3aluCKu HAYIHBIX
cemuuapos IIOMU
Tom 370, 2009 r.

S. I. Repin

ESTIMATES OF DEVIATIONS FROM EXACT
SOLUTIONS OF VARIATIONAL PROBLEMS
WITH LINEAR GROWTH FUNCTIONALS

ABSTRACT. In this paper, we derive estimates of deviations from exact
solutions of variational problems with linear growth functionals. Since
original variational problem may have no minimizer in a reflexive Ba-
nach space, the estimates are presented in terms of the dual problem. We
prove the consistency of these estimates and obtain their computationally
convenient forms.

Dedicated to the jubilee of dear Nina Nikolaevna Uraltseva

1. INTRODUCTION

Variational problems with linear growth functionals arise in the theory
of nonparametric minimal surfaces and in closely related mathematical
models of capillary surfaces (see, e.g., [2, 3, 6, 10, 11]). Certain models
in the theory of elasto-plasticity also lead to energy functionals having
linear growth with respect to components of the strain tensor (see, e.g.,
[9, 16, 36]). Usually, functionals with linear growth are coercive only on
nonreflexive functional spaces and generate non-uniformly elliptic bound-
ary value problems [14]. In these problems, limits of minimizing sequences
may belong to a space that is essentially wider than the original (energy)
space. This fact makes primal variational problems incorrect and neces-
sitates a certain mathematical procedure (relaxation) in order to obtain
a well posed mathematical problem (see, e.g., [2, 32, 33, 34, 35, 36]). In
some cases (e.g., in the nonparametric Plateau’s problem), relaxation is
reduced to reconsideration (weakening) of main boundary conditions but,
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in general, relaxed problems are more complicated and operate with func-
tionals defined on spaces of summable functions, derivatives of which are
bounded (Radon) measures.

Problems with convex linear growth integrands belong to one of the
most complicated classes of convex variational problems. Therefore, it is
not surprising that the approximation theory and numerical methods de-
veloped for them differ from standard approaches typical, e.g, for problems
with quadratic functionals. This short paper has no room to present a sys-
tematic overview of the results obtained in this field. We only note that
a priori rate convergence estimates for problems associated with perfect
plasticity can be found in [4, 7, 19, 21, 22, 23, 33, 31]. Readers will find
some other results related to approximation of variational problems with
linear growth functionals in [13, 12, 17, 20].

In this paper, we are concerned with a posteriori estimates that mea-
sure the distance between exact and approximate solutions to boundary
value problems and create a mathematical basis of reliable quantitative
analysis. Unlike asymptotic a priori error estimates, these estimates are
indeed computable and provide a realistic presentation on the quality of
an approximation solution.

For a wide class of convex variational problems, estimates of deviations
from minimizers has been derived in [24, 27, 28, 30]. However, the tech-
nique used in these and some other publications exploits uniform convex-
ity of the corresponding energy functional and, therefore, is unapplicable
to problems with linear growth functionals. Moreover, since the original
variational setting may have no minimizer, the question about that how
to select a suitable error measure and formulate error control problems
should be a matter of special investigation. Probably, above mentioned
difficulties inhibit the development of a posteriori error analysis for the
class of problems under consideration. In particular, the author is un-
aware of publications that contain a consequent investigation of problems
with linear growth functionals in this context and present computable and
guaranteed upper bounds of the distance to the exact solution. The goal
of the paper is to fill up this gap at least partially — by deriving a posteri-
ori estimates for a model problem (2.1) generated by the functional J(w)
having linear growth with respect to |Vw|.

