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ON THE LOCAL SMOOTHNESS OF WEAK
SOLUTIONS TO THE MHD SYSTEM

ABSTRACT. We prove some sufficient condition for local regularity of weak
solutions to the system of magnetohydrodynamics.

Dedicated to Nina Nikolaevna Uraltseva

1. INTRODUCTION AND MAIN RESULTS

In this paper, we study regularity of solutions for the system of magneto
hydro dynamics (MHD).

Opv(x,t) — Av(x, t) + div (v ® v) + Vp(x,t) = div(H @ H),
OcH (z,t) — AH(z,t) =div(v® H) — div(H ®v), (1)
divo(z,t) =0, divH(z,t) =0.

Here Q is a domain in R3, Q7 = Q x (—T,0), unknowns are the velocity
field v : Q7 — R3, pressure p : @7 — R and the magnetic field H :
Qr — R3. The MHD system can be interpreted as the usual Navier—
Stokes equations perturbed by an additional external force div (H ® H)
which is governed by the parabolic linear system.

The solvability for MHD system was investigated in the 1960s, in par-
ticualar, in [1] for various initial boundary value problems the global ex-
istence of weak solutions, as well as the local-in-time existence of smooth
solutions were proved. However, similar to the case of Navier—Stokes sys-
tem, the problem of uniqueness of global solutions is open and it is closely
related to the question of smoothness of weak solutions. Formally the in-
vestigation of smoothness of solutions for (1) is more complicated than in
case of Navier—Stokes system, because it is intuitively clear that for non-
smooth velocity field v the field H can be nonsmooth, so that the external
force in the right-hand side of the first equation can become singular, that
can destroy regularity of solutions.
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Analogously, to the Navier—Stokes system (see [2, 8, 4], and [3]) we
investigate regularity of suitable weak solutions.

Definition 1.1. A triple of functions v, p, H is called a suitable weak
solutions to the MHD equations in Qr if

0, H € Ly oo(Qr) "Wy (Q7) p € L3 (Qr), (2)

Eq. (1) holds in Qy in the sense of distributions and the local energy
inequality

/ |o(x,t)|> + |H (z,t)|*)p(x, t)ds
Q

+ / (IVv(z |2+ |VH(z )| o(2)dz
(—=T,t)xQ

< / (ol + [H[?) (Brp + Ag)dz + / (ol + [H? + 20V - od
Qr Qr

(3)

-2 /(v -H)(H - Vy)dz
Qr
holds for a.e. t € (—T,0) and any ¢ € C§°(Q2 x (=T,0]), ¢ > 0.

Here we use the following notation:

Lpq(Q1) = Ly(=T,0; Ly(Q), Wy *(Qr) = La(=T,0; W3 (Q)),
L,(2) and W (Q) are the usual Lebesgue and Soboleve spaces, respec-
tively.

For MHD system many analogues of well-known results for Navier—

Stokes equations are proved. In particular, in [10], the following condition
of e-regularity was obtained

Theorem 1.1. There is a absolute constant €y > 0 with the following
property. Assume that the triple v, p, H is a suitable weak solutions to
the MHD equations in Q)(zo, Ro). If for some R < Ry

1

[ (oF +1EP ) ds < e
Q(z0,R)

then v and H are Hélder continuous in Q(zo, %)

Also in [10] a generalization of known Caffarelli-Konh—Nirenberg con-
dition (see [8]) was proved
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Theorem 1.2. There is an absolute constant €y > 0 with the following
property. Assume that the triple v, p, H is a suitable weak solutions to the
MHD equations in Q(zo, Ro)- If one of following conditions holds

1
lim sup sup - / (Jv]* + |H|?)dz < & (4)
p—0  te(to—p2,to)
B(zo,p)
or )
lim sup p / (|Vo]? + |[VH|*)dz < €1, (5)
p—0

Q(zo0,p)
then there is pg < Ry such that v and H are Holder continuous
in Q(zo, po)-

Various regularity conditions for solutions to the MHD system were
obtained in [7, 11], and [9]. It is significant that conditions obtained in [10]
are symmetric with respect to v and H. On the other hand, the equations
for magnetic field are linear with respect to H. So it is reasonable to
assume that for H we can expect weaker conditions, than for v (actually,
this observation was done in [7]). In this paper, we found confirmation for
this hypothesis. The main result is the following theorem.

