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A NOTE ON LOCAL BOUNDARY
REGULARITY FOR THE STOKES SYSTEM

ABSTRACT. In the present paper, local boundary regularity of weak so-
lutions to the non-stationary Stokes system is studied. Under reasonable
conditions, existence of the first derivative in time and the second spa-
tial derivatives of the the velocity field and their higher integrability with
respect to spatial variables are proved.

Dedicated to Nina Nikolaevna Uraltseva

1. MOTIVATION AND MAIN RESULT

In the present paper, we address the following question. Let us con-
sider the non-stationary linear Stokes system in a neighborhood of the
flat boundary where the homogeneous Dirichlet boundary condition is
imposed on, i.e.,

oov—Av=f—-V .
t div v :fO q} in Q+(2), (1.1)
and
v(z’,0,t) = 0.

Here, the following notion is used:
T = (213/,333), © = (3717372)7
Q. (r) =C(r)x] —r%, 0[Cc R® x R,
C(r) = b(r)x]0,r[€ R?,
b(r) ={z’ e R*: |2/| <r},
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v and ¢ stand for the velocity field and for the pressure field, respectively.
We always assume that v and ¢ are a weak solution to (1.1) and (1.2)
having the properties

CAS Wrb,on(QJr(2))7 qe Lm7n(Q+(2)) (13)

It is supposed also that the external force f satisfies two conditions

f € Lsn(Q4(2) (1.4)

with
s > m. (1.5)

Here,
Lm,n(Q-i-(r)) = Ln(_"'2: 0; Lin (C+(T)))

with the norm

0 1
ol = ([ ([ 1orteas)*ar)",

—-r? C+(I)

W#{,On(Q—i-(r)) ={ve Lm,n(Q+(T)): Vv e Lm,n(Q+(7'))}:
WEL(Q:() = {0 € WES(Q4 (), V20 € Ly n(Q4 (1),
81:11 S Lm7n(Q+(r))}

Our question is very typical in the local regularity theory and as follows.
Do solutions to (1.1) and (1.2) satisfying assumptions (1.3)—(1.5) have any

additional smoothness? As it was shown in [1], the answer is “yes” but
under the essential restriction

ve W, (24(2). (1.6)
We then have

ve W2, (Q4(1) (L.7)
with the estimate

”VQU”s,n,QJr(l) + ||8tU||s,n,Q+(l) + ”vq”s,n,Q+(l)
(1.8)

< e(5,m, 1) [l 04 @)+ 1V0lmm 0 2) + 10l 2 + 1l 0 (2]
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As in the case of interior regularity for solution to the Stokes system,
we have smoothing effect in spatial variables only. However, in the case of
interior regularity, we have estimate of type (1.8) but without assumption
of type (1.6), see [2]. The aim of this paper is to show that assumption
(1.6) of [1] is superfluous.

The main step of our arguments is the following statement.

Lemma 1.1. Suppose that condition (1.3) hold and let

F € Lunn(Q4(2)). (L9)

Then
veWrL(2+(1), qe W, (Q(1)) (1.10)

and the following estimate is valid:

||V2v||m,n,Q+(1) + ||6tv||m,n,Q+(l) + ||Vq”m7n’Q+(l)
(1.11)

< c(my ) [l m, 24 ) + 190,04 @)+ N0llinm, 24 2) + Nl 0y 2]

To deduce estimate (1.8), it is sufficient to use Lemma 1.1, see (1.10),
and arguments of [1], see Proposition 2 there. So, summarizing mentioned
above, we can state the following.

Theorem 1.2. Suppose that conditions (1.3) and (1.4) are satisfied.
Then for any weak solutions to (1.1) and (1.2), statements (1.7) and (1.8)
are true.

One of the useful consequences of Theorem 1.2 is as follows. We, now,
may consider a wider class of suitable weak solutions to the Navier—Stokes
equations near the boundary, dropping assumptions on the second deriva-
tives of the velocity field and on the first derivatives of the pressure field
in [3, Definition 2.1]. To be precise, let us give a new definition of suitable
weak solutions.

Definition 1.3. A pair u and p is said to be a suitable weak solution to
the Navier-Stokes equations in Q4 (1) if the following conditions hold:

€ Looo(Q4 (1)) NWy5(Q1 (1), p € Lg(Qe(1));
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u and p satisfy the Navier—Stokes system
O +u-Vu—Au=—-Vp, divu=0
in Q4 (1) in the sense of distributions and boundary condition
u(x’,0,t) = 0;
for a.a. t €] — 1,0], the local energy inequality

t

/go(a:,t)|u(:n,t)|2da:+/ / o|Vu|*dzdt!

C+(1) —1cy (1)

< / (|u|2(A<p + 0p) +u - Vop(Jul* + 2p))d:vdt’
C4+(1)
is valid for all nonnegative ¢ € Cg°(b(1)x] —1,1[x] — 1,1]).

It is well known that, for energy solutions, u - Vu € Ly, ,(C1(1))
with 3/m + 2/n > 4. Then, by Lemma 1.1, d;u, V?u, and Vp are in
L%%(QJF(I/Q)) and thus our pair u and p is a suitable weak solution to
the Navier—Stokes equations in Q1 (1/2) in a sense of Definition 2.1 from

[3]. Now, from Theorem 2.3 of [3], we immediately deduce the following
statement.

Theorem 1.4. Let a pair u and p be a suitable weak solution to the
Navier-Stokes equations in Q4 (1) in the sense of Definition 1.3. Then
there exists a universal positive number € having the property. If

then u is a Hélder continuous function in the closure of Q4 (rg) for some <
ro < 1.