We note that problem (2.1) can be viewed as a simplified model of the
vector-valued variational problem arising in the Hencky plasticity theory.
It has similar properties, namely the original problem may have no min-
imizer but the corresponding dual problem (Problem P*) is well posed
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provided that the so-called limit load assumption holds (violation of this
assumption means that both primal and dual problems have no sense).
Therefore, it is natural to derive error estimates in terms of the dual prob-
lem. Lemma 3.2 presents the first form of the error majorant. It consists of
two terms, one of which can be easily computed. Another term is defined
as infimum of a certain functional on the set K* HQ}, where K™ is the unit
ball in L>°(Q, R?) and @7} is the set of vector-valued functions equilibrated
with f. Finding a guaranteed and realistic upper bound of this quantity
presents a certain problem, which to the best of our knowledge has not
yet been solved. Lemma 3.3 shows a way of solving this problem. It esti-
mates the quantity (infimum) throushout a weak norm of the equilibrium
equation residual and limit load constant p. The main result is presented
by Theorem 3.1, which gives an upper bound (majorant Mg) of the dif-
ference between the exact dual solution p* and any function ¢* € K*. It
is proved that the majorant vanishes if and only if y* coincides with p*.
Computable forms of the error majorant are discussed in Section 4.
They are based on Lemmas 4.1 and 4.2. Lemma 4.1 yields a computable
form of the error majorant, which contains only the constant in the

o

Wbttt < L' embedding inequality. In Lemma 4.2, we assume that Q is
either convex or can be decomposed into a finite number of convex sub-
domains. Here, we use an analog of the Payne-Weinberger inequality for
convex domains [18] that was recently proved in [1]. Then, the majorant
contains no constants other than p and simple geometrical characteristics
(diameters) of the domain (subdomains).

2. VARIATIONAL PROBLEM

We consider variational problems generated by the functional
J(v) = /g(VU) dv — / fude. (2.1)
Q Q

Here Q is a connected bounded domain in R? with Lipschitz continuous
boundary 99 and g(n) : R? — R is a convex differentiable integrand
having linear growth with respect to |rj|. More precisely, we assume that

eln| —c1 < gn) < [nl + ca,

where ¢; and ¢o are positive constants and | . | denotes the Euclidean
norm of a vector. Also, we assume that f € L>(Q) and ug € V := H*(Q2)
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is a given function. By Vj we denote the subspace of V' containing functions
vanishing on 0 and define the affine set

Vo+up:={veV|v=w+uy, we Vy}.

Originally, the variational problem (which is called Problem P) consists of
finding u € Vy + up that minimizes the functional J on Vj + ug. Problems
related to nonparametric Plateau’s problem (and close problems related
to surfaces with prescribed mean curvature and capillary surfaces) are
associated with the choice g(n) = /1 + |5|?. In this paper, we consider
a somewhat different scalar valued problem that mimics the structure of
the Hencky plasticity variational functional. We set

1,2 <
9(77):{ 517l 1 Inl_l'
Inl—35 Inl>1

It is not difficult to see that the functional .J is not coercive on V4 + ug.
Moreover, it is not coercive on any other suitable reflexive Banach space.
In view of this fact, Problem P may have no minimizer. For varia-
tional problems with linear growth functionals, such a situation is typ-
ical because the corresponding minimizing sequences may have no limit
in Vy 4+ up- In general, limit functions belong to a wider functional class
of summable functions, which first derivatives are bounded measures (i.e.,
the problem should be reformulated in the space of the functions of
bounded variations BV (2)). Therefore, mathematically correct settings
are usually obtained within the framework of the so-called relazed vari-
ational problems (see, e.g., [10, 11, 32, 34, 35] and other references cited
therein). The latter problems posses the same exact lower bound as origi-
nal variational problems, but usually are too abstract to be convenient for
the quantitative analysis. Hopefully, both (original and relaxed) problems
have the same dual problem, which (under some reasonable assumptions)
is solvable and represent the solution in terms of physically meaning-
full quantities (e.g., for problems in elastoplacticity in terms of stresses).
Henceforth, we call it Problem P*.
In our case, the dual problem is to find p* € K* N Q7 such that

I"(p*) = sup / (Vuo N % | ¢* |2 —fuo) , (2.2)

¢ €K*NQ3; J

where
K'={q¢"eQ" | |q*(@x)|<1forae ze},
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Q* denotes the space of square summable vector valued functions
Ly(92,R?) endowed with the norm || . ||2,0, and

Q*}:{q*EQ*H/q*-dew:/fwdewEVO}.
Q Q

Define the function
L |72 if |7]<1
* 2 — n
T) = , TeR™
g°(7) { +00 it 7> 1

e Then, an equivalent formulation of Problem P * is as follows:

I*(p*) = sup I"(q"), (2.3)

7 €Q}
where
Fa) = [ (Vao-a =g - fuo) o

Q
Our subsequent analysis is based on two principal facts that follow from
the general theory: (a) Problem P* is uniquely solvable provided that
f satisfies some additional conditions known as ”limit load hypothesis”
and (b) exact upper bound of Problem P* coincides with the exact lower
bound of Problem P if these two quantities are finite.