Theorem 1.3. For arbitrary My > 0, there is a constant e = e5(My) >
0 with the following property. Assume that the triple v, p, H is a suitable
weak solutions to the MHD equations in Q(zo, Ro). If

1
sup / |H|?dz < My,

0<r<Ro
Q(z0,7)
and one of the two following conditions holds
1
lim sup sup = / lv]2dz < &2 (6)
r—0  te(to—r2,t0) T
B(zo,r)
or )
lim sup - / |Vo|?dr < e, (7
r—0 T
Q(zo0,7)

then there is pg < Ry such, that v and H are Holder continuous
in Q(zo, po)-

Similar results were obtained earlier in [7]. Both papers [7] and our
one explore the similar technique, but to our opinion the proof of the
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practically important case (7) given in [7] is very brief and miss some
important details. Our goal is to reproduce the complete proof. Besides,
we hope our method allows to understand better the connection between
energy functionals. In particular, in the third part of these paper the
analogues of results from [5] were obtained, that can alow to generalize
the results of [6].

The plan of the paper is following. In Sec. 2, we introduce energy func-
tionals and prove some axillary inequalities. In Sec. 3, we deduce some
inequalities that alow us to estimate one of the functionals by others.
In Sec. 4, we prove the statements that allow us to obtain smallness of
functionals depending of H and play the crucial role in the prove of main
results in Sec. 5.

We use the following notations

B(.’L'(),p) = {xERB : |I—.’I)0| <p}7
Q(z0,p) = (to — p°, o) x B(zo, p)
2. PRELIMINARY INEQUALITIES

2o = (to, xo)-

Observe that MHD equations are invariant with respect to the natural
scaling

Up(y7 S) = pv(py + 507/725 + tO):
H,(y,s) = pH(py + o, p’s + to), (8)
pp(y,8) = p°p(py + mo, p°s + to).

Since the statements of Theorems 1.1, 1.2, and 1.3 are also invariant with
respect to this transformations, we can investigate solutions in the unite
cylinder centered at the origin.

We introduce the following functionals

1
cwzﬁ/wmz

Q(p)
1 2 1 2
E(p) = - |[Vu|?dz A(p) = esssup — lv(z,t)]*de, 9
p —p2<t<0 P )
Q(p) B(p)

1 . 1 .
Bap) = [ IVHPd 4ap) = esssup 5 [ |H( 0,
P —p2<t<0 P

Q(p) B(p)
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/|P| dz, Dy(p /|p 2dz.

Bo) = [ Pz
Q(p)

here
) = [ plast)da.
B(p)
There are three basic inequalities and their modifications. The first one

is a consequence of multiplicative inequality and the embedding theorems
and has the form

o) < ¢ <<§)3 AS(R)ES(R) + (%)3 AS(R)> (10)

r

for all 0 < r < R < 1. The proof can be found in [4].
The second group can be obtained from local energy inequality (13)
after appropriate choice of the test function

A(r) + E(r) + As(r) + Ex(r) < ¢(C(2r) + C3(2r)

1 2 1 2 (]‘]‘)
+ D3 (2r)C3(2r) + F>(2r) + C3(2r)F§ (2r)).
Also we will use another version of this inequality
A(r) + E(r) + Ao (r) + Ba(r) < o(CF(2r) + F (2r) 2

+ D et @) + Abencteneb e + Clen el en).

And the third group of inequalities is the kind of decay estimates for
the pressure (see [5])

5

Dy(r) < c ((;) Do) + (£)” 4¥ (B (o) + (3)2F3<p)> "

Do(r) < <(£>2D0<p) +(2) ) +F3<p>>> | (14)

Iterating these inequalities we obtain the following statement
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Lemma 2.1. Ifv,p, H are the suitable weak solution to the MHD equa-
tions in Q(R), then for arbitrary r < R the following estimate holds

B(r) <c <<5> AREL )+ (%) F2(R>> . (15)

r
Proof. We use the decomposition H = H; + H,. Here H; is the solution
of initial-boundary problem
6tH1 — AHl = le (U ® H) — le (H ® U),
Hili—_r>=0, Hilspr)x(-r2,0) =0,
and for Hs the following equation holds
atHz - AHZ =0 in Q(R)

Then the embedding theorem and L,-estimates of the gradient of a solu-
tion to the heat equation with the right-hand side in the divergent form
(see, for example, [12]) provide estimates

0
/|H1| dz<1;3 /( |VH1|%dx> dt

Q(R —R% “B(R)
0
<o /( / v]® |H|5d:n> dt
—R? “B(R)
%
<= /( / |u|2da;>< / |H|3da:> dt
“R2 “B(R) B(R)

< cA(R)F} (R).

