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LOCAL REGULARITY FOR SUITABLE
WEAK SOLUTIONS OF THE NAVIER—
STOKES EQUATIONS NEAR THE BOUNDARY

ABSTRACT. A class of sufficient conditions for local boundary regularity
of suitable weak solutions of the non-stationary three-dimensional Navier—
Stokes equations is discussed. The corresponding results are formulated
in terms of functionals invariant with respect to the scaling of the Navier—
Stokes equations.

Dedicated to Nina Nikolaevna Uraltseva

1. INTRODUCTION AND MAIN RESULTS

Let © C R3 be a domain of class C? and Qr = Q x (0,T). Assume
that I' C 99 is an open subset of the boundary of Q2. We consider the
nonstationary 3D-Navier—Stokes system (NSE) near I':

ov+ (v-Vv—Av+Vp=0

S 0} in Qr, vlrxo,r) =0. (1.1)

In this paper we continue the study of boundary regularity for the
boundary suitable weak solutions of the system (1.1) started in [20, 1].
The main goal of the present paper is to extend the results of paper [2],
on the local Hoélder continuity of a certain class of weak solutions in the
neighborhood of the internal points for the case of points on the curved
part of the boundary.

Our main restriction on the boundary of the domain is the same as
in [20]. Namely, we assume that I' is C*-uniform. This means that any
point of I" has some neighborhood of a fixed radius (which is the same for
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scaling, local boundary regularity.
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all points of I') in which 9§ can be represented as a graph of some C?-
function, and C%-norms of these functions are uniformly bounded with
respect to the points of I'. Let us remind the formal definition for this
property:

Main Condition on I': there exist positive numbers M and Ry depend-
ing only on I' such that for each point z¢p € I' we can choose a Cartesian
coordinate system {y;}?_; associated to the origin o, and some function
ey € C*(KR,) such that

Q(wo, Ro) = QN B(xo, Ro) = { y € B(Ro) : y3 > 0uo(¥1,92) },
(1.2)
©02,(0) =0, Vg,,(0)=0, sup |VZps,| <N. (1.3)

ly’'[<Ro

We emphasize that Main Condition on I' provides the uniform estimate
of C*%- norms of functions ¢,,:

SUp [|®ao llc2(& (ro)) < 3N (1.4)
zo€l

Here and everywhere below we explore the same notation for sets, the
same algebraic notation, and the same notation for functional spaces as
in [20, 1].

List of Basic Notation for Sets: for zy € R?, 29 = (w0, t0), yj € R?,
p > 0 we introduce sets

R3 = {z € R®: 23 > 0},

B(zg,p) = {x € R® : [z — 20| < p}, B, = B(p) = B(0,p),

B+($0,p) = {z € B(wo,p) : 73 > 0}, B; = B+(p) = B+(0,p),

Q(z0,p) = B(wo,p) X (to — p*,t0), Qp) = Q(0,p),

Q" (20,p) = BT (w0, p) x (to — p*,t0), Q1 (p) =QT(0,p),

Q(zo, p) = QN B(xo, p), w(20,p) = Qzo,p) x (to — p*, o),

I, =1(p) =R® x (=p*,0), I} =117 (p) =R} x (—p?,0),

K(yo,p) ={y' e R*: [y’ =i <p}, K, =K(p)=K(0,p),

We denote also by &’Q(zp, p) the parabolic boundary of Q(zo,p), i-e.
9'Q(20,p) = (0B(wo,p) X (to — p*,t0)) U (B(zo,p) x {t = to — p*}).

Algebraic and Other Notation: we use a convention on summation
over repeated indexes. For u, v € R3, A, B € M®*3 we denote

3
UV =UV; = Zuivi, AZB:AijBij, U®’U:(Ui’l}j) EMBXB,
i=1
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Vg = 83—;;, Vv = (vi;), [ =meas Q,

— and — are the weak and strong convergence respectively.