As it is mentioned in (a), well-posedness of Problem P* requires addi-
tional assumptions that come from the natural requirement that the set
K* N Q7% is not empty and has internal points. However, this fact may be
difficult to verify and, therefore, it is usually replaced by another condition

inf / |[Vw | de=p>1 (2.4)
weVp

| fwdz=1

Q

From (2.4), it follows that

/fwd:v < l/|Vw|dx Yw € Vp. (2.5)
Q a Q
It is easy to see that (2.5) guarantees that

infP > —oo. (2.6)
The functional —I* is strictly convex and coercive on Q™ and K*NQ7} is a

convex closed subset of a reflexive space Q*. Therefore, existence theorems
known in the calculus of variations (see, e.g., [5]) yield the following result.
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Theorem 2.1. Let all made above assumptions on the properties of the
domain 2 and of the function f hold. Then Problem P * has unique solu-
tion p* € K*N Q;‘c and
I"(p*) = inf P. (2.7)
Theorem 2.1 suggests the idea that for problems with linear growth
functionals errors of approximate solutions should be measured in terms
of the dual variational problem. We note that a priori rate convergence
estimates in terms of dual variational settings has been obtained in [7, 22,
23, 32]. In [26], a posteriori error estimates has been derived for a class
of nonconvex variational problems. The corresponding estimate was also
presented in terms of a dual variational problem. However, the structure
of the dual problem considered in that publication was essentially simpler
than (2.3) because the minimization set did not involve pointwise restric-
tions. In this paper, we show a way to overcome this difficulty and obtain
computable and guaranteed error bounds for the problem in question.

3. ERROR ESTIMATE

Henceforth, we assume that y* € K* is an approximation of the exact
dual solution p* and derive computable upper bound of p* — y*. The cor-
responding result is formulated in Theorem 3.1. The proof of this theorem
is based upon Lemmas 3.1-3.3 below.

Lemma 3.1. For any v € Vy + ug and any ¢* € K* N Q} the following
estimate holds

5l ~p'lse < J) - I'() (3.1)
Proof. For any ¢* € K* N Q7}, we have
0 < I"(p*) = I'(q")

(w0 =)+ 510 P =5 1) o
Q

1 * * * * * * *
=glle —p ||§,Q+/(Vuo-(p —q")+p" - (¢" —pY)) da.
o (3.2)
Set ¢* = Ao* + (1 — \)p*, where ¢* € K* N Q} and X € [0,1]. Then, we
obtain the inequality
]' p * * * * *
0< Xl = p g + ) [~ Vu): (0"~ ) da,
Q
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which shows that

/(p* ~Vug) - (0" —p)de >0 VYo' € K*nQ;. (3.3)
Q

Now (3.2) and (3.3) yield the estimate

1 * * || 2 %[k %[ % * * *

5 lle —p'l5q < I"(p") - I'(¢") Vq" € K*NQ7, (3.4)
which together with (2.7) infers the desired relation

1 * * . * [ %
sl —lg < fP - I'(q")
< J) - I"(¢") Yg" € K*'NQ}, veVy+u. (3.5)

Remark 3.1. This estimate can be viewed as a generalization of Mikhlin’s
estimate derived in [15] for variational problems with quadratic function-
als. However, (3.1) is valid only for rather special functions ¢*, which
satisfy simultaneously the pointwise condition | ¢*(z) |< 1 and the equa-
tion
divg* + f=0.

In real computations such type functions are difficult to construct, so that
the estimate (3.1) has, on the whole, a theoretical meaning only. Below,
we show a way to overcome this drawback and derive estimates that are
valid for a much wider class of approximations.