To estimate H> we use the mean value theorem

— / |Hs2dz < cr? sup|H2|2 c— / |Hs|?dz
Q(r)

r gc(%)‘ ( = / \Hi | dz>

Combining these estimates we obtain the statement of Lemma 2.1.
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Lemma 2.2. Ifv, p, H are the suitable weak solution to the MHD equa-
tions in Q(R), then for arbitrary r < R the following estimate holds

e

(R)

T

Fu(r) < c((§>_ (E% (R)Fy (R) + Ej (R)C
(16)

RIS

+Fy (R)CH(R)) + (%) _GFT (R)).

Proof. The proof of this lemma is similar to the previous one. The only
difference is that we use the four dimensional embedding theorem to esti-
mate H;

= /|H1|7dz<—< / |8tH1|%dz>

Q(R) Q(R)

10

10
c 6

+—R273< / |VH1|5dz>

Q(R)

s%( /<|VH|%|U|%+|H|%|W|%dz>

Q(R)

10
7

s

10

</|v| |H|5dz>7.

Q(R)
Here used the standard L,-coercive estimate for ;H; and the L,-estimate
of the gradient of a solution to the heat equation with the right-hand side
in the divergent form for VH;. Next we use Holder inequality and, as
result, we get
4 ] ]
Fia(R) < ¢ (B (R)F] (R) + BS (R)CY (R) + F (RIC ().

7

Estimate for Hs follows in the same way to Lemma 2.1.

3. BOUNDEDNESS OF ENERGY FUNCTIONALS

In this section, we derive estimates of energy functionals which allow
us to obtain uniform boundedness (with respect to the radius) of all func-
tionals (9) if boundedness of some of them is known. Similar inequalities
for solutions for Navier—Stokes equations were obtained in [3].
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Lemma 3.1. Ifv, p, H are the suitable weak solution to the MHD equa-
tions in Q(1) and

sup A(r) = Ap < 400, sup F3(r) = Ko < +o0,
0<r<1 0<r<1

Then there is a positive constant d depending only on Ay and K such
that
C(r) + E(r) + Do(r) < d(r*(E(1) + Do(1)) + 1)
forall0 <r <1/2.
Proof. Introducing
F(r) =C(r) + E(r) + Do(r),
we derive from (10) and (11)
F(r) < c(C%(2r) +C(2r)+ F3§ (2r) + F5(2r) + Do(2r)). (17)
Then from (10), (13), and (17) we obtain
PN (43t 5y (P
F(r) Sc((;) (A5 B () +43) + (£)

4
3

(AZE? (p) + Ao)

r\ 2 A 2
+<;) Do(p)-l-(;) K0+K0+K03>.

As E(p) arises in the last inequality with exponent less than 1, we apply
the Young inequality and obtain

Flr) < ((;) +5> Flp)+ ) (£)" (43 + 4 + 1o + 1),

The last estimate can be reduced to the form
0 3 2
F(0p) < c(63 +6)F(p) + %(Ag +AZ + Ko+ K§),
where r =fp and 0 < 6 <1/2.
Now, let us fix 8 and § in the following way

7 <1/2, 0<6<1/2, <822
So, we have
F0p) < 0°F(p) + c(A3 + A2 + Ko + K¢ ).
Iterations of the last inequality lead us to the estimate
F(OF) < 0% F(1) + c(A} + AF + Ko + K3).

From the last inequality we deduce the statement of Lemma 3.1.
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Lemma 3.2. Ifv, p, H are the suitable weak solution to the MHD equa-
tions in Q(1) and

sup E(r) = Ey < +00, sup Fs(r) = Ko < +o0.
0<r<1 0<r<1

Then there is a positive constant d depending on Ey and Ky only such
that
AR (r) + C(r) + D3(r) < d(r¥(A3(1) + D3(1)) + 1)

forall0 <r <1/2.

Proof. Analogously to the previous lemma the proof is based on (10),
(11), and (13). Introducing

G(r) = A% (r) + D5 (r),
from (12) and assumptions of Lemma 3.2, we derive the estimate
G(r) < e[C(2r) + Ko + C} (2r) Do (21) .
+ A% (2r)CF (2r)ES + CF(2r) Ko | + D2(r). "
Using the Young inequality we obtain
G(r) < o(C(2r) + D(2r) + A% (2r)C3 (2r)Ef + Ko + K2).

Taking into account (10) and (11) we eliminate C'(2r) and DZ(2r) from
the right-hand side of the last inequality and obtain

) <[ (£) atmd + (1) 4k
r\° . 4 . 4
+(2) i+ (2) 4wz + (2)' k3

+ato)( (£) atE] + (f;)gA%(p))%Ef + Ko+ K3

where 0 < r < p/2 < p < 1. Removing the brackets we obtain

Gr) < ‘{ (£>3A%(p) + (%>5D§(p) + (%)zA%(p)EO%

) At Es + (L) a8
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Next we use the Young inequality with constant § > 0.