2. PROOF OoF LEMMA 1.1

Without loss of generality, we may restrict ourselves to the case

m < n. (2.1)
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Next, we let

ve(a’ x3,t) = / wo(z" —y )y, xs, t)dy’,
b(2)

¢’ 25, 1) = / wole — 3 )a(y/ a3, 1)y,
b(2)

where w, is a standard mollifier in tangent variables. Then our mollified
functions satisfied the following systems

Opvg — U£,33 =ga=fI+ Ugﬁg - q7ga

ve(2',0,t) =0 (2.2)
and
8751}6&’) - U39733 + q% = fBQ + ’UI)L’),OzQJ ’UBL’),B = _’Ugt,on
v8(z',0,t) =0 (2.3)

for 2’ € b(2), 0 < z3 < 3/2, and —(3/2)? < t < 0. Here, the Greek indices
are running from 1 to 2 and summation over repeated indices is adopted.

We start with the first system. By the known estimates for parabolic
equations, we have for vg

0 5/4

(/(|atug|m 10 g™ )das ) " dt

~(3/4)2 0
0 3/2

<cmn) [ ([ al + 08"+ ol )

—-(8/2)2 0
Then after integration in z’, we find

0 5/4

/ dz’ / (/(|8tv§|m+|v§’33|m)d$3) dt < c(m,n)A;, (2.4)

b(5/4)  —(5/4)2 0

el
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where
0 3/2 .
ai= [ [ ([ dgalm g 4 et mdes) "t
b3/2)  —(3/2)2 0

Taking into account known properties of mollification, we can get the
upper bound for A,
A1 < C(0)4o, (2.5)

where

Ao = ([[f 7m0, ) T 10l nar @) T IV n 0y 2) + laln 0, 2)-

It remains to note that, by assumption (2.1),

(0608 3 n,04 72y + Ve 331l n 04 (5/4)

0 5/4
< ¢(m,n) / dz’ / (/(|8tv§|m+|v§733|m)d:v3)mdt. (2.6)
b(5/4)  —(5/4)2 O

Differentiation of (2.2) in tangential variables 2’ gives us
at”i,ﬁ - “g,ﬂ33 = Jo,B;
vg 5(a',0,t) =0 (2.7)

for 2’ € b(3/2), 0 < w3 < 3/2, and —(3/2)? < t < 0. Repeating above
arguments, we find the following estimate

0 5/4

/ da’ / (/(|8tv§”,3|m+|v§7533|m)dw3)mdt§ Clo)Ao. (2.8)
b(5/4)  —(5/4)* O
Now, our aim is to find estimates for 0;v3 and Vo3 ;5. Evaluation of

the second term is easy. Indeed, it is sufficient to differentiate the second
equations in system (2.3). So, we can state that

0 5/4
efaliniom e [ @ [ ([l almars) 29
b(5/4)  —(5/4)2 O .

< C(0)Ao.
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To estimate 0;v3, we differentiate the first equation in (2.3) one time
with respect to x3 and the second equation there two times with respect
to the same variable. As a result, we have

(f:f - q,g3)73 = _atvgz,oz + ’Ug,a33 + ’Ui,aﬁﬁ' (210)

Next, let us define a function u as a unique solution to the following
boundary value problem with respect to #3 on the interval ]0,3/2]

uss = f5, u(0)=0, u(3/2)=0. (2.11)

It is easy to see that the function u obeys the estimates
3

2

3

3
/(|u|m + |us|™)dzs < c(m) / |[f5|™dxs. (2.12)
0 0
So, we have

[

3

2
/|Qf)3|md$3 = / lu sz + (¢¢ —ug)3|"ds
0

0

[

I(¢° — U,3),3|md$3)

(==}
leo

< c(m) / 1" da +
0

and by embedding theorem

3

2
[ gtz
0

3 3 3
2 2 2

< C(m)(/ |f5|™dws + / I(q® — u3) 33" dws + / (q¢ — U73)|mdw3>'
0 0 0

Then, thanks to (2.11) and (2.12), it follows from the latter inequality
that

3

2
/|‘I,Q3|md$3
0

Sc(m)(/z|f§|md$3+/|(11,93—fa?),3|md$3+/2|qg|md$€3)- (2.13)
0 0

0

3 3
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Now, integrating (2.13) first in ¢ and then in 2/, we can derive from the
result and from (2.8), (2.10) the following estimate

0 5/4 .
/ dz’ / (/ |qf’3|mdm3) "dt < C(p)Ap. (2.14)
b(5/4) —(5/42 0

It remains to use the first equation in (2.3) which, together with (2.9) and
(2.14), gives us the required estimate for d,v§

0 5/4
/ dx’ / ( / |6tv§|mdx3) "dt < C(p)Ay. (2.15)
bG/1) (/02 0

Now, combining estimates (2.4)—(2.6), (2.9), (2.14), and (2.15), we find
100 im0 (574) + V208 0 572) F IV G 04 5/0) < C0) Ao

The latter estimate tells us that, for each positive g, v isin W41 (Q4(5/4))
and ¢¢ is in W9, (Q+(5/4)). So, we may apply Proposition 1 from [1] and
get the following uniform bound

10602 lm,n, 04 (9/8) + V>V .m0y (9/8) F IV lm,n, 04 (9/8)

< c(man)(||vg||m,n7Q+(5/4) + ||VUQ||m,n7Q+(5/4) (216)
G, 0r5/4) + 1 llmn 04 (5/4))-

The right hand side of (2.16) is bounded by ¢(m, n)AO% uniformly in o > 0.
Tending o to 0, we show that v € W2 (Q1(9/8)) and ¢ € W15, (Q+(9/8))
and that they satisfy required estimate (1.11). Lemma 1.1 is proved.
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