Lemma 3.2. For any y* € K* and 8 > 0, the following estimate holds

1+p

3 (D(Vv,y*H inf p(v,y*,q*,ﬁ)>, (3.6)

Ly =2
2 2,0 = g*eK*NQ}

where
D(n,n*) = /(g(n) +9"(n*) —n-n*)dw

Q
and
p(v,y*, 4", B)
Vv * * * 1 +ﬁ * *
— [ (e (70l Vet (70 =5 )" =y ot 52 = .
Q (3.7
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Proof. For any positive 3, we have
* * 12 * * 12 1 * * (12
v = ple < A+ A1y~ Ba+ (143 ) I =5
By (3.5) we obtain

= r < 0 -+ S U0 - 68
Since
I0) - 1@) = [(@(T0) +9°") - To-y') da
Q
+/Vv-(y* —Q*)dw+/(g*(q*) —g"(y")) dz
Q Q

and y* € K*, we find that

IO =10 = DVoy )+ [ (Vo) =) dot g [ 10" da
Q Q

= D(Vu,y )+ / T (|V’U| - ].)@ dx
Q

* * * ]‘ * *

+ [ 0 -9 @ —aydet g [l e

Q Q

Combining (3.8) and (3.9), we obtain

1+8
B

where p is defined by (3.7). Since ¢* is an arbitrary function in K* N Q%

we arrive at (3.6). O

1 * * || 2 * * %
Sy —p 5.0 < (D(Vu,y*) + p(v,y", 4", 8) ) s (3.10)

Remark 3.2. If y* € K* N @} then (3.6) implies the estimate
1 2 .
- * ok < * )
5 " =p"llz0 < vt D(Vo,y7), (3.11)

which can be considered as a certain generalization of the hipercircle error
estimate written in terms of the dual problem.
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Lemma 3.3. Letn € L*'(Q,R%), y* € K*, and > 0. Then

*\ L : . * % E * o %|2
o) = ink o [0 =) 4 Gl e
Q
2ru(y”) 2r,(y*)*k
< e nlhne + w7 a1, (312
T T A D)
where
ruly’) = oyl divy + 1, (3.13)
Jy* - Vw — fw)dz
| divy* + f] := sup 2 (3.14)

wevo J |Vw|dz ’
Q

and p is the constant defined by (2.4).

Proof. For any y* € K* and v € V + up we define £, 4« (¢*,w) : K* x
Vo — R as follows

* * * K * * *
Loy (g, w) 12/(77-(11 —q)+§|y — ¢ P+ fw—Vw-¢*)dz.
Q

e It is easy to verify that:

o(y*) = inf sup L, ,-(q",w).
€K wev,

Moreover,

a) for any ¢* € K* the Lagrangian L, ,-(¢*,w) is an affine continuous
function,

b) for any w € Vy the Lagrangian ¢ — L, ,-(¢",w)) is a convex,
continuous, and coercive function,

c) the set K* is a convex, closed and bounded subset of Q*.

In view of (a)—(c) and known saddle-point theorems (see, e.g., [36]),
we conclude that

= sup inf L, ,-(¢",w). 3.15
p we‘% greks Y (¢, w) ( )
We set
Vw :
* * 1 * * * [Vw| if |vw| > 07
=Qupw = 7T +ar), T =
= tow =1, W ) {0 if [Vw| =0,
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where « is a positive real number. Since |7, [y*| < 1, we find that g, ,, €
K*. Then

* 6% * * * * 20(
— = —_ — <
Qoyw — Y Ha(r YY), laaw — Yl < )

Since 7 - Vw = |Vw|, we have
V- gt ® V| + gV
w - = — w _ . w
fow = 140 1+a’

Hence,

* * K * * p
/(77- W = o) + 5l — @ )de
Q

< Inlhally” = % wlloog + = ||y* S

2k02(Q)
— (3.16
< 2o+ 228 (30
and
lgf(* Loy (g7, w) < Loy (g0, W)
2« 2Ka
- = 2B 1) + 9,y
1+ ||77||1Q+ (1+a)2| | + 9, y™, w),
where
«
I, y*, w) / w——y Vw—H—a|Vw|)dx

