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A CHARACTERIZATION AND A CLASS OF
OMNIBUS TESTS FOR THE EXPONENTIAL
DISTRIBUTION BASED ON THE

EMPIRICAL CHARACTERISTIC FUNCTION

ABSTRACT. The characteristic function ¢(t) of an exponentially dis-
tributed random variable is characterized by having its squared modu-
lus identically equal to the real part of ¢(t). We study the behavior of a
class of consistent tests for exponentiality based on a weighted integral
involving the empirical counterparts of these quantities, corresponding to
suitably rescaled data.

1. INTRODUCTION AND SUMMARY

Recent years have witnessed an increasing interest in using the empiri-
cal characteristic function (ECF) as a tool for statistical inference, partic-
ularly in goodness-of-fit problems. For the most recent work the reader is
referred to Huskovd and Meintanis [10, 11], Klar and Meintanis [13], Mat-
sui and Takemura [15], Meintanis [16-19], Meintanis and Ushakov [21],
Henze et al. [6], Henze and Meintanis [7, 9], Alba et al. [1], Giirtler and
Henze [5], Zhu and Neuhaus [25], Epps [4], Koutrouvelis and Meintanis
[14] and Kankainen and Ushakov [12]. Most of the earlier literature is
covered in Ushakov [23]. In Henze and Meintanis [9], many tests for expo-
nentiality were reviewed, and compared via simulation. Among the most
powerful of them was the test statistic

oo

Tn:/Zi(t)w(t)dt, (1)

— 00

where
Zn(t) = \/E (|¢n(t)|z - Cn(t)) )
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and w(t) is a nonnegative integrable weight function. In (1.1), the ECF
of the suitably rescaled data Y7,Y5,...,Y,,
1o . ,
Pn(t) = n Zlexp(ltyj) = Cn(t) +iSn(t), (3)
J:

is employed, where YV; = X;/X, (j = 1,2,...,n), and X, =
n~'37% | X; denotes the sample mean of the original observations X,
j = 1,2,...,n. The real part (respectively, imaginary part) of the
ECF is given by Cp(t) = n~'>J_ cos(tY;) (respectively, Sy(t) =
n~! 375 sin(tY;)), and the squared modulus is [¢,,(t)|* = C7(t) + Sa(t).
The test that rejects the null hypothesis of exponentiality for large values
of T}, is motivated by the equation

o)) = c(t), teR, (4)
between the squared modulus |¢(+)|> and the real part c(-) of the char-
acteristic function. Interestingly, (4) is a characteristic property of the
class of exponential distributions within the set of nonlattice distributions
(Meintanis and Iliopoulos [20]).

In the present paper, the asymptotic properties of T}, are studied. The
paper is organized as follows. In Section 2, we derive the limit null distri-
bution of T},. Section 3 addresses the problem of asymptotic distribution
theory of T}, under fixed alternatives to the exponential law. The paper
concludes with a real data example given in Section 4.

2. THE LIMIT DISTRIBUTION OF T, UNDER Hj

A convenient setting for asymptotics is the separable Hilbert space
H = L*(R,B,w(t)dt) of (equivalence classes of) measurable functions
f: R — R satisfying || f||? < oo, where

<f’g>:/oo Iy w@)dt and ||f||=(/oof2(t)w(t)dt)1/2

define the inner product and the norm in H, respectively. Notice that
Z,() in (2), is a random element of H, and that T}, = |Z,|*. Here

and in what follows, the notation L means convergence in distribution
of random elements and random variables, op(1) stands for convergence
in probability to 0, Op(1) denotes boundedness in probability, and i.i.d.
means ‘independent and identically distributed’. Also, Exp (6) stands for
the exponential distribution with density exp (—z/6)/8, > 0.
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Theorem 2.1. Let Xi,...,X,,... be ii.d. random variables with an
exponential distribution Exp (0), 6 > 0. If

/ Frut) dt < oo, (5)

— 00

then there exists a zero mean Gaussian element YW of H having covariance
kernel

K(s,t) = EV(s)W(t)]
212 (1 + 52 +t2)

QTR T gy ey parscy AL

(s,t € R) such that

Zo2W and T,2 IW|I*? as n — oco.
Proof. Since T, is scale invariant, we assume without loss of generality

that E(X) = 1. Notice that

n

20) =i 5 X cos@iu) - 2 Y eos()), (D)

Jik=1

where Yj,_ = Y; —Y}. The main idea of the proof is to approximate Z,,(t)
by a suitable process Z,(t) of the type

ZMZ%Z%@ (8)

where Wy (-),... ,Wy(-) areii.d. centered random elements of H satisfying
E||W1||* < oo. By the central limit theorem in Hilbert spaces (see, e.g.,
van der Vaart and Wellner [24], §1.8), we have

Zn ZW as n— oo, (9)

where W is a zero-mean Gaussian random element of H. If the approxi-
mation of Z,, by Z,, is in the L?-sense, i.e., if

HZn - Zn”Z =op(l) as n— oo, (10)
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then (9) implies Z, LA W, and the continuous mapping theorem gives

D

T = 1242 2 .