G(r) < c [(%) (B +1)+0

P\'2 6 5 3 2
+ ¢(0) (;) (ES + EZ + BZ + Ko + K2).
Now we apply iterative procedure. Let 0 < 6 < 1/2, then

G(p)

3 3 .
G(p) < ¢ |03 (E§ +1) + 6] Glp) + c(0)9™"2Go(Bo, Ko).
If we choose 6 and § such that

9‘11(E0‘3‘+1)< 0<0< ) < :
¢ 2’ 2 2
we Obtain

G(6p) < 02G(p) + G1(Ep, Ko)
for all 0 < p <1, where § = 6(Ey, Ky).

Iterating the last inequality, we derive

G(r) < di(Eo, Ko)(r3G(1) +1)

for all 0 < 7 < 1/2. To complete the proof of lemma we have to estimate
C(r). So we apply (10)

C(r) < ¢ [A%@n)EB§ + 4} (2r)] < c[adn) + B}

< ds(Eo, K0)(G(2r) + 1) < ds(Ep, Ko)(r£G(1) + 1)
Lemma 3.2 is proved.

Lemma 3.3. Ifv, p, H are the suitable weak solution to the MHD equa-
tions in Q(1) and

sup C(r) = Co < +o0,
0<r<1

sup Fs(r) = Ky < +o0.
0<r<1
Then there is a positive constant ¢ such that

A(r) + E(r) + Do(r) < c(r*Do(1) + Co + Of + Ko+ Ki')
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forall0 <r <1/2.

Proof. From (14) we obtain

Dol(r) < ¢ [(%)200(,)) + (g)2 (Co + Ko)

for all 0 < r < p < 1. Let r = 0p, choosing 0 < € < 1 such that ch3% <1,
we obtain

Do(6p) < 62Do(p) + ¢(Co + Ko).

Iterating the last inequality, we derive
Do (r) < er?Do(1) + ¢(Co + Kp).

Now the statement of Lemma, 3.3 follows from (11).

Combining together all the assertions of this section, we obtain the
following theorem.

Theorem 3.1. For arbitrary My > 0 there is a constant M > 0 such
that if v, p, H are the suitable weak solution to the MHD system in ()(1),

sup F3(r) < Moy,
0<r<1

and one of the three following conditions holds

(1) sup C(r) < My;

0<r<1

(2) sup E(r) < My;

0<r<1

(3) sup A(r) < My,

0<r<1

then

A(R) + E(R) + E>(R) + C(R) + Do(R) + F3(R) < M, for all R e (0,1].
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4. SMALLNESS OF ENERGY FUNCTIONALS

Lemma 4.1. For arbitrary M > 0 and € > 0, there is a constant § =
0(M,e) > 0 such that if v, p, H are the suitable weak solution of MHD
equations in (1) and

F35(R) <M forall 0<R<I,
A(R)<d forall 0<R<I1,
then there is R, = R.(M,¢) such that F>(r) < e for all r < R,.

Proof. We use standard iteration technique. Assume 0 < 6 < 1. Let us
take in (15) r = OR. From assumptions of Lemma 4.1, we obtain

eM3§

93

Fy(OR) < + c#*Fy(R).

Next we choose 6 and then § such that

. 1 cM3s ¢

2 <=, — < =,
ct” < % B < 1
Then we obtain

e 1

F>(0R) < - + s F>(R).
4 2

Iterating the last inequality, choosing R = 1 and using boundedness of

F5(R), we arrive at the estimate

M

B0*) < -+ —.

N ™
[\

Choosing k sufficiently large we obtain the statement of Lemma 4.1.

Lemma 4.2. For arbitrary M > 0 and € > 0, there is a function 6(M, )
such that if v, p, H are the suitable weak solution of MHD equations in
Q(1) and

AR)+ E(R)+C(R)+ Do(R)+ F3(R) < M, VYO<R<I,

E(R) <6(M,e) YO<R<1,
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then there is ro = ro(M, €) such that C(r) < e for all r < ry.
Proof. Assume r < p/2 < 1/2. From (10) we obtain

coze((&) e (541 (5)+(5) 4 (3)

We use the assumptions of lemma to estimate the first term, and for
second term we use (11), but all terms expect C3(p) we replace by their
upper bound M. Hence we obtain

C(r) <c <(§)35%M% + (%)30(,)) + (%)3M%> .