1
:/<_1+a|vw|_1+a( V- fw)Jrwa)

Q

sup 1nf Ly (g, w) <
weVy 4

20 202(2 + )
< @ + Q] + 0] 3.17
< 1Tta lnll1,0 + TEE 1] 5250 (,y",w), (3.17)
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By (2.5) we have

and we conclude that the quantity | divy*+ f| (cf. (3.14)) is finite. More-
over,

1
1+«

1
/(y* -Vw — fw)dzr| < 1+—a| divy* + f]| /|Vw|dx.
o) o)

Using (2.5) again, we find that

« «
de|] < —— dz.
rralf ot < [ Ve
Q Q

Hence,

sup Y(a,y*,w)
weVp

divy* 1
< sup /(l vy” + /] + (— - 1)) |[Vw|dz .
wevo | l+a l+a\u (3.18)

This upper bound is equal to zero provided that

1
|de+fHSaQ—;>,

ie., if @ > r,(y*) > 0. It is clear that the value of a should be taken as
small as possible. Therefore, we set a = r,(y*) and arrive at (3.12). O

Corollary 3.1. Lemma 3.3 implies estimates of the distance between y*
and the set K* N Q%.

First, we assume that y* € K* and apply (3.12) withn = 0 and k = 2,
which leads to the estimate

. 2ru(y”)
di<no-(y*) :=  inf g < 2 /2, 3.19
K+n@; (") peiifg, v —a 2,0 < T3, y*)l | (3.19)
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where y* € K*. In particular, from (3.19), it follows that
drc-ng; (y*) < 2|92 (3.20)

This coarse estimate is pretty obvious. Indeed, by the limit load assump-
tion K*N @y # o, so that at least one ¢* € K* N Q) exists. At almost
all x € Q the quantity |y* — ¢*| is lesser than 2, wherefrom we deduce
(3.22).

If f =0 then r,(y*) = ro(y*) = | divy*| and we find that

21Q"/? | divy”|

14 | divy*| ;

drnqy(y") <
Let y* ¢ K*. Then we introduce §* € K* by the relation
y*(z) [
7' (z) = { e i @l > L
y*(x) if yr (@) <1
and arrive at the estimate

20"

2
diong; (¥") < (1571 = Dg 20 + o1 | divg™+fl,  (3.21)

where (z),, denotes positive part of z.

Theorem 3.1. Let the assumptions of Lemmas 3.2 and 3.3 hold. Then

]‘ % * %
5 v =0 < Mo(y",v. ), (322)

where v is an arbitrary function in Vi + ug and

. _1+p . 2ru(y*) .
Mg(y™,v,B) = T(D(V%Z/ ) + #u(y*)”g (Vo) = y*|1,0
2r,.(y*) 2r2 (y*) (1 + B)
Tyl 1901 = Vs o+ 355 19),

This majorant is consistent, i.e.,

inf M@(y*avaﬂ) :07

veVo+uo
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if and only if y* = p*.
Proof. We set np = \§Z\ (Vo] = 1)y + ¢'(Vv) — y* and apply (3.12).
Obviously,
InllLe < [ (IVv] = Dg llne + lg'(Vo) —y*[l1,e < +oo.
Now (3.6) yields the majorant Mg in the above presented form.

It remains to prove the consistency of Mg. Let

inf  Mg(y*,v,5) =0.
ve%/rol+u0 @(y v B)

Then, there exists a sequence {vy} € Vp +ug such that Mg (y*,vi, 8) — 0.
This fact means that y* € Q} and D(Vuy,y*) — 0. Hence,

0049 ) = Vaory* — Fon—ua))de = Jon) ~I*(4) — 0 (3.29)
Q
and we conclude that y* coincides with the unique solution p* of Problem

P
Finally, let {vr} € Vp be a minimizing sequence in Problem P. Since
ru(p*) = 0 and