For  C R? and w C R® x R! we denote by [plg and (v),, the spatial and
total averages, respectively. For instance,

[plo = ﬁg{p(w,t) dz, (v), = Ii—luj;v(az,t) dadt.

Notation for Functional Spaces:

o Ly(), Ly(Qr), WF(Y), I/?/qk(ﬂ), W, k() are the usual Lebesgue
and Sobolev spaces, L,(2,RF) is the Lebesgue space of functions
on Q with values in R¥ etc, but (when it is clear from the context)
we shall often omit the tangent space in notation for the spaces of
vector-valued functions,

L4 Ls,r(QT) = LT(O:T; LS(Q))a Ls,oo(QT) = Lo (OaT; LS(Q))a
T 1/r
1 lzi@n = (J 1700 dt)
0

I fllz. (@r) = esssup|| f(-,1)]
te(0,T)

i Wsl,’P(QT) = LT(O:TQW;(Q)) ={u € Ls+(Qr) : Vu € Ls,(Qr)},
lullwzoqp) = lulle, @) + IVullL, .(@r);

o Wi(Qr) = {u € Wi2(Qr) : V?u, G € L, (Qr)},
[“]W;{-:(QT) = [V L..(@r) T [0l =
lullwei@e + w22 @

Under appropriate conditions on 2 (see [9, 10]) existence of weak solu-

tions of the initial-boundary value problem to the system (1.1) is known.

In this paper we study regularity of the so-called boundary suitable weak
solutions. The definition of which is the following:

L.(Q2)

L, - (Qr)» ||U||w3)-j(QT)

We say the pair of functions (v, p) is a boundary suitable weak solution
for the NSE near T, iff

. . 3
ve LW, WL (Qri ), peL:nW,5(Qr),

the functions (v, p) satisfy (1.1) a.e. in Qr, (1.6)
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the the following local energy inequality (LEI) holds near I':

t
/( (y,t)|v(y,t) Izdy+2//C|Vv|2dydT
0

t
go// [ol@¢ + A0) +v-VC(ol? +2p) s dydr — (17)

for a.e. t € (0,7) and all nonnegative functions ¢ € C§°(R? x (0,T))
vanishing near (OQ\TI') x (0,T)).

It is well known that any function v € L (0,T; Ly(f2)) possessing the
property (1.5) can be redefined on a set of moments of time of measure
zero in such a way that v become continuous in time with values in L, ((2)
equipped with the weak topology, i.e for any w € Ly/(2) the function

t— / x,t) ) dx is continuous.

In particular, this means that suitable weak solutions belonging to the
class Loo(0,T; Ly(€2)) have values in L, () for every moment of time. Be-
low we always assume that our suitable weak solutions have this property
from the very beginning.

It is known that the Navier—Stokes equation is invariant with respect
to the scaling.

vf(z,s) = Ru(Rz, R’s), p"(z,5) = R’p(Rz, R’s),

We call this the scaling of the Navier—Stokes equations or, simply, the
natural scaling. In the local regularity theory, functionals that are invari-
ant under the natural scaling play a very important role. Here is a list of
some of them:
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1 1/
C(R) = (ﬁ / o3 dwdt)
w(zo0,R)
1 ‘ 2/3
D@ = (g5 [ - Dlgen P dot)
w(zo0,R)
1 ) 12 (1.8)
E(R) = (R / Vo dazdt) :
w(z0,R)
1 1/2
AR)= (= sup / v|? dx ,
( ) (Rte(—R2+t0,to)A | | )

B*(R)
where zg = (o, tp).
We introduce the additional notation
G = min {limsup,_, A(r), limsup,_, E(r), limsup,_,C(r)},
g = min {liminf, g A(r), liminf,_o E(r), liminf,_oC(r)}.

The main result of the present paper is the following theorem.

