
PLRW ¢ = PL(R—1)W¢o + PLZ1 Rg + PLW g
=Z1PiRpo + PL(R— )W o + PLW' g
and

PyRW g = ZyPyRopg + Po(R — I)W g + P W' by,
we have, by (3.24)—(3.26), (2.9):

| PLRW ¢ol| x — 2[|PaRW o | x
> | ZiPiReo | x — 2(|Z2PaRépo || x — caelldoll x
> (b — by — 3c2€) | PrRo || x > 0,
if
b1 — b2 — 3626 > 0.

Finally, we estimate P,RW ¢y = Z, Py Rpo + PL(R — I)W o + PLRW ¢y
from below, again with the help of (3.24)—(3.26):

|PLRW ol x > | Z1PiRoo||x — | PL(R—I)Wollx — [|[PLW ol x
> bi||[PLRéo|| x — c2¢ll¢ol|x-

We assume that
by = by — 3cze > 1,
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then
| PLRW ¢ol| x > b || P Repol| x - (3.28)

Suppose the solution of (1.15) is defined and satisfies (3.8) for all
t > 0. Then we can repeat the above arguments for the time intervals
(T,2T),...,(kT,(k + 1)T). The constants in all the inequalities, begin-
ning with (3.14), are the same at each step. From (3.28) it follows that

IP RO (-, kT)| x > b*||P Ro | x,

which contradicts (3.8) for large k. So inequality (1.19) holds for a certain
t > 0, and Theorem 1 is proved.

4. PROOF OF PROPOSITION 3.2
By (3.8), (3.9), the elements I;; = 0;; + %(N*p*) of the matrix £ have
finite W2l+3/ ?(F)-norm, L = detL is strictly positive, the norms of Eij and

of the elements [/ of £=! are also bounded, a = (A(p) "1L'N € Wi (G)
and the inequalities
||(5@] — lij||w2l+3/2(]:) + ||(5@] - lij||W21+3/2(]_.) S Ce, (41)

||a - N||W2l+3/2(]__) S Ce. (42)

are satisfied. Moreover, py = a-u € Wé+1/2(g), a; € W£_1/2(g), Pt =
a-uw+a;-uc Wé_l/z(g) and

||Pt||W21+1/z(g) < c||u||W21+1(f) < ce,

||at||w2”1/2(g) < ce, (4.3)
el 1726y < e(laelysrragg) + Mllwgco))-
It follows that
||p*||W25/271(_7-') < Ce,
102 | yaor2 ) + 1 Lellwyry < ce (4.4)

s omy + 10t 10(gr) < cllullypsnian g .
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In the proof of (3.19), (3.20) we shall use well known inequalities
I f9llwyF) < cllfllwy e llgllwg s, 1> 3/2, (4.5)
I fallwyF) < C||f||w,;(f)||9||W23/z+6(f), r<3/2, §>0, (4.6)
Igllwsi < e(suplF@lglgis) + loliacn Sz r)):— (@7)

Let A(=h)u(z,t) = u(z,t — h) — u(z,t) be a finite difference of u(z,t)
with respect to ¢t. The integral

min(T, 1)

1/2
/ e / AU, oyt

is a principal part of the norm |[ul|y0,/2(,). Since
A(=h)u(z,t)v(z,t) = v(z,t — h)A(=h)u(z,t) + u(z, ) A(—h)v(z,t),
we have, by the Holder inequality,

[A(=R)ul, )o( D)Ly < oGt =)L, A IA=R)ul, D)L, )

+/ ve(-,t = Dl mydrllu ), 7, 1/p+1/g=1/p1+1/q =1/2.

(4.8)
Choosing ¢ so that [ —3/2 4+ 3/q = 0 and taking ¢; = 2, we obtain

IAG=RuC, Dol t = |y < supfo(e,t = IA=RUC, o)
+ch sup ve( =Tl jyare-r o ul D) lwyz), (4.9)
re(0.h) t w32HF) W3 (F)

which implies

||U’U||W20-l/2(QT)

< e sup o(a, llull g0 gy + 58 [0tlyzro1 e Tl gy )

Qr < (4.10)
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We shall often use the inequality

lullysir2ory < c(lulwion + lullia@n),  (411)

valid for [ < 2.
Now we pass to the estimates of 14 (u, ¢) and consider the term (V —