Next assume 6 < 1/2 and take r = 0p

B

c6iMi
93

C(0p) < + 0P M2 + c6°Clp).

Choosing 8 such that c#>M? < /4 and cf® < 1/2 we obtain

3.3
C0p) < 61 M

ST g +

| M

Proceeding like in the previous lemma we obtain the result.

Lemma 4.3. For arbitrary M > 0 and € > 0 there is a function 61 (M, )
such that if v, p, H are the suitable weak solution of MHD equations in

Q(1) and
A(R) + E(R) + E>(R) + C(R) + Do(R) + F3(R) < M, VYO0<R<I,

C(R)+ E(R) < 6,(M,e) YO<R<1,
then there is 7o = ro(M, €) such that F5(r) < e for all 7 < ry.

Proof. Let § < 1/2. From (16), taking r = R,

FipOF) < —o (6] M¥ 6] M) + 8% Fip ().

7 027 7
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Next we choose 6 and after this §; such that

1
9’

=I5

9
€76

ch <
4M

oi— (o7 M? + 67 M?) <

RIS

So, we have
9 ,27
€707  F(R)
F 12 (QR) < 4]\4—% + 5
Iterating the last inequality, choosing R = 1 and using boundedness of
F5(R), we arrive at the estimate

From multiplicative inequality
Fy(0%) < Fi (0%)Fy (6°) < e6®
7

for k > ko(M,e). Next we choose ro = 65 and for r < ry we have

here #%+! < < ¥, Lemma 4.3 is proved.

5. PROOFS OF MAIN RESULTS

All proofs of this section are based on the following lemma.

Lemma 5.1. For arbitrary M > 0 there is a constant e3 = e3(M) such
that if v, p, H are the suitable weak solution of MHD equations in (Q)(1)
and

A(R) + E(R) + C(R) + Do(R) + F5(R) < M, YO<R<1, (19)
C(R)+ F>(R) <e3, VO<R<I, (20)
then v and H are Hélder continuous in Q(r.) for some 0 < r. < R.
Proof. Assume r < 1/2. From (11) we obtain
A(r) + E(r) + Ax(r) + Ex(r)
< o(C(2r) + CF (2r) + D (2r)CF (2r)
+ Fy(2r) + B (2r)CF(2r) + F (2r)C3 (2r))

2 2 1 1 2
<clezte +e3M3s +efMs ).
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Choosing e3 sufficiently small we obtain

A(r)y+ As(r) <ep VO<r<

N =

where £; is the constant from Theorem 1.2. Statement of lemma follow
from Theorem 1.2.

Proof of Theorem 1.3. As solutions of the MHD system are invariant
with respect to displacements and the natural scaling (8) without loose of
generatively we can assume Q(zo, Ro) = @Q(1). If we choose €5 < M then
from Theorem 3.1 we obtain condition (19) for some M.

First we prove theorem in the case (6). Let €3 be the constant from
Lemma 5.1. Next we choose 6 = 6(M,e3/2) from Lemma 4.1, and let
€9 < §, then we have

€3

Fy(r) < 0] Vo<r<rg.
Also from (10) we obtain
€3
C(T)S? VO <r <.

Then after scaling from Q(rg) to Q(1); we apply Lemma 5.1 and obtain
the statement of Theorem 1.3.

Now we prove the Theorem 1.3 in the case (7). Let 3 > 0 be the con-
stant from Lemma 5.1. Let y; = (M, e3/2), where 6(M, e3/2) be the func-
tion from Lemma 4.3. Next we put 72 = §1(M,e3/2), where 6;(M,e3/2)
is a function from Lemma 4.2 and then we put v3 = 6(M,y2/2). Now we
choose

€2 = min (717 %773) - (2]‘)

Then from the condition of the theorem we obtain, that E(R) < 73, so
from Lemma 4.3, we have

C(r) < %, Vr <1 (22)
for some r; > 0. Also from condition E(R) < v, we have

C(r) < %3, Vr <y (23)
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for some r2 > 0. Now we put ro = min (r1,r2) and make scaling from
Q(ro) to Q(1). So conditions (22) and (23) holds for all 0 < r < 1. From
the condition of the theorem and conditions (21) and (23) we have

C(R)+ E(R) <7, VR<I.
So using Lemma 4.2 we obtain
Fy(r) < %3 Vr <rs. (24)
Then from conditions (21) and (24) we deduce
C(r) + Fa(r) <ez Vr<rs.

Finally, we make scaling from @(r3) to (1) and apply Lemma 5.1. Then
we obtain the statement of the Theorem 1.3.
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