Theorem 1.1. Let the pair v,p be a boundary suitable weak solution
of the Navier—Stokes equations in w(zo,r). For any M > 0 there exists a
positive number €(N) with the property that if G < M and g < (M),
then the function v is Holder continuous in w(zo, %).

2. FLATTERING OF THE BOUNDARY AND THE
PERTURBED NAVIER—STOKES EQUATIONS

Let us fix a point g € I' and consider the function ¢ = ¢, given by
(1.2), (1.3), (1.4). We consider the new variables defined by formulas

Y1
z=9(y) = Ys : (2.1)
Ys — p(y1,y2)

The diffeomorphism (2.1) transforms the set Q(zo, Rp) onto some subdo-
main 1 (Q(zo, Ro)) of R3 = {z € R® : #3 > 0}. Note that our assumptions
of I allow to choose Ry sufficiently small, so that

B (R) C (9o, ?)) CBT(2R) forall 2R< R,  (22)
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and, vice verse,
Y HBT(R)) C Q(zo, — 3R ) c Y(BT(2R)) forall 2R < Ry, (2.3)

see [20] for details.

The system (1.1) in Q(zo, Ro) % (0, T') after the change of variables (2.1)
transforms into the system which we call the Perturbed Navier—Stokes
System:

B0+ (0-Vy)o — Ayt +Vyp=0
. in ¢ (Q(zo, Ro)) x (0,T)
Vo -0=0 (2.4)
Be5=0 = 0.

Here & = voyp~", p = potp~! and V,, and A, are the differential operators
with variable coefficients defined by formulas

m:(i_a_@i 9 9% 9 i)

A 5 5 (2.5)
A, = aij(z) 91,01, + bi(w)a_:vi’
where
a11(z) = age(x) =1,
agz() = 1+ (p1)* + (p2)%
a12(x) = ag1(x) =0,
a13(x) = az1(x) = —¢,1, (2.6)
az3(z) = az(z) = —P,2
by () = ba(x) =0,

bs(z) = —p11 — ¢,22.
We remark that the coefficients of system (2.4) depend only on the first
and second derivatives of ¢ but not on the function itself.
After the change of variables in (1.7) we obtain the inequality

/th|vxt|2d:v+2//§|v 0? dxdr

0 B+

= / / {|ﬁ|2 (8t< + A‘PC) +9- Vo( (I8 + 2113)} dz dr.

0 B+ (2.7)
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for a.e. t € (0,T) and all nonnegative functions ¢ € Cg°(B(2Ro) x (0,T)).

3. ESTIMATES OF SOLUTIONS OF THE
PERTURBED NAVIER—STOKES EQUATIONS

First results concerning Perturbed Navier—Stokes equations were estab-
lished in [20] and [1]. Here we collect all necessary results for proving the-
orem 1.1. So, first we consider a boundary suitable weak solution (0, p, )
of the Perturbed Navier—Stokes system in a half-cylinder Q*. We assume
this solution satisfies relations (1.3), (1.4), (1.5), (2.4), (2.7). For R < 1
we introduce four principal functionals

C(R)E(% / |1§|3dazdt)1/3

QT (R)
1 o . 2/3
D(R)E(ﬁ / |P—[P]B+(R)|3/Zd$dt) :
Q*(R)
. (3.1)
B(R) = (g / Vol dedr) "
QY (R)
A(R)E(l sup /|17|2dx)/
R ic(~R2)

Choosing in (2.7) the cut-off function ¢ in the appropriate way we
obtain the following inequality:

A(37f)+E(37f) <c {C(p) +C%(p) +C%(p)pé(p)}' (3.2)

Interpolation inequality provides the estimates:
C(0p) < cA%(8p)E* (8p). (3.3)

In what follows we will refer to results concerning estimates of solu-
tions to Perturbed Stokes system (see [20, Lemma 3.1, Lemma 3.2] or [1,
Proposition 2.1, Proposition 2.2]). The question is that these estimates
were derived under some smallness condition of norms of the function ¢