In what fOllONWS we use the generic notation yn ~ V,, for random ele-

ments V,, and V,, of H to indicate that ||V;,, — V,,||*> = op(1) as n — oo.
Since, by Fubini’s theorem,

[IW||? as n — oo.

mw-%wz/mww—%w%wm, (1)

a convenient way to prove Vy, ~ V,, (use Markov’s inequality) is to show
that the right-hand side of (11) tends to zero as n — oo. In each of the
subsequent steps to approximate Z,, by Zn, the latter convergence may
be obtained by using Lebesgue’s theorem of dominated convergence.

Starting with (7) and using the fact that X, — 1 almost surely, a
second order Taylor expansion of the function g(u) = cos (tX;u) around
u =1 yields

+M t EZstin(th)—f—%

Jj=1

Op(1), (12)

where Op(1) is a sequence of random variables that does not depend
on t. Invoking (11) and (5), some calculations show that replacing the
denominator X, in (12) by 1 and n_lz ., Xjsin(tX;) by its mean

E[X sin (tX)] = 2t/(1 + t*)? has an asymptotlcally negligible effect. This
means that the first approximation step for (7) is

Zcos tY;) \/_ Z [cos tX;) %(Xj - 1)] . (13)

Secondly, putting n() = n!/[2!(n — 2)!], we have

n 2
cos [tYjr—] — % Zcos [thk_]‘ < N
i<k

o>
7,k=1
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Now use the same Taylor expansion as above and proceed via (11) to
obtain

v Zcos [tYk—]

(2) ]<k

- Zcos [tXj5—] +vn(X, —1) t E[X12_sin (tX12-)],
(2) j<k

where X;p— = X; — Xj. Next, approximate the U-statistic Uy (t) =
n(_2§ Zj<k cos [tX,—] by its Hajek projection
E:E )| X;] = (n = 1) E[Un(t)]

ZCOS (tX;) + tsin (tX;) 1
B 1412 1+12

Since E[{U,(t) — Un(t)}2] < C/n? (sce Serfling [22], p. 188) with a con-
stant C not depending on ¢, and since E[X12_ sin (tX12-)] = 2t/(1+1%)?,
we have

N cos (tX;) + tsin (tX;)
S e~ 3O
]’ =

RN M

1+ 1+t22
v

In view of (13), it follows that (10) holds with Z, given in (8), where

W (t) = 2leos(tXy) ;Lij;n .5 (16)

Since |W;(t)| < 6 almost surely, we have E|W;||* < oo, which, by the
Hilbert space central limit theorem, implies (9), where the covariance
kernel of W is K (s,t) = E[W1(t)W1(s)]. Straightforward algebra shows
that K (s,t) takes the form (6).
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Remark 2.2. The distribution of [[W]? is that of 7,5, Aj(w)N7, where
N1, Ns, ... are independent unit normal random variables and (\;(w));>1
are the nonzero eigenvalues of the integral operator A defined by

= / K (s,t) h(t) w(t)dt,

where K (s,t) is given in (6). It seems to be hopeless to try to determine
the eigenvalues A;j(w, a) by solving the equation Ah(s) = Ah(s). However,
we can obtain the expectation of the limit distribution via the relation,

E|W|? = /K(t,t)w(t)dt. (17)

— 00

Writing Técl) ,)a and Tg ,)a for random variables that are distributed according
to the limit null distributions of T,Elg and Ty(fg, respectively, the calculation
of (17) for the weight functions w(t) = exp(—alt|) and w(t) = exp(—at?)
yields

BIY,) = + Llsila) cos (a) ~ cila) sin (o)
~ Zafei(a) cos a) + (@) sin (a)]
+ %[ci(aﬂ) sin (a/2) — si(a/2) cos (a/2)]
and
BI®,) = vra(y +3)
- g3+ 6a)[1 - B(Va)le* + (1 - B(Va/2)e/*,
where ci(z) = — T(cos u/u) du, si(z) = — ?(sin u/u) du, and ®(z) is the

error function.
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3. THE LIMIT DISTRIBUTION OF T}, UNDER ALTERNATIVES

In what follows, let X;,...,X,,... bei.i.d. copies of a random variable
X such that E(X) = 1 and p2 = E(X?) < oo. The characteristic function
of X is denoted by ¢(t) = C(t) + iS(t), where C(t) = E[cos (tX)] and
S(t) = E[sin (tX)]. Obviously,

o0

= / o) — C@O)*w(t) dt = ||l¢]* - C||* (18)

— 00

is a measure of distance between the law of X and the unit exponential dis-
tribution, which is associated to the statistic n 1T}, = |||¢n|? — Cp . It is
easily seen that n~!T,, — A in probability, which implies the consistency
of the test for exponentiality based on T,, against any alternative distri-
bution for which A > 0. In this section, we prove the following stronger
result.