D0 = [(6(Ven) +°07) ~ Voo »° — Flun — o)) de
Q
= J(v) = I"(p*) = J(vg) —inf P -0 as k— +oo,
we see that for any 8 > 0

inf Mg (p*,v,8) =0. O
ve%/IolJruo éD(p v ﬁ)

Remark 3.3. If y* € K* N Q7, then r,(y*) = 0. Let {v} € Vp be a
minimizing sequence in Problem P and (3 — +o00. Then

kl{ffoo Mg (y™, v, Br)

= k11>1+noo J(vg) + /(ka —y" - Vu)dz » + §||Z/ 13,0
Q

* * * ]‘ *
=10+ [0 =y Vunde + 3" B
Q
* * * 1 * * |2
= [(Vuo—p")-(p" —y )dw+§lly -0
Q
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Since p* — y* € ), we find that

inf Me(y",0,0) = 5lly" —» IIE,QS/(Vw—p )+ (p" —y")d,

veVp+ug
B>0 Q

e where w is any function in Vy + ug. From this relation it follows that if
Problem P has a solution (so that p* is representable as the gradient of a
function from Vp +wp) then the majorant has no gap and give values arbi-
trarily close to the true error provided that v and § are properly selected.
In the general case, this may be not true. However, such a situation is
quite predictable and typical for strongly nonlinear problems.

Remark 3.4. For y* € K* the functional D(y*, Vv) has the form

y* — Vo |? if |Vou|< 1,

v P+ Vol -1 —-Vo-y* if [Vul|> 1
It is easy to see that D(n,n*) > 0.

Assume that that D(y*,Vv) = 0. If |[Vv| < 1, then y* = V. If
|Vu| > 1, then the second branch should be considered. We represent
the corresponding relation in the form

1 2 Vo Vo
1y P2yt = 1 . . 27 1) =0.
2(Iyl y |vv|+>+(|w| y Vv)+(y ol ) 0

Since |y*| < 1 the latter equality may hold only provided that all three

terms in round brackets (which are nonnegative) vanishes. It is possible
if and only if y* = ‘g—z‘. Hence, we arrive at the conclusion that the

compound functional vanishes if and only if

(v Vo if |Vo|< 1, -
v =g(Vo) = oy if [ Vo> L (3.24)

In other words, the condition D(v,y*) = 0 means that Vv and y* are
joined by the nonlinear constitutive relation that holds for the exact flux
p* and the minimizer of the primal variational problem (if the latter ex-
ists). Thus, we conclude that if Mg(v,y*,8) = 0, then both primal and
dual problems are solvable and v and y* coincide with the respective exact
solutions.
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4. COMPUTABLE BOUNDS OF 7, (y*)

To have a fully computable estimate, we suggest a way of estimating
| divy* + f| which enters r,(y*). In the first estimate, we assume that y*
belongs to the set

Hoo(Q,div) := {y* € L*=(Q,R?) | divy* € L=(Q)}.
Lemma 4.1. Ify* € K* N Hoo(Q,div), then
| divy” + f| < Coldivy” + flle,0, (4.1)

where Cq is the constant in the inequality

w10 < Col|Vwl g, Yw € Vp. (4.2)
Proof. We have
gj;(y* -Vw — fw)dz g{(div y* + flwde
wevy  JIVelds T udl,  JTVwlds
[ divy” + fllo [ wldz
< sup f|Vw|d§ < Colldivy” + fllec,0- O
o)

If I' = I'y, then Co < Cg, where 2 C Q. Since for some (e.g., for
square or circle) the constant Cg can be found analytically, the estimate
(3.22) holds with

ra) = L8 | divy” + Flc.
w—1
However, in more general cases (e.g., for problems with mixed Direchleét-
Neumann boundary conditions) finding an explicitly computable upper
bound of Cy may be an uneasy task. For this case, we suggest another
way. It is based on decomposing (2 into a collection of convex subdomains
and using an analog of the Payne-Weinberger inequality (see [18] where it
is derived as a version of the Poincaré inequalitiy). We note that estimates
of deviations from exact solutions of such a type were earlier derived for
linear elliptic problems in [30], variational inequalities in [30], and some
classes of generalized Newtonian fluids in [8].
In our analysis, we exploit the following result (see [1]):
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Theorem 4.1. Let w be a convex domain in R? and diam (w) denote the
diameter of w. For any w € V such that

1
{[w}}»w.:mw/wdwzo,

we have the following analog of the Poincaré inequality:

diam(w
o < T2y g, (4.3)
— N __
Let Q = |J Q;, where ; are open convex sets with positive d-

i=1
dimensional measure.