‘ L
IVollom + 1IViellomr) < > (3.4)
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To satisfy the last condition we perform the trick, introduced in [20] (see
[1, sec. 2] for details). Namely, instead of the functions (0,p, ) for any
R < Ry we can consider three scaled function

0"(z,s) = Ro(Rz, R’s), p"(z,5) = R*p(Rz, Rs),
1
(21, 22) = R@(Rzl;Rzz)-
If (0,p,¢) is a boundary suitable weak solution of the Perturbed NSE in
Q7T (R) then (0%, p%, o) is a boundary suitable weak solution of the same
system in QT i.e. these functions satisfy the system

850™ + (0% - V)% — Ago® + Vepf =0, .
. in Q7,
Vg% =0 (3.5)
6R|23=0 =0,
where operators Ag, Vg are defined via relations (2.5), (2.6) with func-
tions o instead of . From (1.3) and relations V.p®(z') = V,p(z'),
V2ol (2') = RV2¢p(z'), where 2/ = Rz’, and also using Taylor formula we
obtain for any R < Ry

le®lc2) < Rllellc2(k(ry < 3NR.
Therefore if we choose R satisfying the inequality

BNR < ps

then the functions (0%, p&, pf?) satisfy all required conditions to use results
from [1, 20]. For simplicity we will use (9, p, ) instead of (6%, p%, ) in
the rest of the paper.

Next estimate is so-called decay estimates of pressure which was proved

in [1] (see (3.7))
D(6p) < 07 A% (p)E* (p) + 0% |E(p) + D(p) + E* (p) A% (p)|  (3.6))

This inequality contains the product of functionals A and E, in the right-
hand side but for our needs it is more convenient to have an estimate with
functional C' as an additional multiplier.
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Lemma 3.1. Assume 6 € (0,1). Then the following estimate is valid

+

03 [EF (p)AT= (p)C7 (p) + E(p) + D(p)]. (3.6)

Proof. The proof will be done in several steps.
Step 1. By Sobolev imbedding theorem W) (€2) C L3(9) we have

1 R . 2/3 s/ 1 R 1/p
(@ / B — [P+ (ry |/ dw) < cR? p(ﬁ / |Vp[P d:n) .
Bt(R) B+(R)
Therefore
L s _3
P — [P]B+(R)||%,Q+(R) < cR* v ||VP||p,g,Q+(R),
and finally we have
5.3, .
D(R) <cR5» ||Vp||p7%,Q+(R) (3.7)

Step 2. Splitting of pressure. Let us decompose pressure p into two
parts p and p and define functionals

5_3 _

Di(R) = cR3™#[|Vpl, 2 o+ (r)»
5_3 ~

Dy(R) = ¢cR37* ||Vl 3 o+ (>

where p = p+p, 0 = 9+ 0 and (7,p) is a uniquely defined solutions to
the problem

with



82 A. MIKHAYLOV

and (7, p) satisfy the following relations:

oo — A +Vp=0

. 3
: i Q*(F)
V-o=0
¥ ps=0 = 0.

Step 3. Estimate of D;. Using multiplicative estimate (see [20] Lemma
3.1 for details) we obtain

IVDIl,, s o+ () < cll(@-V)Oll, 3 o+ (2
Applying Holder inequality

~ — ~ v 1 3] 2p
1@ N)ollp, g+ (r) < (IVOl2 8+ - [0llg,+r), 0= 5 —p’

and multiplicative inequality

B 3
lvllg,B+(r) < C||U||§,B+(R) : HVUH;,BBHR)’ p= 5 -2

we arrive at
S 4-3 39
16 ¥)ollp,z+ry < el Volly iy - 1013 ey

Then, integrating last inequality with respect to ¢ and applying Holder
inequality we can arrive at

S a o . 4-3
[l (o v)””p,%,QﬂR) < cR% Z||VU||2,Q+(R)

3
2- 2

24
X |‘”||§fQ+(R) : <te(ilg")’ o) ||U||2,B+(R)>

Using last estimates and definition of D; we can conclude that

2

Di(8p) < 837 (E2(0)A(p)* % CF(p).