Theorem 3.1. Under the standing assumptions, we have

ﬁ(%—A) 2/\/(0,03) as n — oo, (19)
where e
o5 = / / Ko(s,t)H(s)H (t)w(s)w(t) ds dt, (20)
H(t) = 2[|¢(t)|* — C()]*, (21)
Ko(s,t) = %[QC(t) —1J[2C(s) — 1J[C(t + s) + C(t — 5) — 2C(t)C(s)]
+ S(s)[?C(t) —1][S(t+ s) — S(t — s) — 2C(t)S(s)]
S)[2C(s) —1][S(t+s) + S(t —s) —2C(s)S(t)]
+ 2S(t)S(5)[C(t —5)—C(t+s)—25(t)S(s)] (22)
—2a(s)[C(1)S'(t) — C"(1)S(t) — [#(1)]*]
- 2a(t )S'(s) = C"()S(s) — |¢(5)I°]

@
w
S
Q
=
+
Q/\

(D[S"(s) = Cs)] + a(t)a(s)(p2 — 1)
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and
d 2 _t /
a(t) =t [le@)* — C(1)] = SH'(2). (23)

Proof. For short, let T = /n(T,,/n— A). Using a®> — b*> = (a—b)(a+b),
we have
T, = <GmHn> (24)

in ‘H, where

Gu(t) = Vi [|[0a(t)]* = [o(®)* — {Cul(t) — C()}],

Hy(t) = [¢n () + [@(0)” — [Cu(t) + C(#)]-

Since ||H,, — H||? = op(1), (to obtain this result, proceed via (11) and use
the law of large numbers and dominated convergence), we may replace
H, by H in (24) without changing the limit distribution of T}F. We will
show that

G, 2 G as n — 00, (25)

where G is a zero-mean Gaussian random element of H. Assuming (25), the

continuous mapping theorem would give (G,,, H) 2 (G, H) The random
variable (G, H) is centered normal with variance o2 given in (20), where
Ko(s,t) = E[G(s)G(t)] is the covariance function of G. To prove (25), we
proceed by complete analogy with the reasoning given in the proof of
Theorem 2.1. Put

Vi(t) = % Z [2{0(1&) cos (tX;) + S(t)sin (tX;) — |¢(t)]*}
j=1 (26)

~ [eos (¢X;) = C(B)] — a()(X; — 1)),

where a(t) is defined in (23), and let G,,(t) = n~1/2 > i1 Vj(t). Since
E||V1]|? < oo, the Hilbert space central limit theorem yields the existence
of a zero-mean Gaussian random element G of H having covariance func-
tion Ko(s,t) = E[G(s)G(t)] = E[Vi(s)Vi(t)] such that G, B Gasn— .
We will prove that

Gn ~ G, (27)
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which would conclude the proof of the theorem. To show (27), use a Taylor
expansion of the cosine function to arrive at

Vn[Cy(t) — C(t)] = L En [cos (tX;) — C(t) — tC"(¢)(X; — 1)].
N
j=1

Proceeding in the same way, and approximating the U-statistic
n(; Zj,k cos [tX;,—] by its Hajek projection, it follows that

n

Vallga (t)]* —16(t) Z 2{C(t) cos (tX;)

+S(t) sin (£X;) — (1) ] }—t (S (X; = D).

Upon combining this result with the approximation for v/n[C,,(t) — C(¢)],
(27) follows. Finally, it is straightforward to prove that the function
Ko(s,t) given in the statement of Theorem 3.1 is the covariance kernel

of G.

Remark 3.2. The covariance function figuring in (22) coincides with the
covariance structure of the process

G(t) = 2[C(t) cos (tX) + S(t) sin (¢X)] — cos (tX) — a(t)X.

Hence, the terms of Ky(s,t) can be calculated based on the covariance
structure of G using the relations

2Covcos (sX),cos (tX)] =C(t +s) + C(t —s) —2C(t)C(s),
2Cov [sin (sX),cos (tX)] = S(t +s) — S(t —s) —2C(t)S(s),
2Cov [sin (sX),sin (tX)] = C(t —s) — C(t +s) —25(t)S(s),
Cov [X,cos (tX)] = S'(t) — C(¢),
(tX)

Cov [X,sin (tX)] = —[C'(t) + S(t)],

and Var (X) = p2 — 1.