Lemma 4.2. Assume that y* € K* N Hyo (9, div) and

fdivy* + f}g, =0, Vi=1,2,..,N. (4.4)
Then
vy + £ < {5 dim(@]divy” + Sl | (45)
Proof. We have
J(y* - Vw — fw)dz évj Jo, (divy* + fludz
S 1 TR A || TP

S o divy' + Fw— {whg,)de
- weVo (j;|Vw| dx

N i . .
5 Sl divy” + flloos Vel
< sup &
- we‘% J |Vw|dx
Q

and (4.5) follows. O
By (4.5) we find another form of r,(y*), namely

" diam(€2;)
ru(y ) - 4 {T

divy* ,
R [divy +f||oo,szz}



148 S. I. REPIN

REFERENCES

G. Acosta and R. Duran, An optimal Poincaré inequality in L' for convez domains.
— Proceesings of the American Mathematical Society 132 (2003), 195-202.

. G. Anzellotti and M. Giaquinta, FEzistence of the displacements field for an

elastic-plastic body subjected to Hencky’s law and von Mises yield condition. —
Manuscripta Math. 32 (1980), 101-136.

. M. Bildhauer, Convex Variational Problems. Lecture Notes in Mathematics 1818,

Springer, Berlin (2003).

. M. Bildhauer, M. Fuchs, and S. Repin, The elasto-plastic torsion problem: a pos-

teriori estimates for approzimate solutions. — Numer. Functional Analysis and
Optimization 30 (2009), 653-664.

. I. Ekeland and R. Temam, Conver Analysis and Variational Problems. North—

Holland, New-York (1976).

6. R. Finn, Equilibrium capillary surfaces. Springer, New York (1986).

7. J. Freshe and J. Malek, Asymptotic error estimates for finite element approzima-

10.

11.

12.

13.

14.

15.

16.

17.

18.

tions in elasto-perfect plasticity. — Preprint (1994).

. M. Fuchs and S. Repin, Functional a posteriori error estimates for variational

inequalities describing the stationary flow of certain viscous incompressible fluids.
— Math. Mathematical Methods in Applied Sciences (M2AS), to appear.

. M. Fuchs and G. A. Seregin, Variational methods for problems from plasticity theory

and for generalized Newtonian fluids. Lect. Notes in Mathematics 1749, Springer-
Verlag, Berlin (2000).

M. Giaquinta, G. Modica, and J. Soucek, Functionals with linear growth wn the
calculus of variations. — Comm. Math. Univ. Carolinae 20 (1979), 143-171.

E. Giusti, Minimal surfaces and functions of bounded variation. Birkhauser, Boston
(1984).

C. Johnson and V. Thomee, Error estimates for a finite element approzimation of
a minimal surface. — Math. Comput. 29 (1975), 343-349.

C. Jouron, Résolution nummeérique du probleme des surfaces minima. — Arch. Rat.
Mech. Anal. 59 (1975), 311-341.

O. A. Ladyzhenskaya and N. N. Uraltseva, Local estimates for gradients of solutions
of non-uniformly elliptic and parabolic equations. — Comm. Pure. Appl. Math. 23
(1970), 677-703.

S. G. Mikhlin, Variational Methods in Mathematical Physics. Pergamon, Oxford
(1964).

P. Mosolov and V. Myasnikov, Mechanics of rigid plastic bodies. Nauka, M. (1981)
(in Russian).

P. Neittaanmaki, S. Repin and V. Rivkind, Discontinuous finite element approxi-
mations for functionals with linear growth. — East-West J.Numer. Math. 2, No. 3
(1994), 212-228.