With p = 18/17 it transforms to

-

Dy (6p) < ™5 E5 (p) A% (p)C% (p). (3.8)
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Step 4. Estimate of D,. Using Holder inequality and definition of Do
we get

5_3 -
D (0p) < c(bp)® 2 [ VDlly,3,0+00)- (3.9)

Then we use estimate for Perturbed Stokes system (see [20] Lemma 3.2
for details. N.B.: there was a gap in the original text, which was fixed
in [26])

. _1_3g—p) . . -
IVBllg 5 ey SB[Vl 5 00 () + 15— Pl 3.0y |-

Since ¥ = 0 — 0, p = p — P, it remains to estimate corresponding norms
of functions 0, 7, p and p.

Using Holder inequality and definitions of E(R) and D(R) me arrive
at

ol

E(R), (3.10)
D(R). (3.11)

. 3_
VOl 2,0+ r) < R?

Wl

R R 3_
1P = BB+ llp, 2.0+ () < R?

Applying Holder inequality and parabolic embedding theorem W;; -
)

qu 3 with ¢ = prp we can conclude that
)

3(@—p)
q

IVoll, s orry SR [[VOllz3 grr) < RH’DHWZ%(Q+(R))

< RI6-V)oll, 5 0t < cRr 5B 7 (R)C H(R) A% (R).
(3.12)
With almost the same technique we can derive that
12— [PlB+(m)llp, 2.0+ (r) < BIVDIp, 2 o+ (r)
< cR» S E* ¢ (R)C% *(R)A*> % (R).
(3.13)

In (3.10) and (3.11) we use multiplicative estimate (see [20, Lemma 3.1]).
Putting (3.8)—(3.11) into the previous inequality we get the following:

IV5ll.5.00 ) < cR™5*% (B(R) + D(R) + '3 05~ (R)A*~ 5 (R)),
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and taking into account (3.7) we can see that the following is valid
Da(0p) <0577 |E(p) + D(p) + E'" 7 CH 4 () 475 (p)] .
With ¢ =9 and p = 18/17 we have:
4 T o1 T
Ds(8p) <6 |E(p) + D(p) + ESCH(p)AT (p)] . (314)

Plugging (3.6) and (3.12) in (3.5) we finally get (3.6).

The next lemma shows that if one of the numbers sup E(r),
0<r<1

sup C(r), or sup A(r) is finite, then so are the others.
0<r<1 o<r<1
Lemma 3.2. Let the pair v, p be a boundary suitable weak solution of the
Perturbed Navier—Stokes equations in Q+. Then the following estimates
are valid:

(1) If sup E(r) = Ey < 400, then there exists a positive constant d
0<r<1
depending only on Ey such that

C¥(r) + A%(r) + D*(r) < d(Bo) [1+ 7} (4°(1) + D*(1))|, (3.15)

(2) If sup C(r) = Cy < +o0, then there exists a positive constant ¢
0<r<1
such that

A2(r) + B2(r) + D(r) < ¢ [e(Co) + 7D} (1), (3.16)

(3) if sup A(r) = Ao < +oo then there exists a positive constant e
0<r<1
depending only on Aq such that

C4(r) + E2(r) + D% (r) < e(Ao) [1 +r(E*1) + D} (1))} . (3.17)

Proof. We begin with proving (3.15). Let us denote f(r) = A3(r)+D3(r),
g(r) = C3(r). Then, using (3.3) and Cauchy inequality we arrive at

3

CP(Bp)< cA (B) B (9p)<c(Bo)8F AF (p)0307 < c(Ey) |64 (p)+07F .
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Using (3.6’) and Cauchy inequality we get