V)g= (I — L~ T)Vq. By (4.1), (4.6), (4.10),
(V- ﬁ)qu;-o(QT) < Cfgg 11— ‘C_l||W23/2+5(;:)||VQ||W2’-0(QT)
< CC||Vq||W2l.0(QT),
||(v - v)qHng’/Z(QT)

< _ -1 -1 - ) )
< e(supll = L7+ 50 L7 yysrat ) 1Vl

Another term in 1y, (% V- V?)u, can be represented in the form

(V-V-VHu=L T -NV-Vu+£ V. (T -1)Vu

=L T-DnDv-Vu-£'I-c:(VeViu+ (£ -v)ct). vu

We estimate the first two terms in the right hand side exactly as (% -V)g;
the last term we estimate by (4.7), (4.11). These inequalities imply

1 V)LTY ullgm < (€T D)L g [ Tull o

HIET D)L gy 5up [Vl 1))
and, as a consequence,

-7 -T
”(‘C ’ V)E ) ’ vu||W2’~°(QT)

< -T -T
< e(sup (™" D)L sz 1 IVl genoa,

+ Egg ||(£_T . V)E_THWé(}')||Vu||W2’+1’°(QT)) < CSHUHWsz’O(QT)'
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In addition, we have

||—[(C VL) -Vl oo

<sup||—[(c L VL o IVl e o,

T
+ fgp ||(£ V) )HWs/z 1(]_. ||Vut||Wz L0(Qq) < C€||ll||Wz+2 1/2+1(Q )"

The expressions 861& (L7IN*-V)u and (£L71u- V)u are estimated in a

similar manner with the help of (4.4), (4.6):

Op* i ~
Iy (TN V)ullyrog,) + (£ 0 V)ulyro g,

N -1
< el sup lillyzravsizy + SR 1L blhygrons o)) I Valgora

< ce||Vu||Wé,o(QT),

0 0p* . 0. ._
I (N V)l + 57 0 Dl

< esup (Vu(e, 0117 v + 16 Welzacan)

* -1
+el Vg0 (399 17 lyzrs-1ry + 50D 127 ullyzrecr )

S Ce||ll||W21+2,z/2+1(QT).

Thus, (3.19) is proved. We also have
o (@)llyt1.0(gy + 1Ll
~1
< C?Eg”(l - L )”WZHI(}')||u||w2’+2>°(QT) < CC||u||w2’+1>°(QT)
and

112(wo)lwyr) < cllwollyirap)lloollyzrets z)

< C||“0||w2l+1(90)||P0||Wé+1(g) (4.12)
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(this inequality is used in the proof of (3.13).
Now we consider the expression

~

Lgt(u) = (I — C)ut — Etu = LI + L”.

It is easily seen that

Ll < e sup 1T = Ellelsaian)
T

+fg¥ HEt”LZ(}-)”uHWle’O(QT)) < ce||“||W22+l,1+z/2(QT);

and, by (4.9),
min(T,1) T /
dh ‘ 1/2
[ i [IACRL R, ) < celullyzennsnn g,
0 h
finally,

0 - .
||EL”||L2(JF) < C(||Et||L3(f)||u||L6(f) + 1Lttll Lo (7) sup |“($at)|);
which yields
||L2(U)||W20,l+1/2(QT) S C€||u||w2l+2,l/2+1(QT).

The estimates of I3(u) and I4(u) reduce to the estimates of (I—L71)Vu,
n(e,) — N, n(e,). The first difference was in fact considered above in the
proof of (3.19). Moreover, we have

[n(e,) — N||W2’+1(g) + ”nt(ep)”Wzl(g) < ce,
and, as a consequence,
||§(ll)11 — S(u)NHW21+1/2‘l/2+1/4(GT) S CC||H||W21+2.Z/2+1(QT),

||13(ll)||W21+1/2,l/2+1/4(GT) +||l4(ll)||W21+1/2,l/2+1/4(GT) S CC||H||W21+2,1/2+1(QT),
||13(uo)||w2171/2(g) < c||uo||W21+1(}-)||po||W2z+1(g). (4.13)

Thus, the inequalitites (3.20), (3.13) are also proved.

In view of (4.2), (3.14), the inequality (3.21) is evident, and (3.22)
follows from the estimates of the potentials (3.4) obtained in [11] (see
(3.4)—(3.13)). The proposition 3.2 is proved.
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10.

11.
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