L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex
domains. — Arch. Rat. Mech. Anal. 5 (1960), 286-292.



ERROR ESTIMATES FOR PROBLEMS WITH LINEAR GROWTH 149

19.

20.

21.

22.

23.

24.

25.

26.

27

28.

29.

30.

31.

32.

33.

34.

S. Repin, Variational-difference method for problems of perfect plasticity using dis-
continuous conventional finite elements method. — Zh. Vychisl. Mat. i Mat. Fiz.
28 (1988), 449-453 (in Russian).

S. Repin, Variational-difference method for solving problems with functionals of
linear growth. — Zh. Vychisl. Mat. i Mat. Fiz. 28, No. 3 (1989), 693-708 (in Rus-
sian).

S. Repin, Numerical analysis of no nonsmooth variational problems of perfect plas-
ticity. — Russ. J. Numer. Anal. Math. Modell. 9 (1994), 33-46.

S. Repin, A priori error estimates of variational-difference methods for Hencky
plasticity problems. — Zap. Nauchn. Semin. V. A. Steklov Mathematical Institute
(POMI) 221 (1995), 226-234.

S. Repin, Errors of finite element methods for perfectly elasto-plastic problems. —
Math. Models Methods Appl. Sci. 6 (1996) 587-604.

S. Repin, A posteriori error estimation for nonlinear variational problems by duality
theory. — Zap. Nauchn. Semin. V. A. Steklov Mathematical Institute (POMI) 243
(1997), 201-214.

S. Repin, Estimates of deviations from exact solutions of variational inequalities
based upon Payne—Weinberger inequality. — J. Math. Sci. New York 157 (2009),
874-884.

S. Repin, A posteriori estimates of the accuracy of variational methods for problems
with nonconvez functionals. — Algebra i Analiz 11, No. 4 (1999), 151-182 (in
Russian, translated in St.-Petersburg Mathematical Journal, 11, No. 4 (2000), 651—
672).

. S. Repin. A posteriori error estimates for variational problems with uniformly
convez functionals. — Math. Comput. 69 (230) (2000), 481-500.

S. Repin, Two-sided estimates of deviation from exact solutions of uniformly elliptic
equations. — Proc. St. Petersburg Math. Society IX (2001), 143-171, translation in
Amer. Math. Soc. Transl. Ser. 2, 209, Amer. Math. Soc., Providence, RI (2003).

S. Repin, A posteriori estimates of the accuracy of variational methods for problems
with nonconvez functionals. — Algebra i Analiz 11 (1999), 151-182 (in Russian,
translated in St.-Petersburg Mathematical Journal, 11 (2000), 651-672).

S. Repin, A posteriori estimates for partial differential equations. Walter de
Gruyter, Berlin (2008).

S. Repin and G. Seregin, Error estimates for stresses in the finite element analysis
of the two-dimensional elasto-plastic problems. — Internat. J. Engrg. Sci. 33 (1995),
255-268.

S. Repin and G. Seregin, Ezistence of a weak solutions of the minimaz problem in

Coulomb-Mohr plasticity. American Mathematical Society Translations, Series 2,
V. 164 (1995), 189-220.

G. Seregin, Variational-difference scheme for problems in the mechanics of ideally
elastoplastic media. — Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985), 237-253.

G. Seregin, On the correct posings of variational problems of mechanics ideally
elasto-plastic media. — Dokl. Akad. Nauk. USSR 276 (1984), 71-75 (in Russian).
Engl. translation in Sov. Fiz. Dokl. 276 (1984), 316-318.



150 S. I. REPIN

35. P. Suquet, Ezistence et reqularite des solutions des equations de la plasticite par-
faite. et C. R. Acad. Sc. Paris, 286 (1978), Serie D, 1201-1204.
36. R. Temam, Problemes mathématiques en plasticité. Bordas, Paris (1983).

St.Petersburg Department ITocTynmiao 28 cernrsabps 2009 r.
of Steklov Mathematical Institute RAS

Fontanka 27, 191023

St.Petersburg, Russia

E-mail: repin@pdmi.ras.ru