D*(8p) < 9™ E*(p)A%(p) + 8" [E? (p) + D*(p) + E*(p) A% ()]

< c(Fo) [04%(p) +67°] + c(Eo)0" [1 + F(p)] < c(Eo) [0£(p) + 677 .
Using definition of A(p), (3.2), (3.3) we arrive at

4(6p) < 143 (0) < b7t [0%(p) + CH(p) + €

wlw
—
X
=

lw
—
X
=~

[

< o(Bo)0~ [k (p) + A% () + AL ())DF (p)]
< c(Eo) [0 (p) +67°] .
As a conclusion of the three last inequalities we can find that

F(8p) + g(0p) < c(Eo) [0f(p) +07°].

From definitions of A(r), C(r), D(r) we see that conditions of Lemma 5.1
is valid with a =1/2, f =9 and v = 4. Then, by (5.3) we get

F) +9(r) < d(Eo) |r8 £(1) +1],

which ends the proof of (3.15).
Let us prove (3.16). We denote by f(r) = D% (r) and by g(r) = A%(r) +
E?(r). Then by definition of A(r), (3.2) and Cauchy inequality we have

22(6p) <07 22(L) <07 [6(Co) + CoD(p)] < 677e(Co) + 6 D3 ().
Estimation of E?(p) can be done in the same way:

E*(8p) < 67 F*(20) < 67 [e(Co) + CoD ()] < 07e(Co) + 6°D3 (o).

For estimation of D3 (6p) we will use decay estimation of pressure (3.6)
and (3.2):

D% (8p) < 0~ 5 B3 () AR (7)Cs
o [E%(%) +0}(Y) +E%(3{)A%(%)Cﬂ
7 1 1 %+%
< b i {c(co) + COZDE(p)}
+ ot ({e(Co)+CE D2 )} +D20) + et {etcn) + D2}
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As a conclusion of three last inequalities we can derive that

£(8p) + g(8p) < B2 F(p) + c(Co)0 2.

From definitions of A(r), C(r), D(r) we see that conditions of Lemma 5.1
is valid with a =1, 8 = 28 and y = 2. Then, by (5.3) we get
f(r) +9(r) <cl[rf(1) +c(Co)]

which ends the proof of (3.16).
It remains to prove (3.17). Let us define f(p) = D2 (p) + E2(p), g(p) =

C3(p).
By (3.3) and definition of E(p) we arrive at

2

C#(6p) < cAR(0p) B (0p) < c(A0)0™ ¥ % (p) < c(A0)[0*f(p) + 072,
By (3.4’), (3.2) we have the following inequalities:

) 4 o [B(p) + DE () + A()E(0)

< o240 {C2(p) + C*(0) + C(p)D(p)} + e A0)[821 (p) + 1]
(40)07% { E(p) + B () + B} (p)D(p) } + c(A40) 621 (p) + 1]
(40)[6 F(p) + 6~

D (0p) < et~ A

IN

IN

By definition of E(p) and repeating the arguments of last estimates we
can arrive at

B(0p) < e B(0) < (408 (p) + 0]
As a conclusion of three last inequalities we can derive that
FOp) + g(6p) < c(A0)6” f(p) + c(Co)o~>*.

Then, applying Lemma 5.1 with a = 1, # = 34 and v = 2 we can see that

f(r) +9(r) < e(Ao)[rf(1) + 1],

which end the proof of Lemma 3.2.
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4. PROOF OF THEOREM 1.1

We will follow the scheme presented in [2]. The key ingredient of the
proof of Theorem 1.1 is the following proposition.

Proposition 4.1. Let the v, p, ¢ be a suitable weak solution of the Per-
turbed Navier-Stokes equations in Q. For any M > 0 there exists a
positive number 1 = 1 (M) with the property that if

sup E(r)=Ey <M (4.1)
and
gr, =min{E(r,), A(r.),C(r«)} < e (M) (4.2)

for some r, € (0,min{1/4, (A3(1) + D3(1))~2}), then z = 0 is a regular
point of v (i.e., function v is a Hélder continuous in a small parabolic
neighborhood of z = 0).