Remark 3.3. Since n~'T},, — A in probability, at least for large n the
power of the test based on T}, under any specific alternative distribution
will depend on the value of A. For the particular choice w(t) = exp(—at?),
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A = A, becomes solely dependent on the value of a. It is of interest to

have an assessment for the relative power of the test with respect to two

different alternative distributions. For example, if X follows a uniform

distribution in the interval [0, 2], we have

Vra?
6

A, = (1 — 4e%/@ 4 3et/a)e=4/a

+ 52— 30) {2@(%) - ¢(%)}

If X follows a Gamma distribution with shape parameter equal to two,
we have

_\/47T(1(1 _ 6—4/@) _ _V;Ta(l _ 63/@)6—4/11

A, = —Z{ % (640 + 640+ 3) — —(5120° 4 5760> + T2a — 3)[1 — B(2y/a)]e*.

T
_ ﬂ(
Figure 1 below displays plots of A, for 0 < a < 1. These graphs indicate
that the test based on T, with weight function w(t) = exp(—at?), should
have greater power against a uniform distribution (upper curve), rather
than against a Gamma distribution with shape parameter equal to two

(lower curve). This conjecture is confirmed by the simulation results in
Henze and Meintanis [9].

04
03
0.2

0.1

Fig. 1.

Remark 3.4. As before, assume E(X) = 1 and let u» = E(X?). Further-
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more, put
A, = /[I¢(t)|2 —C()Pe I dt = /2[I¢(t)|2 —C()Pe " at. (28)
—o0 0

Since 2[|p(t)|> — C(t)]? = 2(u2/2 — 1)%*t* + o(t*) as t — 0, we have
D) CD2p0 — o — 15 (42 1)

as t — 0. Applying Proposition 1.1 of Baringhaus et al. [2], we thus get
lim a®A, = 12(py — 2)2.

a— 00

By letting u = t? in (28), a similar reasoning yields lim a®/?A, =

3v/m(p2 — 2)?/16 for the case w(t) = exp(—at?). Hence, apart from ir-
relevant constant and scaling factors, the power of the tests for exponen-
tiality based on Télg and Tﬁi as a — oo is expected to depend mainly
on the difference E(X?) — 2, under the alternative distribution (notice
that E(X?) = 2 for the unit exponential law). These results can be gen-
eralized: For example, if we assume E(X?*) < oo and E(X™) = m/!,
m=1,2,...,2k — 1, it follows that

lim a**t1A, =2 (4%)! [E(X?*) — ((2k))]%.

oo [(28) P
Remark 3.5. Suppose X, 1,...,Xpn, n = 1, is a triangular array of
rowwise i.i.d. nonnegative random variables having density
h
) =exp(a) (14 22) a0 (29)

where h : [0,00) — R is a bounded measurable function such that
J h(z)exp(—z)dz = 0. To assure that f, is nonnegative, we assume n
0

to be large enough. By complete analogy with the reasoning given in
Henze and Meintanis [8], the limit distribution of T}, under the sequence
(28) of contiguous alternatives to Hp is the (noncentral chi-square type)
distribution of |[W + ¢||?, where W is the Gaussian process figuring in the
statement of Theorem 2.1, and the shift function ¢(-) is given by

oft) = / (2[C°S (bo) + tsin(tz)] oo (ta:))h(:v) exp(—2)ds.

1+ 2
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4. A REAL DATA EXAMPLE

A simple graphical procedure to assess exponentiality is to consider
the pair (¢, D, (t)), where D,,(t) = |pn(t)|? — cn(t), and ¢, (¢) and |, (t)]
denote the real part and the modulus, respectively, of the ECF of the
data X1, Xs, ..., X,. Based on (4), if X is exponentially distributed, then
the graph of D, (t) for several values of ¢, should resemble a scatterplot
of zero-mean correlated data. In order to demonstrate such an empirical
procedure we have employed the data provided by Bury [3], Example 12.2.
These data represent the time to failure (in hours) of sixteen units of a
newly designed inverter. The graph of D,,(t) for 0 <t < 2 is displayed in
Fig. 2 below, and reveals a behavior for D, (¢) which is compatible with
the hypothesis of exponentiality.

03
0.2

0.1

VAv WA\/AV

Fig. 2.

Of course, such a graph does not provide information on the value of
the scale parameter #. One may be tempted to recover the value of 8 from
a similar graph by considering the empirical counterpart of the ratio

s
RO = Bor

If X ~ Exp (), then plotting the graph of R(t) against ¢ yields a straight
line through the origin with slope equal to 6. However, the relation
R(t) = 0t holds also when X is uniformly distributed in the interval [0, 26],
6 > 0. Hence S(t) = 6t|4(t)|*> does not characterize the exponential (or
the uniform) distribution.
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