Proof. Assume that the statement of the proposition is false. Then there
exist a positive number M and a sequence v, p,, @, of suitable weak
solutions of the Perturbed Navier-Stokes equations in QT such that for

anyn € N

1 1/2
E(vp,r) = (; / |V, |? dwdt) <M (4.3)

Q+(r)
for all r € (0,1] and

1
9r, (Unapn) =min {A(Un: Tn): C(Un: Tn): E(Un: Tn): D(Un: Tn): } < ﬁ (4-4)

for some
7y € (0, min{1/4, (A°(vn, 1) + D*(v,,, 1)) 72}, (4.5)

but z = 0 is a singular point of v,,. Here we have used the notation

1 1/3
C(vn,r)z(r—2 / |vn|3da:dt) )

Qt(r)
1 2/3
D(UTHT) = (’I"_Z / |p’n - [Pn]1§+(7,)|3/2 dﬂ? dt) y
Qt(r)
/1 , . \1/2
Avp,r) = (;te(s_ugm / [vy]| da:) .

B*(r)
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On the other hand, since z = 0 is a singular point of v,,, there exists a
universal positive number ¢ such that

C(vn,7) + D(pp,r) > >0 (4.6)

for all 0 < r <1 (see, for example, [20]). We emphasize that (4.6) is valid
for any natural number n.
By (3.15) from Lemma 3.2 and (4.5) we find the estimate

CB(vn,r) + Ag(vn,r) + D3(pn,r)

<d(r) |1+ (—) PE (A3 (0, 1) + D (pn 1)) | < do(2),

Tn

is valid for all r € (0,r,).
Let us now scale our functions v,,, py, ¢, so that

. . . 1
Un(ya 5) = rnvn(rnyaris)a qn(ya S) = Tipn(rny;riz?) Qon(y) = T_‘p(rny)
n

By the invariance of the functionals and equations with respect to the nat-
ural scaling, we have the following: wu,, ¢,, @, is a suitable weak solution
of the Perturbed Navier-Stokes equations in QT for each n € N

E(uy,r) <M (4.8)
for all 0 < r <1 and for each n € N

Gra (UnsPn) = 91(tn,qn) — 0 asn — oo (4.9)
C(tn,r) + D(gqn,r) >>0 (4.10)

forall 0 < r <1 and for each n € N
C3(un,r) + Ag(un,r) + Dg(qn,r) < do(M) (4.11)

for all 0 < r <1 and for each n € N.

Now let n tends to oco. First of all, in order to pass to the limit in
non-linear terms, we need to prove strong compactness. To this end, we
estimate the weak derivative of v with respect to ¢ in the standard way
using the Peturbed Navier—Stokes equations.
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Further, the limiting functions u, ¢, ¢ is a suitable weak solution of the
Perturbed Navier—Stokes equations in QT, and

C?(u,r) + A*(u,r) + D*(q,r) < do(M). (4.12)

From (4.9) it can be involved that there is a subsequence {ny}3>, such
that one of the following

A(up,,1) — 0, (4.13)
E(up,,1) — 0, (4.14)
C(up,,1) — 0 (4.15)

is valid when k£ — oo.
The functions u,, and g, satisfy the decay estimate (3.6). Then from
(4.11) we have
_7 .1 i 1
D(an ) ’I") S cro 6 E5 (unk7 1)A12 (unw 1)04 (unw 1)
+ 15 [EF (tny, 1)) AT (thny, D)OF (thg, 1) + Bty 1) + Dy, 1)]
< er 8BS (up,, 1) AT (up,, 1)CF (up, , 1) + dy (M)r5.

IS

Passing to the limit with respect to k& — oo and using (4.13)—(4.15) we
obtain the following

lim supD(gp, ,r) < dl(M)r% < % (4.16)
k— o0
The last inequality is valid if we fix sufficiently small r.
Now, using interpolating inequality (3.3) and (4.13)—(4.14)
Oty 1) < €A% (U, 1)E? (uy,, 1) (4.17)

we get that in any case C'(up,,1) — 0. Then we have the same conver-
gence for fixed r. Therefore

lim supC(uy, ,r) < =. (4.18)

k—oco

N ™

Inequalities (4.16) and (4.18) together lead to contradiction with (4.10)
therefore we may conclude that the statement of Proposition 4.1 is valid.
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Proposition 4.2. Let v, p, ¢ be a suitable weak solution of the Perturbed
Navier—Stokes equations in Q. If

1
lim supE(r) < om= M (4.19)
r—0
and
1
g < Esl(m) =e1 (M), (4.20)

then z = 0 is a regular point of v.

Proof. By condition (4.19), we can find a number 7 € (0,1) such that

sup E(r) <m.
0<r<r;

and then we can scale v, p and ¢ so that

. . . 1 .
U(I,t) = Tl’l}(Tlﬂf,Tft), Q(Iat) = Tfp(rlx,rft), w(xat) = ;(,O(Tll',’l"ft)-

Using invariance property of Perturbed Navier—Stokes equation under nat-
ural scaling we conclude that functions u, g, is then a suitable weak so-
lution of the Perturbed Navier—Stokes equations in @, and the following
two inequalities hold:

sup E(r,u) <m
0<r<1
and
1
9(u,q) < 5e1(m).

From the last inequality one can involve that there exist a number r, €
(0, min{1/4, (A3(1) + D3(1))~2}) such that

gr. (U, q) <e (m)

By Proposition 4.1 the point z = 0 is a regular point of u, therefore z = 0
is a regular point of v. Proposition 4.2 is proved.

In the same way one can prove the following statements.
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Proposition 4.3. Let v, P, ¢ be a suitable weak solution of the Perturbed
Navier—Stokes equations in Q. If

limsup,_, A(r) < M (4.21)
and
g < EZ(M)7 (422)
then z = 0 is a regular point of v.

Proposition 4.4. Let v, p, p be a suitable weak solution of the Perturbed
Navier-Stokes equations in Q. If

limsup,_o,C(r) < M (4.23)

and
g < es(M), (4.24)

then z = 0 is a regular point of v.

Proof of Theorem 1.1. The proof is a direct consequence of Proposi-
tions 4.2-4.4 and the fact that functionals (1.8) are bilaterally equivalent
to functionals (3.1) with respect to change of variables (2.1) and 7 = t—to.

5. APPENDIX
In this section the algebraic lemma will be proved.

Lemma 5.1. If functions f, g are positive and satisfy

f(0p) <077 f(p), g(0p) <0 7g(p), (5.1)
f(8p) + 9(8p) < CO°* f(p) + D7, (5.2)

with some 7y, a, f > 0 and any 6 € (0,1) then

aty

£ +9(r) < O°F (p) f+ S (5.3)

for all r < p.
Proof. Let us fix § in such a way that C8* = 1, then

f(0p) + g(6p) < 6°f(p) + DO 7.
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After iterations we can see that

1
1— 6o

£(8"p) + g(6*p) < 0% f(p) + DO* (5.4)

Now for any r < p we can choose k so that 8%p < r < 6*~1p. Applying
consequently (5.1) and (5.4) we can derive that

Fr) +9(r) < [£8°0) + 96" p)] (m)

IN

[G(k_l)“f(p) +D§~ " - jaa} 6=

r\ ¢ g—7-F8
<@V = —D.
<49 (p) Fo)+ 1—pa

Plugging into last inequality § = C '/ we arrive at (5.3) which ends the

p

10.

roof.
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